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An Integrated Design Environment for Performance and Dependability
Analysis

Abstract

This paper presents a integrated design environment that supports the design and analysis of

digital systems from initial concept to the final implementation. The environment supports both

system level performance and dependability analysis from a common modeling representation. A

tool called ADEPT (Advanced Design Environment Prototype Tool) has been developed to

implement the environment. ADEPT is based on IEEE 1076 VHDL and uses commercial

schematic capture systems as a front end via an EDIF interface. Several examples are presented

which demonstrate various aspects of the environment.
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1. Introduction

It has been noted by the digital design community that the greatest potential for additional cost

and iteration cycle time savings is through improvements in tools and techniques that support the

early stages of the design [1]. As shown in Figure 1, decisions made during the initial phases of a

product’s development cycle determine up to 80% of its total cost. The result is that accurate, fast

analysis tools must be available to the designer at the early stages of the design process to help

make these decisions. Design alternatives must be effectively evaluated at this level with respect

to multiple metrics, such as performance, dependability, and testability. This analysis capability

will allow a larger portion of the design space to be explored yielding higher quality as well as

lower cost designs.

There are a number of current tools and techniques that support analysis of these metrics at the

system level to varying degrees. A major problem with these tools is that they are not integrated

into the engineering design environment in which the system will ultimately be implemented.

This problem leads to a major disconnect in the design process where the system level model is

developed and analyzed, and then the resulting high level design is specified on paper and thrown

“over the wall” for implementation by the engineering design team, as illustrated in Figure 2. As a
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result, the engineering design team has to interpret this specification in order to implement the

system, which often leads to design errors. They also have to develop their own initial “high level”

model from which to begin the design process in a top down manner. Additionally, there is no

automated mechanism by which feedback on design assumptions and estimations can be provided

to the system design team by the engineering design team.

A further problem with existing system level modeling tools is that they force the designers to

represent the system using different modeling paradigms for each type of analysis that is to be

performed. For example, even at the system level, multiple models in different representations are

needed to analyze performance and dependability. A great deal of extra work must be done to

verify that these models accurately represent the same system. This problem is illustrated in

Figure 3. All of these problems could be solved to a large degree if a single system level

representation could be used to measure multiple metrics and then be used as a starting point for

the engineering design process.

This paper presents a unified end-to-end design environment developed at the University of

Figure 2. The disconnect between system level design environments and engineering
design environments
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Virginia that attempts to achieve this goal. This environment supports the development of system

level models of digital systems that can be analyzed for multiple metrics like performance and

dependability, and can then be used as a starting point for the actual implementation. A tool called

ADEPT (Advanced Design Environment Prototype Tool) has been developed to implement this

environment. ADEPT supports both system level performance and dependability analysis in a

common design environment using a collection of predefined library elements. ADEPT also

includes the capability to simulate both system level and implementation level (behavioral)

models in a common simulation environment. This capability allows the stepwise refinement of

system level models into implementation level models.

The remainder of this paper is organized as follows. Section 2 describes the ADEPT

environment and set of tools. Section 3 describes the performance modeling capabilities and

hybrid modeling capabilities of ADEPT through the use of an example. Section 4 describes the

dependability analysis capabilities of ADEPT through additional examples and shows how this

analysis can be continued through the design process as the system model is refined. Finally,

System Designers
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Hardware Description
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Specifications

Requirements

Hardware Designers
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Figure 3. The problem of multiple models required for different analyses
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Section 5 contains some conclusions.

2. The ADEPT Design Environment

Two approaches to creating a unified design environment are possible. An evolutionary

solution is to provide an environment that “translates” data from different models at various points

in the design process and creates interfaces for the non-communicating software tools used to

develop these models. With this approach, users must be familiar with several modeling

languages and tools. Also, analysis of design alternatives is difficult and is likely to be limited by

design time constraints.

A revolutionary approach, the one being developed in ADEPT, is to use a single modeling

language and mathematical foundation. This approach uses a common modeling language and

simulation environment which decreases the need for translators and multiple models, reducing

inconsistencies and the probability of errors in translation. Finally, the existence of a

mathematical foundation provides an environment for complex system analysis using analytical

approaches.

Simulators for hardware description languages accurately and conveniently represent the

physical implementation of digital systems at the circuit, logic, register-transfer, and algorithmic

levels. By adding a system level modeling capability based on extended Petri Nets and queuing

models to the hardware description language, a single design environment can be used from

concept to implementation. The environment would also allow for the mixed simulation of both

uninterpreted (performance) models andinterpreted (behavioral) models due to the use of a

common modeling language.

ADEPT implements an end-to-end unified design environment based upon the use of the

VHSIC Hardware Description Language (VHDL), IEEE Std. 1076 [2]. ADEPT supports the

integrated performance and dependability analysis of system level models and includes the

capability to simulate both uninterpreted and interpreted models in a common simulation

environment using a technique calledhybrid modeling. Hybrid modeling allows the stepwise

refinement of system level models into implementation level models. ADEPT also has a

mathematical basis in Petri Nets thus providing the capability for analysis through simulation or
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analytical approaches [3].

2.1 The ADEPT Modules

In the ADEPT environment, a system model is constructed by interconnecting a collection of

predefined elements called ADEPT modules. The modules model the information flow, both data

and control, through a system. Each ADEPT module has a VHDL behavioral description and a

corresponding mathematical description in the form of a colored Petri Net (CPN) based on

Jensen’s CPN model [4]. The modules communicate by exchangingtokens, which represent the

presence of information, using a fully interlocked, four-state handshaking protocol [5]. The basic

ADEPT modules are intended to be building blocks from which useful modeling functionality can

be constructed. In addition, custom modules can be developed by the user if required and

incorporated into a system model as long as the handshaking protocol is adhered to. Finally, some

libraries of application-specific, high-level modeling modules such a Multiprocessor

Communications Network Modeling Library [6] have been developed and included in ADEPT.

ADEPT tokens are implemented as a VHDL record structure. In the token, the two most

important fields are theSTATUS field and theCOLOR field. The STATUS field is used to

implement the token passing mechanism; that is, the “handshaking” between the ADEPT

modules. The COLOR field is an array of integers that hold user-specified information. Modules

are provided which can manipulate the information in the COLOR field.

An example of an ADEPT module is theWye, shown in Figure 4 with its VHDL behavioral

description and its underlying CPN representation. This module models a “fork” construct. When

a token arrives at in_1, tokens are placed simultaneously at out_1 and out_2. The input token is

not acknowledged (consumed) until both output tokens have been acknowledged.

In the Petri Net of Figure 4, the places are shown as circles and the transitions are shown as

horizontal lines. The places labeled as “xx_x_r” and “xx_x_a” correspond to “ready” and

“acknowledge”, respectively. The ready and acknowledge places emulate the handshaking

between modules. When a token arrives at the place labeled “in_1_r”, the top transition is

enabled, and a token is placed in the “out_1_r”, “out_2_r”, and “p” places. The first two places

correspond to a token being placed on the module outputs (out_1 and out_2). Once the output
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tokens are acknowledged (corresponding to tokens arriving at the “out_1_a” and “out_2_a”

places), the lower transition is enabled, and a token is placed in “in_1_a” (corresponding to the

input token being acknowledged). The module is then ready for the next input token. Other

modules are modeled similarly. The complete CPN descriptions of each of the ADEPT modules

can be found in [7].

The set of basic ADEPT modules is divided into six categories:control modules,color

modules,delay modules,fault modules,miscellaneous parts modules, andhybrid modules. The

control modules are used to manipulate the flow of tokens in a model. A majority of the control

modules have been adapted from Dennis [8]. TheWye module described above is an example of a

library uvalib;
   use uvalib.uva.all;
   use uvalib.rng.all;

entity wye2 is
   port (in_1 : inout token;
         out_1: inout token;
         out_2: inout token);
end wye2;

architecture ar_wye2 of wye2 is
begin
   pr_wye2 : process (in_1, out_1, out_2)
   begin
      if token_present (in_1)
         and token_removed (out_1)
         and token_removed (out_2) then
         out_1 <= in_1;
         out_2 <= in_1;
      end if;

      if token_acked (out_1) and token_acked (out_2) then
         ack_token (in_1);
         release_token (out_1);
         release_token (out_2);
      end if;

      if token_released (in_1) then
         remove_token (in_1);
      end if;
   end process pr_wye2;
end ar_wye2;

Figure 4. Wye module ADEPT symbol, its behavioral VHDL description, and its CPN
representation
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control module. ADEPT modules in the color and delay categories enable the manipulation of the

token color and model temporal aspects of a system, respectively. The fault modules are used to

model the presence of faults and errors in a system model. The miscellaneous modules are

modules that perform data collection with the ADEPT system. Hybrid modules aid in the

construction of hybrid models. A more detailed description of the entire ADEPT module set can

be found in [9].

2.2 The ADEPT Tools

The ADEPT system is available on Sun platforms using Mentor Graphics’Design Architect as

the front end schematic capture system, or on Windows PCs using OrCAD’sCapture as the front

end schematic capture system. The overall architecture of the ADEPT system is shown in Figure

5.

The schematic front end is used to graphically construct the system model from a library of

ADEPT module symbols. Once the schematic of the model has been constructed, the schematic

capture system’s netlist generation capability is used to generate an EDIF (Electronic Design

Figure 5. ADEPT design flow
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Interchange Format) 2.0.0 netlist of the model. Once the EDIF netlist of the model is generated,

the ADEPT software is used to translate the model into a structural VHDL description consisting

of interconnections of ADEPT modules. The user can then simulate the structural VHDL that is

generated using the compiled VHDL behavioral descriptions of the ADEPT modules to obtain

performance and dependability measures.

In addition to VHDL simulation, a path exists that allows the CPN description of the system

model to be constructed from the CPN descriptions of the ADEPT modules. This CPN

description can then be translated into a Markov model using well known techniques and then

solved using commercial tools to obtain reliability, availability, and safety information.

Figure 6 is an illustration of the construction of a schematic of an ADEPT model using Design

Architect. The schematic shown is that of an ADEPT model of a simple three computer system

used in the ADEPT tutorial. Most of the elements in this top-level schematic are hierarchical, with

separate schematics describing each component. The most primitive elements of the hierarchy are

the ADEPT modules.

3. Performance and Hybrid Modeling with ADEPT

This section presents some of the performance analysis capabilities of ADEPT and how the

technique of hybrid modeling can be used to gain more accurate performance metrics.

3.1 Performance Modeling

The example used to demonstrate the performance modeling capabilities of ADEPT consists

of an FIR digital filter that operates on an incoming stream of data in real-time. The FIR digital

filter has to perform a series of multiplications and additions while maintaining the restrictions on

their order dictated by data dependencies. The specifications of this system include the required

frequency response of the filter and the rate in which the data arrives to the filter. The required

frequency response determines the order of the filter, or the number of additions and

multiplications required between each arriving data item. The data arrival rate along with the

order determines the rate at which additions and multiplications must be performed. Based on

these specifications, the designers have to define the system’s architecture, for example, the



9

number and configuration of arithmetic resources to be used.

Figure 7 shows an ADEPT model of one possible configuration of the FIR filter. This model is

constructed entirely of ADEPT modules. Some of the elements seen are ADEPT modules (such

assource, arbiter etc.) and some are hierarchical elements built from the ADEPT modules (such

as theresources and thefir_cell). The goal of this model is to analyze the performance of a FIR

filter with two adders and two multipliers. At this stage of the design, an estimated delay is

associated with each arithmetic resource. Thefir_cell is responsible for sending the data to the

resources while maintaining the data dependencies.

During the simulation of this model, the source generates tokens at a regular rate representing

the data stream. Upon receiving this token, thefir_cell generates tokens that are sent to the

Figure 6. Sample ADEPT schematic (Design Architect)
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resources (multipliers and adders) whenever they are not busy. After delaying each token for a

specified time, a resource sends it back to thefir_cell, signifying the completion of the desired

operation.

By simulating this model it is possible to estimate the effect of different parameters on the

performance. The graph in Figure 8 shows the overall system latency as a function of the speed of

the multiplier resources for three different filters (order 10, 15 and 20). As expected, for

“relatively slow” multipliers (propagation delay of more than 40 ns) the system’s latency is

dominated by the multipliers while for “faster” multipliers the system’s latency is dominated by

the adders. For this FIR architecture with two multipliers and two adders, the designer can

determine the speed required of the multipliers to provide a given data rate and frequency

response (filter order). Alternatively, given a specific multiplier implementation, filter order can

Figure 7. An FIR performance model in ADEPT
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be traded off for increased data rates. Finally, it is possible to evaluate different architectures for

the system that have different numbers of arithmetic resources. This will require minor

modifications to the ADEPT model and resimulation to obtain the new data.

3.2 Hybrid Modeling

Once the initial design space exploration has been done using estimated delays in the

performance model, the next step in a typical spiral design process is to implement the portions of

the design that have been identified as the critical path to determine if their performance

constraints can be met. In ADEPT, this analysis is performed using hybrid modeling.

In a hybrid model a portion of the ADEPT model is replaced by the fully implemented

behavioral description of the corresponding component. The result is a model which is composed

of an uninterpreted model which manipulates tokens and an interpreted model which manipulates

actual signal values (bits, integers, reals, etc.) and has full timing information. This unique hybrid

modeling approach is supported by the VHDL implementation of ADEPT.
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Since hybrid models mix components that communicate via tokens and components that

communicate via values, there is a need for an interface that will handle the flow of information

between the two domains. The hybrid interface is divided into two parts, an uninterpreted to

interpreted (U/I) part that converts tokens to values, and an interpreted to uninterpreted (I/U) part

that converts values to tokens. In addition to value conversion, these interfaces must handle the

timing of the two different levels of abstraction during simulation. This portion of the interface

function differs significantly depending on the characteristics of the interpreted component and

the objectives of the performance model. More detail on the functions of these interfaces and how

they are implemented in ADEPT can be found in [10].

The advantage of hybrid modeling and the operation of the hybrid interface are illustrated by

the following example. Assume that the performance analysis has shown that In the FIR design,

the multiplier is the critical element in meeting performance goals. A multiplier that uses Booth’s

algorithm was then selected for the implementation of the multiplier, and a behavioral model of

the multiplier was developed. A hybrid model using the behavioral description of the multiplier

was then constructed. Figure 9 shows the hybrid element (the implemented component and the

interface) which replaces the corresponding abstract model of the multiplier. At this stage of the

design, the actual data inputs to the multiplier (multiplier and multiplicand) are not known. This

lack of information is handled by the hybrid interface in such a way that the maximum or

minimum delay through the implemented component can be measured.

The actual method by which this process is performed for sequential interpreted elements

involves manipulation of the sequential element’s State Transition Graph. The traversal operation

is performed based on a given initial state of the sequential interpreted element when a token

arrives at the hybrid interface and a given condition on the outputs of the sequential interpreted

element that signify the completion of data processing. The result of this traversal operation is the

sequence of input values that will drive the state machine along the longest or shortest paths

between starting and ending states, depending on whether maximum or minimum delays are

desired. Once the proper input sequence is determined, it is applied by the hybrid interface to the

sequential interpreted element.

 Despite the fact that the difference in level of abstraction between the uninterpreted and
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interpreted parts of this hybrid model is quite large, its simulation provides very useful results.

The hybrid model simulation provides an upper and lower bound on the performance of this

implementation of an FIR. These simulations provide more realistic performance estimation

which, in some cases, can suggest modifications in the implementation of the implemented

element (multiplier, in this case) or in the architecture of the entire system.

Figure 10 shows some simulation results of the FIR hybrid model described above. This graph

shows the maximum and minimum amount of time required to complete one set of FIR

computations as a function of the order of the filter. Since the actual delay of the multiply

operation is data dependent and the actual data is not known in this stage of performance

modeling, the actual system performance will lie somewhere between these two bounds. In a less

abstract performance model, more inputs to the interpreted element will be known from the

information carried by the tokens, hence narrowing the range between the lower and the upper

bounds of the latency.

The nonlinearity of the graphs demonstrates one advantage of hybrid modeling; the maximum

and minimum time required to complete a single multiplication by the Booth multiplier can be

determined even without developing the hybrid model. However, to find the effect of this

multiplier on the latency of the entire system requires the simulation of the hybrid model. This is

Figure 9. The Booth’s multiplier hybrid element
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because even in this simple example, there are complex dependencies between delays of the

individual components and the overall performance of the system. An additional advantage of

hybrid modeling versus off-line simulation of the interpreted element and then back annotating

the delay information into the performance model, is that in a hybrid model, the performance

model drives the interpreted element. This helps ease the problem of test bench generation for the

interpreted element and results in greater accuracy of the overall model because the interpreted

element is responding to actual inputs from the overall system instead of contrived examples.

4. Dependability Modeling with ADEPT

ADEPT supports dependability analysis in the same framework and using the same models as

the performance analysis. This section presents the capabilities of ADEPT for dependability

analysis of system-level models using Petri Net to Markov model conversion, and simulation

based dependability analysis for system level and mixed level models using fault simulation.

4.1 High Level Dependability Analysis

System-level dependability analysis is supported in ADEPT by the CPN descriptions of the
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ADEPT modules. A system-level ADEPT model can be converted into a CPN description by

replacing each module with its CPN description. The CPN model is then reduced using reduction

rules developed for dependability analysis [11] and converted to a Markov model using

techniques similar to those described in [12]. The Markov model can then be solved to generate

dependability metrics using well known techniques and tools.

Dependability analysis using this method is illustrated by an example of a Triple Modular

Redundant (TMR) with a Spare system. An ADEPT schematic of the TMR with a Spare system is

shown in Figure 11. In this example, it is assumed that there is some form of fault detection in

processor P3 that disconnects P3 when it fails and brings processor P4 on-line and that the

coverage factor for detecting failures in P3 is 1 (100%), although other values could be used.

The CPN model of each processor module is shown in Figure 12a and is obtained by replacing

each ADEPT module by its corresponding reduced CPN definition. Rules used to reduce the CPN

in Figure 12a to the CPN in Figure 12b are also illustrated. The remaining components of the

system are reduced in a similar fashion and are combined to obtain the reduced CPN

Figure 11. TMR with a spare
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representation of the complete system as shown in Figure 12c. The corresponding Markov model

is also shown. The important point here is that the Markov model is constructed from the ADEPT

model using automated techniques. The designer does not need to build an additional model in

order to gain reliability information. ADEPT also supports reliability analysis using simulation of

the system level ADEPT models [13]. Figure 13 shows the results obtained from dependability

analysis of the TMR with Spare system in the form of reliability and safety measures versus

mission time in hours.

4.2 Fault simulation in ADEPT

A method of dependability analysis via fault simulation has been implemented in ADEPT.

This method of dependability analysis has the benefit of being able to be applied across various

levels of abstraction. In this method of dependability analysis, ADEPT models are created using

the normal ADEPT tools. A separate tool then adds a new process to the VHDL description

generated by ADEPT that performs fault injection during simulation. A VHDL bus resolution

Figure 12. TMR with spare model reduction
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function (BRF) applies the fault from the fault injection process to the data field of the target

signal according to the fault operation. The fault injection process is illustrated in Figure 14.

By performing fault injection in VHDL using signal corruption, fault simulation and

dependability evaluation can be performed throughout the design process as the ADEPT model is

refined to lower levels of abstraction. The fault operations available for fault injection vary with

the level of design abstraction as shown in Table 1.

Table 1 Supported Fault Operations in ADEPT

Abstraction Level Data Types Fault Operations

Architectural token, integer, boolean info loss, info creation,
stuck-at, additive, multipli-
cative, logical

Algorithmic token, integer, boolean,
real, bit

info loss, info creation,
stuck-at, additive, multipli-
cative, logical

Functional Block qsim_state, bit stuck-at, logical

Logic Level qsim_state, bit stuck-at, logical
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Figure 13. TMR with a spare dependability analysis results
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Dependability analysis in ADEPT using fault simulation will be illustrated via an example.

The system presented for analysis is a watchdog monitor card that is embedded within a real-time

distributed system used for wayside train control. Train control functions at the wayside include

the switching and signaling of trains on railways. The watchdog monitor card is responsible for

assuring the safety of the distributed system. The functions of the watchdog monitor have been

synthesized in seven Actel Field Programmable Gate Array (FPGA) chips.

The function of the watchdog monitor is to concurrently check the execution of the

safety-critical application within real-time constraints. The watchdog checks the input and output

data from the application processor using the method of signature analysis [14]. Signature

ADEPT Software
signal N306: token_res;
signal N302: token_res;
:
:
component source;
component delay;
:
begin
X1: delay portmap(N302);
Y1: source portmap(N306);
:
end Ar_design;

signal N306: token_res;

Architecture Ar_design of ASD

fault_inject: process
file “faultList.txt”
variable field: integer;
:
begin
read(start_time);
:
CASE signal_choice is:
:

Add Fault
Injection Process

Compile &
Simulate

status color mon_color inject
Target token signal

- signal
- mask
- operation
- duration

Fault Input
File

Wait For Fault
Start Time

BRF

Inject Fault

status color mon_color inject

Corrupted Token

Figure 14. Performing fault simulation in ADEPT

ADEPT Structural
VHDL Architecture
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analysis uses Linear Compacting Finite State Machines (L-CFSMs) in order to compact a data

stream into a single word that is typically much smaller than the size of the data stream. The

signature is checked against a pre-computed fault-free signature to ascertain whether or not the

correct data stream was produced.

The watchdog monitor card is embedded within a distributed computer system that is

executing a safety-critical train control application. The distributed system is primarily composed

of Commercial Off-The-Shelf (COTS) hardware components and custom-developed software.

This system is an example of a dependable system built from possibly unreliable COTS

components. The COTS components are assumed to be unreliable because they were not built

specifically for highly-dependable applications. COTS components are more often being used in

highly-dependable applications in order to minimize the amount of custom in-house development

 which can significantly reduce costs in system development. In order to meet ultra-high

dependability requirements, a watchdog monitor is custom-developed in-house to check the

correct execution of the safety-critical application. The design methodology illustrated by this

example is a highly dependable application executed by a system composed primarily of COTS

components with a sole custom-designed card responsible for system safety.

A model of the watchdog monitor was created at the algorithmic level of design abstraction in

order to simulate its functions early in the design process. The algorithmic-level design

implements the functions of the watchdog monitor without tying the design to a particular

hardware or software implementation. The algorithmic-level design of the watchdog monitor is

shown in Figure 15. The main components of the watchdog monitor card are: two L-CFSMs

(MISR64 and MISR63), a codeword checker (CHECK(127,64)), and a signature comparator

(sigComparatorv2). Fault simulations were executed on this model to test the response of the

design to injected faults. Each signal pictured in the design of Figure 15 was injected with faults

in over 450 fault simulation experiments. By examining the response of the simulation to the

injected faults, knowledge of which faults affect the output of the watchdog monitor is gained.

The fault simulations corrupted the input and output signals for every functional block in the

algorithmic-level watchdog checker. The fault operations used in the simulations spanned the

range of fault operations available at the algorithmic level (see Table 1). For these experiments, all
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fields that were corrupted were of type integer with the exception of the status field. Integer fault

values were selected from a range of large negative integers to large positive integers. Status field

faults consisted of sourcing or sinking faults. Figure 16 shows the results from fault simulations of

the algorithmic-level watchdog monitor. The horizontal axis depicts the fault operations that were

used in the fault simulations. The fault operations correspond to the types of operations available

for token type signals in ADEPT. Stuck-at faults cause the value carried by the signal to be

“stuck-at” some particular constant. The additive, multiplicative, and logical fault operations

perform their respective operations using the unperturbed value carried by the signal and the fault

mask as operands to the fault operation. The result of the fault operation replaces the unperturbed

value carried by the signal. Sinking faults set the status of thetoken signals to “removed”, thereby

removing the presence of the data. Sourcing faults set the status oftoken signals to “present”,

thereby indicating presence of data on the signal.

The results from the fault simulations, indicated by the vertical axis of Figure 16, show the

Figure 15. Algorithmic-level design of watchdog monitor card
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percentage of faults that were detected and the proportion of faults that remained undetected. An

undetected fault indicates that the injected fault was not identified by the built-in detection

mechanisms. There may be several possible reasons for why injected faults do not result in

detectable errors. First, an injected fault may not actually corrupt the data state of the system. For

example, setting a stuck-at-0 fault on a signal whose unperturbed value is always 0 will not cause

an error in the output. Second, faults can remain latent for an extended period of time. For

example, corrupting a memory location may not effect the data state of the system until this

memory state is read and used in processing. Third, some injected faults are masked by data

processing operations. For example, corrupted data may be masked by other inputs to components

depending on the component function and its input values.

Functional descriptions of the watchdog components were then developed and incorporated

into the ADEPT model using hybrid modeling techniques as shown in Figure 17. The watchdog

interface module in Figure 17 accepts signals of typetoken on its input and drivesqsim_state

signals on its output. Thetoken type signals carry the data stream from the application processor

to be checked by the watchdog monitor. Fault simulations of this model can perturb both the

ADEPT token input signals and the internalqsim_state signals of the watchdog monitor.

Figure 16. Algorithmic-level watchdog fault simulation results
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The results from injecting faults in the internal design of the functional block level watchdog

monitor are shown in Figure 18. The internal signals used in the functional block level watchdog

are of typeqsim_state. Table 1 shows that the supported fault operations for this type are

stuck-at-0, stuck-at-1, and the logical AND, OR, and XOR operations. Since logical AND-with-0

and logical OR-with-1 are identical to stuck-at-0 and stuck-at-1 faults, respectively, these two

logical fault operations were excluded in favor of using the stuck-at fault operations. In addition,

logical XOR-with-1 fault injections were used in order to “flip” the bit of theqsim_state signal

being injected. The results in Figure 18 indicate that the majority of the injected stuck-at faults

remained undetected at the output. In contrast, the majority of the logical XOR-with-1 injected

faults were detected. It can be concluded that this circuit is reasonably good at “hiding” stuck-at

faults, while more likely to reveal flipped bit faults. It is important to recognize, however, that

different results may be obtained using different input streams and longer simulation times.

Finally, the comparator component of the functional block level watchdog was synthesized to

the logic level in VHDL. Fault simulation can be performed at the logic level to validate the actual

implementation of the fault detection mechanisms. The design of the watchdog monitor remains

identical as shown in Figure 17 with the exception that the comparator was replaced with its logic

level implementation. The design now contains components modeled at multiple levels of design

Figure 17. Functional-block-level design of watchdog
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abstraction including the watchdog interface at the algorithmic level; the MISRs and syndrome

generators at the functional block level, and the comparator at the logic level. Since the models

are all VHDL, the design can be simulated seamlessly. The fault simulations of this design were

re-run under identical input conditions and similar fault injections. The results from injecting

faults in the internalqsim_state signals of the design are shown in Figure 19. These results show

no substantial statistical difference from the fault simulations at the functional block level. It can

be seen that the fault coverage remains relatively unchanged even after synthesizing the

comparator component at the logic level.

5. Conclusions

An integrated design environment called ADEPT that supports performance and

dependability modeling at the system level has been developed. In addition ADEPT supports the

modeling and analysis of systems at mixed levels of abstraction. ADEPT models may contain

elements modeled both uninterpreted and interpreted levels. Performance and dependability

analysis can be performed on these mixed level models as well. This allows true step-wise

refinement of system level models down to an implementation level. A complete set of tools has

been developed to help automate the construction and analysis of ADEPT models. Work is on

Figure 18. Functional block-level watchdog monitor fault simulation results
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going to extend the ADEPT environment into the areas of operational specifications and

hardware/software codesign.
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