The Protein Folding Problem and Distance
Geometry

by Robert Reams, University of Kentucky.

The protein folding problem is an example of how matrix theory has come to
have an important application in biology, in the form of distance matrices. Non-
linear optimization is applied in combination with distance matrices to this problem,
although the former will not be discussed here. In this exposition I hope the experts
will forgive my stripping away almost all technical details.

A protein molecule is a connected sequence of amino acid molecules, and there
are just twenty amino acids in nature (Figure 1 shows a fairly typical amino acid).
By representing each amino acid by a letter from a twenty letter alphabet, we can
say that a protein is a string of several hundreds or thousands of these letters. The
problem of finding the ordered sequence of amino acids in a protein has been solved,
in fact it has been automated with a sequenator; using enzymes, snip the full protein
into strings of no longer than 100 amino acids, keeping track of the break-points, and
the output from the sequenator gives you the sequence. Our problem goes farther
than this: Determine the way in which a given protein has folded in on itself,
knowing its amino acid sequence, to produce its three dimensional form. It is the
protein’s three dimensional shape which largely determines how a protein functions,
how a protein acts as an enzyme in chemical reactions in the body, or how a protein
behaves as an antibody in the immune system. Proteins lose their three dimensional
structure on heating (cooking). Once cooked, enzymes in the stomach and small
intestine further break the protein into its individual amino acids, and they are
then incorporated into our bodies. There are many ways in which the biologist goes
about attacking the incredibly important problem of determining a protein’s three
dimensional structure. Some examples are, x-ray crystallography, where it is possible
to reconstruct from x-ray diffraction patterns an accurate picture of the molecule;
molecular dynamics, which is a computer simulation of energy minimization, where
each atom is made to obey Newton’s equations of motion; or distance geometry
algorithms. If the protein cannot be crystallized, which is a common occurrence,
the molecular biologist would probably perform a combination of the last two. An
intriguing aspect of the protein folding problem, which has yet to be understood, is
that the amino acid sequence seems to completely specify how the protein folds.

In the 1930’s, K. Menger, and I. V. Schoenberg (who later invented splines) initi-
ated the area of distance geometry and the study of distance matrices. It has become
an active area of research in the last fifteen years, partly because of the applications
described here. It is still an area open to purely mathematical investigation, with



many problems where the solutions would be useful for the biologist, and for which
there are large sums of money available in the form of grants.

A distance matrix is a matrix for which the (z, j)-entry is the distance, or more
usually the square of the distance, between vertex z and vertex j, in a set of n
vertices. Clearly, such a matrix has nonnegative entries, is symmetric, and has all
zeroes down the diagonal. What is less obvious is deciding when such a matrix is a
distance matrix, i.e. given a symmetric matrix with zeroes down the diagonal, and
nonnegative entries, when does it correspond to a shape with n vertices in R"!.
Clearly, again, for any three vertices, the square roots of the corresponding entries
in the distance matrix must satisfy the triangle inequality. This is another necessary
condition for a matrix to be a distance matrix, and to see that it is not a sufficient
condition, try to draw a tetrahedron (not necessarily a regular tetrahedron) in three
dimensions which corresponds to the matrix
0 1 1 1
1 0 1 4
1 1 01
1 410
You will find yourself drawing two adjoining equilateral triangles, but you won’t
be able to form a three dimensional shape with the given lengths. Necessary and
sufficient conditions for an n X n matrix to be a distance matrix, and the coordinates
of the vertices of the shape in R"~!, were given by Schoenberg.

If the biologist had all the interatomic distances in his or her protein, it would be
a simple matter to fill in the entries of the distance matrix, and from Schoenberg’s
theorem calculate and portray on a computer screen the three dimensional structure.
Unfortunately, if the protein cannot be crystallized, these interatomic distances can
be difficult to determine. The x-ray crystal structure of each of the twenty amino
acids in nature is known, however, and so the lengths of the bonds between their
atoms are known. We also know the amino acid sequence of our protein, so we can
fill in the entries of all the k x k blocks along the diagonal of the matrix which is to be
our distance matrix, where k is the number of atoms in the amino acid corresponding
to that block. Proteins also frequently form disulfide bonds with itself. That is to
say, it often happens that two cysteine amino acids (see Figure 1), widely separated
in the sequence of the protein, form a bond between their sulfur atoms. From the
known bond length of these bonds, this would give us some distance matrix entries
which are far from the diagonal. In Figure 1, the groups of atoms next to the 4+ and
— which denote ions, are common to all amino acids, and these are the points of
contact with their adjacent amino acids. Most amino acids have similar side chains,
although without sulfur atoms.

H Coo
H—S—C—+C——H
T
H NH3
Cysteine
(C = Carbon, O = Oxygen, H = Hydrogen, N = Nitrogen, S = Sulfur)
Figure 1.



It is possible to find some interatomic distances between atoms which are not
bonded, and which are in different amino acids, by performing a nuclear magnetic
resonance (NMR) experiment. We place our protein in a strong (and I mean really
strong) magnetic field, provided by a superconducting magnet. This has the effect
of aligning a slight excess of the hydrogen nuclei in our protein in the direction of
the magnetic field, the rest are aligned against the field. Radio waves (500 MHz), in
pulse form, are then applied and detectors are placed around the protein to detect
a resonance signal. According as different resonance signals are detected, molecules
containing hydrogen atoms can be recognized from their distinctive spectrum (amino
acids, surprise!). What is of interest for us, however, is that at a place where two
hydrogen nuclei are situated as close together as 5 Angstroms (about two or three
bond lengths), and when the sample is irradiated in a certain way, a characteristic
effect known as the nuclear Overhauser effect (NOE) is observed. It is in this way
that we find more entries for our distance matrix, these entries connecting different
diagonal blocks. This NOE information, as well as some other information from the
NMR experiment, can enable us to identify some typical shapes within the protein.
Commonly seen shapes within proteins are a-helices, which are right-handed helix
shapes where the amino acids have wound around each other, or (3-sheets, where
groups of consecutive amino acids run parallel to other such groups. See Figure 2,
which shows the main strand of the protein molecule BPTI. BPTI contains only 58
amino acids but an alpha helix is visible jutting out to the left of the figure, while a
two strand (-sheet (G-sheets often contain five or more side by side strands) can be
seen as a long loop in the bottom right of the figure. NOE information also enables
us to detect a disulfide bond.

Figure 2.
At the end of all this we have a matrix with known entries (bond lengths and
NOE distances), and unknown entries (for long distances). We need to now fill in
the unknown entries so that the matrix is a distance matrix which corresponds to a

shape in R3. There might be more than one way to do this, since there is nothing to
stop the protein flopping about in solution (the protein would be in some solution
during the NMR experiment, usually water). We will content ourselves with finding
a way to sample the set of all possible conformations.

With these unknown distances there are many ways to proceed, and only one



path will be described here, although it will have much in common with currently
available software packages. The choice of how to proceed is mainly determined by
how time-consuming the algorithm is to implement on a computer, particularly on
a protein molecule with many amino acids. To repeat what has been said already,
we have an n X n matrix, where n is the number of atoms in our protein, with many
unknown entries, and we would like to fill in these entries in such a way that there
is a shape in R3 which corresponds to it.

We will first make sure that every 3 x 3 and 4 x 4 sub-matrix, across the diagonal
of our matrix, which corresponds to a matrix of distances between every subset of 3
or 4 vertices, is a distance matrix. We do this since we know that it is a necessary
condition for the full matrix to be a distance matrix. It is an easy exercise for the
reader to check that three lengths can form the sides of a triangle if and only if all
three triangle inequalities hold. For a tetrahedron, a quick sketch also shows that
the triangle inequality must hold for the lengths between every triplet of vertices
(although it does not necessarily hold for every three of the six lengths), which
gives a necessary condition that the lengths form the sides of a tetrahedron. We
saw from the 4 x 4 matrix given earlier in the text that this is not a sufficient
condition to be able to construct a tetrahedron. The reader should also be easily
persuaded that if two faces of a tetrahedron are made to stay joined by an edge,
making this a hinge; then the edge joining the moving vertices of the two faces, can
be no longer than a certain distance, and no shorter than a certain distance. These
two extreme situations are achieved when the simplex lies flat in the plane, as in
the two right-hand tetrahedra in Figure 3.
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length
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Figure 3.

If the length of the edge in question is between these two certain distances, it
is said to satisfy the tetrangular inequality. Basic trigonometry, using the law of
cosines, will give the (messy) form of this inequality. This inequality must hold for
the length of any of the edges, keeping the other edges of fixed length. The triangle
inequalities and tetrangular inequalities, together, give us necessary and sufficient
conditions for the construction of a tetrahedron.

The triangle and tetrangular inequalities give us necessary upper and lower
bounds, for the unknown distance entries of our full distance matrix. The lower
bounds for the unknown distances are also partly determined by the fact that there
are lower bounds for the distance between any two atoms, since two atoms can only
come to within a certain minimum distance before their nuclei would repel each
other. An upper bound for all interatomic distances can also be had, by just not
letting the atoms be farther apart than the strung out length of the protein. By
combining all of these upper and lower bounds for each (¢, 7)-entry, if we randomly
generate a matrix which has entries between these bounds, the matrix is more likely
to be a distance matrix than without any bounds (if we have an accurate bond-length
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for a given entry, the upper bound equals the lower bound).
We next try to find the closest distance matrix to our randomly generated matrix.
By “closest” we mean using the Frobenius norm, i.e. given two n X n matrices

A = (a;;) and B = (b;;), the distance between A and B is given by ||A — B|| =
\/E’»L (ai; — bi;)%. There is a procedure, discovered by John von Neumann, to find

1,5=1

the closest point in the intersection of two subspaces to a given point. This procedure
has plausible picture reasoning, see Figure 4, where we project orthogonally onto
one subspace, then the other, back and forth. If the two sets are convex there
is an improvement of this algorithm due to Dykstra, to find the closest point in
the intersection of two convex sets to a given point, using the same principle of

\

alternately projecting on the two convex sets [3].

Point of intersection
of two subspaces

N\

Figure 4.

It 1sn’t an obvious geometric fact that the set of distance matrices is a convex set,
although this is part of what Schoenberg proved: Let D be an nxn symmetric matrix
with zeroes down the diagonal. D is a distance matrix if and only if z7 Dz < 0, for
all vectors = orthogonal to the vector e = (1,1,...,1)T. The value of this theorem for
us is that the set of distance matrices is equal to the intersection of ... the convex
set of symmetric matrices with zeroes down the diagonal, and the convex set of
symmetric matrices which are negative semi-definite on the aforementioned (n — 1)-
dimensional subspace of R”. We can then use Dykstra’s algorithm to find the closest
matrix in the intersection, by projecting alternately back and forth between these
two sets. The trouble with this algorithm is that it is extremely time-consuming to
implement. So after only several projections we stop, and convert to a shape in R3
whose distance matrix, although not necessarily the closest to our original random
matrix, we expect to be not far away.

In the interests of your time, my space, and an inclination to avoid technicalities
in this account, I will skip the remainder of the argument showing how to convert to
a shape with n vertices in R3. Then the algorithm continues to look for the closest
distance matrix in R3, using some very efficient iterative methods from non-linear
optimization. Further details on all of the above, can be best found in [2] and [4],
for which I hope the reader might at least be curious.

No account of distance matrices would be worth even a grain of salt, without
mentioning the next result. This is a result about distance matrices that the ancient
Greeks seem to have missed, although it did not escape Schoenberg. Given a shape
with n vertices in R"~!, if you go around the shape calculating the square roots of
the sides, it is a remarkable fact that these new lengths can form a shape with n
vertices also! It is not a difficult exercise to show that if you are given a triangle, and



you take the square roots of the lengths of the sides, the new lengths can also form
a triangle. Having done this it is just as easy to further show that if you take kth
roots, for any positive integer k, you again can form a triangle. Schoenberg showed
this result to be true for any real exponent o, where 0 < o < 1, i.e. let D = (d;;)
be an n X n distance matrix, then the matrix D = (d2;) is also a distance matrix [1]

p-135.
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