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Summary
Objectives: Discussion of different error concepts
relevant to microarray experiments. Review of some
commonly used multiple testing procedures. Com-
parison of different approaches as applied to gene
expression data.
Methods: This article focuses on familywise error rate
(FWER) and false discovery rate (FDR) controlling
procedures. Methods under investigation include:
Bonferroni-type methods and their improvements (in-
cluding resampling approaches), modified Bonferroni
methods, data-driven approaches, as well as the linear
step-up method and its modifications. Particular
emphasis lies on the description of the assumptions,
advantages and limitations for the investigated
methods.
Results: FWER controlling procedures are often too
conservative in high dimensional screening studies.
A better balance between the raw P-values and the
stringent FWER-adjusted P-values may be required
in many situations, as provided by FDR controlling
and related procedures.
Conclusions: The questions remain open, which error
concept to apply and which multiple testing procedure
to use. Although we believe that the FDR or one of its
variants will be applied more often in the future, long-
term experience with microarray technology is missing
and thus the validity of appropriate multiple test pro-
cedures cannot yet be assessed for microarray data
analysis.
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1. Introduction

The design of standard microarray experi-
ments has a large impact on any related sta-
tistical inference. Multiplicity issues play a
particularly important role: Due to the large
number of variables, adequate statistical in-
ference tools, which control the number of
false-positives, are needed. Assume, for
example, that the expression of 30,000
genes is investigated in a simple two-sample
layout, comparing wildtype with a mutant.
If only a few genes are significantly differ-
entially expressed under both conditions
and if further for each gene an appropriate
two-sided two-sample test is performed at
the significance level of 5%, we expect to
obtain roughly 1,500 false-positives. In
practice, it is unknown, how many and
which of the statistically significant genes
are truly positive. These 1,500 genes would
have to be investigated in follow-up studies,
exceeding any reasonable time and budget
constraints. Thus, error concepts and test
procedures, which control the number of
false-positives at an acceptable level, have
to be applied.

This article is concerned with multiple
testing procedures (MTPs), which test m > 1
hypotheses while controlling an appropriate
error rate at a pre-specified level α. From a
multiple testing point of view, microarray
experiments are mainly characterized
through (i) large values of m, which can
easily be in the 10,000s, (ii) high-dimen-
sional distributions with unknown cor-
relations, and (iii) a large proportion of true
null hypotheses. In the following we review
some MTPs with a focus on (i)-(iii).

2. Error Concepts

Let m denote the number of (null) hy-
potheses H1, ..., Hm to be tested. Let
M = {1, ..., m} denote the associated index
set and denote the set of m0 true hy-
potheses by M0 ⊆ M, m0 = |M0|. In any test-
ing situation, three types of errors can
be committed. False-positives (negatives)
occur when a true (false) null hypothesis is
rejected (retained). In the hypothesis testing
environment, these errors are denoted as
type I and type II errors, respectively. Type
III errors (correct rejection of a null hypoth-
esis with a wrong directional decision) are
usually of minor importance in microarray
experiments and are thus not considered
further in this article.

The related notation is summarized in
Table 1. The number of type I errors is de-
noted by V and the number of rejected hy-
potheses is denoted by R. Note that R is an
observable random variable, S, T, U, and
V are all unobservable random variables,
while m and m0 are fixed numbers, where m0
is unknown.

A standard approach in univariate hy-
pothesis testing (m = 1) is to choose an ap-
propriate test, which maintains the type I
error rate at a pre-specified level α. In
multiple hypothesis testing several general-
izations of the type I error rate are possible.
The per-comparison error rate PCER =
E(V)/m is the expected proportion of type I
errors among the m decisions (i.e., each test
is conducted at level α, what amounts to ig-
noring the multiplicity problem altogether).
The familywise error rate FWER = P(V >0)
is the probability of committing at least one
error. Finally, the false discovery rate FDR =
E(V/R | R > 0) P(R > 0) is related to (but not
the same as) the expected proportion of
false-positives among all significant results.
Other error concepts exist and will be re-
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viewed briefly later on. Due to the wide-
spread use of the FWER and the FDR in
microarray experiments, we restrict our at-
tention to these two major error concepts.
Note that the choice of the error control has
to be done prior to the data analysis. In gen-
eral, PCER ≤ FDR ≤ FWER for a given
MTP, since V/m ≤ 1{R>0}V/R ≤ 1{V>0}. Thus,
a MTP which controls the FWER also con-
trols the FDR and the PCER, but not vice-
versa. FWER controlling procedures are
therefore more conservative than FDR con-
trolling procedures, leading to a smaller
number of rejected hypotheses.

Before reviewing different MTPs, we in-
troduce some more terminology. For any of
the error concepts above, the error control is
denoted as weak if the type I error rate is
controlled only under the complete null
hypothesis H = ∩i∈M0

Hi , M0 = M. For
example, in the case of controlling the
FWER weakly, P(V > 0 | H) < α. If, for a
given MTP, the type I error rate is controlled
under any partial configuration ∅ ≠ I ⊆ M of
the m0 = |I| ≤ m true null hypotheses, the
error control is denoted as strong. Thus, in
the case of controlling the FWER strongly,

P(V > 0|∩i∈I Hi)<α. In microarray

experiments, where it is unlikely that no
gene is differentially expressed, it seems
particularly important to have a strong error
control.

Similar to univariate hypothesis testing,
it is desirable to compute adjusted P-values
for a given MTP, which are directly com-
pared with the pre-specified level α. An ad-
justed P-value p~i is defined as the smallest
significance level for which one still rejects
Hi, given a particular MTP. In case of the
FWER, p~i = inf{α ∈ (0, 1)/Hi is rejected at
FWER = α}. The marginal (i.e., unadjusted)
P-values pi are denoted as raw P-values.
Finally, a particular MTP is denoted as a
single-step procedure if the rejection of a
single hypothesis does not depend on the
decision of any other hypothesis. Other-
wise, the MTP is denoted as a stepwise pro-
cedure. Stepwise procedures are further dis-
tinguished into step-down and step-up pro-
cedures. Given a (fixed) sequence of hy-
potheses H(l) < ... <H(m), step-down pro-
cedures start testing the hypothesis most

likely to be rejected (H(1)) and step down
through the sequence while rejecting the hy-
potheses. The procedure stops at the first
non-rejection (at H(i), say), and H(1), ...,H(i – 1)
are rejected. Step-up procedures start test
ing H(m) and step up through the sequence
while retaining the hypotheses. The pro-
cedure stops at the first rejection (at H(i),
say), and H(1), ..., H(i) are rejected. For more
details on the theory of multiple testing see,
for example, Hochberg and Tamhane [1].

3. FWER Controlling
Procedures
3.1 Bonferroni-type Procedures
The standard single-step Bonferroni ap-
proach compares the raw P-values with
α/m, or, equivalently, the hypothesis Hi is
rejected if p~i = min(mpi, 1) < α. The strong
FWER control follows directly from Bon-
ferroni’s inequality:

P(V > 0) = P(∪i∈m0
{p~i ≤α})≤

where the probability expressions are con-
ditional on ∩i∈Μ0Hi. The Bonferroni ap-
proach is a simple yet conservative MTP
and many improvements have been pro-
posed. Holm [2], for example, proposed a
step-down approach, which basically con-
sists of repeatedly applying Bonferroni’s in-
equality while testing the hypotheses in a
data-dependent order. Let p(1) ≤ ... ≤ p(m) de-
note the ordered unadjusted P-values with
the associated hypotheses H(1), ..., H(m).

Then, H(i) is rejected, if p(j) <α/(m – j + 1),
j = 1, ..., i, , i.e., if all hypotheses H(j) preced-
ing H(i) are also rejected. Equivalently, the
adjusted P-values for the Holm procedure
are p~(i) = min{1, max [(m – i + 1)p(i),
p~(i – 1)]}. The Holm procedure is a stepwise
approach and is by construction more
powerful than the Bonferroni approach. In
typical microarray experiments, however,
where m0/m is close to 1, there are no prac-
tical differences and both methods lead to
virtually the same set of significant genes.

Further improvements of the Bonferroni
approach are available. Shaffer [3] and
others took logical constraints between the
hypotheses into account. But since these
procedures are very computer-intensive al-
ready for small values of m, they are not yet
applicable in microarray experiments. A
second improvement, which takes the
stochastic dependencies between the P-
values into account, has often been used
in the microarray literature. For simplicity,
we restrict the representation to single-step
approaches. Extensions to stepwise ap-
proaches are described by Westfall and
Young [4].

For the single-step approach con-
sider the adjusted P-values p~i =
P(min1 ≤ j ≤ m Pj ≤ pi /H), which are based
on the joint distribution of P = (P1, ..., Pm).
The related MTP rejects Hi if p~i <α. If
marginally Pj ~ U[0, 1], the MTP controls
the FWER exactly. However, a strong error
control is only assured if the subset pivotal-
ity condition holds: P is said to have the sub-
set pivotality property, if for all I ⊆ M0 the
joint distribution of {Pi, i ∈ I} is identical
under the restrictions H and {∩i∈Ι Hi}. The
subset pivotality thus ensures that the dis-
tribution of any sub-vector of P-values does
not depend on the truth or falseness of the
hypotheses not considered by this sub-vec-
tor. This condition is sufficient to guarantee
a strong FWER control, although is has to be
verified from case to case. Many examples
exist [4, 5], in which the violation of the sub-
set pivotality condition leads to an inflated
error level. The subset pivotality condition
will typically hold if contrast test statistics
are used for the comparison of several treat-
ments. An example where the subset pivot-
ality fails is testing whether the correlations
of random variables are 0: In this case it can

Table 1 Type I and type II errors in multiple hypothesis
testing. m – total number of hypotheses; m0 – number of
true null hypotheses; R – number of rejected hypotheses;
V – number of incorrectly rejected hypotheses; remaining
variables explained in the text

Hypotheses not rejected

true U

false T

W

rejected

V

S

R

m0
m − m0
m
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be shown that the joint distribution of two
large sample test statistics depends on the
unknown value of a third correlation [4].

Usually, the joint distribution of P is un-
known.The following resampling method is
suggested to approximate the true distribu-
tion [4], where ti

obs is the observed test sta-
tistic, i = 1, ..., m.

FOR b = 1, ..., B
(1) Permute the rows of the data matrix

X, obtaining Xb

(2) Based on Xb, compute the test statis-
tics t1

b, ..., tm
b

END
OUTPUT

Note that the resampling step has to be done
design-dependent in order to maintain the
design structure defined through X, where
we assume the genes to be arranged across
the columns and the subjects across the rows
of X. Note also that due to the subset pivot-
ality condition it is sufficient to resample
under H and that the truth or falsehood of
the individual hypotheses need not to be
known. In the multivariate case (as it is the
case in microarray experiments), the entire
observation vector is shuffled in order to
maintain the correlation structure. Clearly,
the resampling approach is more powerful
than other Bonferroni-type approaches
since the correlations within the data are
used for inference.

3.2 Modified Bonferroni
Procedures
Simes [6] proposed the following single-
step modified Bonferroni procedure: Reject
H, if there exists a j = 1, ..., m, such that
p(j) < jα/m. Note that the Simes test does not
yield assessments for the individual hypo-
theses and it is only possible to reject the
complete null hypothesis H. The Simes test
is more powerful than Bonferroni but it has
the drawback that FWER control is proven
only for particular correlation patterns, e.g.,
for independent test statistics or certain
positive dependency structures [7]. Thus,
the Simes procedure and its modifications
have to be applied with care, since the cor-
relations among the genes are typically un-

known. We refer to Section 4 for a more
detailed discussion, when FDR controlling
procedures relying on Simes’ inequality are
introduced.

Hochberg [8] proposed a step-up exten-
sion of the Simes procedure. Let p~(i) =
min{1, min [(m – i + 1)p(i), p~(i + 1)]} denote
the adjusted P-values.The related MTP then
rejects H(i) if p~(i) >α. The Hochberg pro-
cedure can bee seen as a reversed Holm pro-
cedure, since it uses the same critical values
as Holm but in a reversed testing order: H(i)
is rejected, if there exists a j = i, ..., m, such
that p(j) <α/(m – j + 1). By construction,
Hochberg is more powerful than Bonfer-
roni, Holm and Simes. But again, in typical
microarray experiments the power differ-
ences are marginal. As it is based on Simes’
inequality, the Hochberg procedure is simi-
larly restricted to certain correlation struc-
tures. An improved version by applying the
closed test procedure on Simes’ inequality
has been derived by Hommel [9]. However,
the Hommel procedure is typically not ap-
plied in microarray experiments due to the
necessary intensive computations.

3.3 Data-driven Ordering
Procedures without Multiplicity
Adjustment

A different approach is to order the hy-
potheses in a fixed sequence H(1) < ...< H(m)
prior to the experiment (in contrast to the
Holm and the Hochberg procedures, where
the ordering is performed data-dependent).
Now define p~(i) = max{p(i), p~(i – 1)}. It can be
shown that the related MTP, which rejects
H(i) if p(i) <α, controls the FWER strongly at
level α [10]. Such an approach, however,
requires the pre-specification of the hy-
potheses prior to the experiment, which is
typically not feasible in microarray data
analysis. To circumvent this problem, Kropf
and Läuter [11] recently proposed a novel
MTP, which is based on ordering the test
statistics according to a suitably chosen
(data-dependent) selector statistic, which is
stochastically independent from the test
statistic. This independence assumption
ensures that one can then test each hypoth-
esis at full level α according to the hy-

potheses order, where the non-rejection at
any step renders further testing unnecessary.
The approach is based on the theory of
exact stable multivariate tests [12]. For
simplicity we restrict the representation to
the parametric one-sample problem. The
original procedure [11] then orders the
genes according to the decreasing weights

m, where n is the
number of replications in the single sample
of interest. Starting with the gene associated
with the largest weight, the procedure then
steps through while performing one-sample
t-tests, each at level α. As long as the pro-
cedure keeps rejecting, the associated hy-
potheses of no differential expression are
rejected. The procedure stops as soon as
p(i) >α. The advantage of the procedure is
that no multiplicity adjustment is needed,
while the FWER is strongly controlled.

The Kropf and Läuter procedure does not
need the variance homogeneity assumption
to maintain the size at level α. But the power
depends markedly on the homogeneity of
the variances. If the variances are unequal
(as to be expected in typical microarray ex-
periments), those non-differentially ex-
pressed genes with a high variance may lead
to large values of the selector statistic. In
such cases, the procedure stops too early, re-
sulting in a loss of power. Several smooth-
ening approaches have been investigated to
increase the power [13]. A simple procedure
has recently been proposed by Hommel and
Kropf [14]: Their procedure steps through
the ordered hypotheses by comparing p(i)
with α/k for some pre-specified integer
k ≥1. The procedure then stops only after re-
taining k hypotheses. Thus, this improved
procedure allows for some non-differen-
tially expressed genes while paying for a
small multiplicity adjustment. Comparisons
of data-driven ordering procedures with
competing methods can be found in [13,
14].

4. FDR Controlling Procedures
4.1 General Remarks
The FDR is defined as FDR = E(Q), with
Q = V/R if R >0 and Q = 0 otherwise [15].
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Thus,

FDR = E(Q)
= E(V/R | R >0) P(R >0) + 0 · P(R = 0)
= E(V/R | R >0) P(R >0),

as stated in Section 2. Note that if m0 = 0,
thenV = 0 and FDR = 0. If m0 = m, then FDR
= E( 1 | R >0) P(R >0) = P(R >0) = FWER
and any FDR controlling MTP also controls
the FWER weakly. Early ideas related to the
FDR can be found in Seeger [16].

The FDR is a useful error concept, which
suits particularly well to microarray analy-
sis. FWER controlling procedures are typi-
cally too conservative for large number of
hypotheses, i.e., the probability of missing
differentially expressed genes is higher than
for FDR controlling procedures. The later
approaches address the error control in an
intuitively more suitable way by considering
the proportion of false-positives among all
significant results. Caution has to be taken,
however, when applying the FDR. First, as
seen from the formula above, the FDR is not
simply the expected proportion of false-
positives among all significant results. This
would be achieved by considering E(V/R),
which however is uncontrollable, since if
m0 = m, then E(V/R) = 1. Second, it is easily
seen that the FDR can be reduced artifi-
cially by adding null hypotheses known to
be false [17-19]. This is of particular im-
portance in microarray experiments, since
the inclusion of housekeeping genes or
spiked-in genes is common practice. Third,
it is worth pointing out that standard FDR
controlling procedures do not provide in-
formation about the expected proportion of

false-positives conditioned on having re-
jected at least one null hypothesis. We refer
to Weller et al. [20] and the subsequent
discussion in Zaykin et al. [21] for more
details.

A number of alternative criteria have
been introduced instead. The positive
FDR, for example, is defined as pFDR =
E(V/R | R > 0) [22, 23] and is closely related
to the Empirical Bayes approach of Efron
et al. [24]. A different concept is to control
the proportion V/R directly: Korn et al. [25]
and van der Laan et al. [26] independently
introduced computer-intensive MTPs to
control the proportion of false positives
PFP = P(V/R > γ ), 0 < γ < 1. We refer to the
original articles for more details.

4.2 Linear Step-up Procedure
Benjamini and Hochberg [15] introduced
the linear step-up (LSU) method described
below, which in the meantime is widely
used in microarray experiments. As before,
let p(1) ≤ ... ≤p(m) denote the ordered P-
values. If k = max{i/p(i) ≤ i . α/m} exists,
reject H(1), ..., H(k). Equivalently, the ad-
justed P-values are given through p~(i) =
min{1, min[mp(i)/k, p~(i + 1)]}. It follows
from the proof given in Benjamini and
Hochberg [15] that this MTP controls the
FDR at level α or less, more specifically
FDR ≤m0α/m ≤α. In addition, the error
control was only proven for independent
test statistics. In the next paragraphs we dis-
cuss these issues in more detail and point
to some extensions.

Several methods are available to estimate
m0 in order to apply the LSU method at level
m̂0α/m. Five methods, which estimate m0,
were compared in Hsueh et al. [27]. They
concluded that the adaptive LSU method
proposed by Benjamini and Hochberg [28]
gives satisfactory empirical results. The lat-
ter considered the slopes of the lines passing
the points (m + 1, 1) and (i, p(i)) and take the
lowest slope estimator to approximate m0.
The following adaptive procedure is thus
proposed.

IF p(i) >i · q/m for all i THEN STOP
ELSE COMPUTE

SET

REJECT H(1), ..., H(k)

A second line of extending the LSU method
focuses on the independence assumption
mentioned above. Since the LSU method is
closely related to Simes’ test (see Section
3.2), similar concerns arise on the validity of
the independence assumptions in practice.
Benjamini and Yekutieli [29] showed that
the LSU method controls FDR for certain
positive dependency structures, to be spec-
ified now. A set D is called increasing, if x ∈
D, y ≥x, then y ∈ D. Benjamini and Yeku-
tieli [29] then introduced the concept of a
positive regression dependency on a sub-
set (PRDS). An increasing set D is said
to be PRDS on M0, if for each i ∈ M0,
P(X ∈ D | Xi = x) is non-decreasing in x. The
authors showed that the LSU method in fact
controls FDR if the vector of test statistics
T = (T1, ..., Tm) is PRDS on M0. The PRDS
assumption holds in many practically rel-
evant cases, in particular if T follows a
multivariate normal distribution with non-
negative correlations. But problems may al-
ready occur if all pairwise comparisons of
three or more treatments are of interest. Fig-
ure 1 illustrates the PRDS assumption for
the special case M0 = {1}. In this example,T
is positively correlated, with the first com-
ponent being associated to the single true
null hypothesis. If D denotes the positive or-
thant indicated by the dashed lines, it fol-
lows that P(T ∈D | T1 = a) < P(T ∈ D | T1 = b).

In cases where a negative correlation can-
not be excluded prior to the analysis, Benja-
mini and Yekutieli [29] proposed a conser-
vative modification of the LSU method using

.

This method is shown to control the FDR for
any dependency structure (although it tran-

Fig. 1 Graphical illustration of the PRDS assumption.
Explanations are given in the text.
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spires from Figure 2 that the conservative-
ness can be quite large). Other approaches
exist, which take the correlations into ac-
count by relying on certain parametric as-
sumptions. Yekutieli and Benjamini [30]
proposed a resampling method to include
the stochastic dependencies, Troendle [18]
investigated asymptotic formulas and
Somerville [31] provided exact critical
values for step-down FDR procedures [32]
and the LSU methods taking known cor-
relations into account. Power comparisons
between these and other competing methods
can be found in Horn and Dunnett [33].

5. Application to Experimental
Data
As an example, we show data generated in
our laboratory. We compared the expression
profile of a peripheral nerve in mice lacking

a lysosomal membrane protein to wild-type
mice (two-sample problem). We used 22k
cDNA microarrays (i.e., each containing
22,000 genes) and material from six wild-
type and six mutant animals. We performed
twelve hybridizations (on 12 arrays) to com-
pare the two animal groups by a common
reference design, i.e., the targets were al-
ways labeled with Cy3 and the reference
RNA (mouse liver) was labeled with Cy5.
We performed two-sample t-tests to com-
pare both conditions assuming homogene-

ous variances for each gene. In the follow-
ing we compare several MTPs as applied to
this data set. The methods under investi-
gation are Bonferroni, Westfall and Young
(abbreviated maxT hereafter), Benjamini
and Yekutieli (BY), the LSU method (BH),
as well as the unadjusted P-values (rawp).
All calculations were performed using the R
package multtest available from the Biocon-
ductor website http://www.bioconductor.
org. The Appendix includes the relevant
code used for the following calculations.

Fig. 2 Graphical comparison of different multiple testing procedures by plotting the sorted adjusted P-values for the 200 most significant genes in the experimental data using multtest.
The abbreviations for the test procedures are explained in the text.

Table 2
Numerical comparison of
different multiple testing
procedures by computing
the number of significant
genes for different values
of α using multtest. The
abbreviations for the test
procedures are explained
in the text.

α rawp

0 0

0.1 2878

0.2 5398

0.3 7768

0.4 10290

0.5 12121

Bonferroni

0

4

6

7

9

10

BH

0

32

60

184

334

697

BY

0

4

4

4

6

9

maxT

0

3

5

5

8

10
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Table 2 shows the number of significant
genes for different values of α. It transpires
that simply considering rawp is inappropri-
ate. For a significance level of 10%, for
example, almost 3,000 genes are already
statistically significant. The BH procedure
greatly reduces the number of significant
genes, while it is the most powerful method
among the investigated MTPs. The remain-
ing methods behave similar to each other.
These findings are consistent with existing
results from simulation studies published
elsewhere [31, 33]. Note that the BY pro-
cedure tends to be overly conservative and
should only be used if the PRDS assumption
for the BH procedure is very questionable
(e.g., when negative correlations or non-
normal data are present). For the present
example, maxT leads to a lower number of
significances because of the small sample
sizes (six replications per group). For this
example, multtest considered the entire
12!/(6!6!) = 924 permutations, thus leading
to a conservative approach, since due to the
relatively small number of replications the
nominal size is not fully exploited.

Figure 2 shows similar results in graphi-
cal form. For each MTP the number of re-
jected hypotheses are plotted against the
sorted adjusted P-values. To simplify the
graph, only the 200 most significant genes
were plotted. The results are qualitatively
similar to the previous findings.

6. Conclusions
It was our aim to focus the readers’attention
to the fact that multiplicity adjustment plays
a key role when analyzing microarray ex-
periments. Not taking multiplicity issues
into account may lead to a greatly inflated
number of significant results, most of which
are in fact false-positives. Thus, in the inter-
est of the experimenter himself, procedures
are required, which account for these issues.

In this paper we briefly reviewed some
error concepts and multiple test procedures
relevant to microarray experiments. It was
one of our main goals to show that all of
these methods are based on specific as-
sumptions or at least have some particular
characteristics and that the experimenter

should be aware of them before applying a
particular method. Further concepts and
procedures exists, some of which might
come to play a prominent role in the future.
In particular, we refer to the series of articles
by Dudoit et al. [34] and van der Laan et al.
[26, 35], which discuss single-step and step-
wise methods for controlling the gFWER =
P(V >k) for pre-specified k, the PFP and
permutation methods not relying on the sub-
set pivotality. We have also not covered the
methods by Golub et al. [36] and Tusher et
al. [37], which do not quite fit into the
framework of this paper. We refer to the dis-
cussion in Dudoit et al. [5] and Ge et al. [38]
instead.

Finally, we leave the question open,
which error concept and multiple testing
procedure to apply. We believe that the FDR
or one of its variants will be applied more
often in the future, although long-term ex-
perience with microarray technology is
missing. Future research will help to assess
the validity of the appropriate error con-
cepts and test procedures for microarray
data analysis.
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Appendix

In the following we present the R code used
for the calculation of the example in Sec-
tion 5.

library(multtest)

dget(“C:/temp/1x2MmCRfix.put”) -> data

data.cl <- c(0,0,0,0,0,0,1,1,1,1,1,1)

data.gnames <- rownames(data)

teststat <-

mt.teststat(data,data.cl,test=”t.equalvar”)

df <-

12-apply(data,1,function(x) sum(is.na(x)))

stat <- cbind(teststat,df)

stat <- stat[!is.na(stat[,1]),]

o <- order(abs(stat[,1]), decreasing = TRUE)

stat <- stat[o,]

rawp <-

2 * (1 – pt(abs(stat[,1]),stat[,2]))

resT <- mt.maxT(data, data.cl,B=0)

#We are doing 924 complete permutations,

#924 = 12!/(6!6!)

maxT <- resT$adjp

maxT <- maxT[!is.na(maxT)]

procs <- c(“Bonferroni”,”BH”, “BY”)

res <- mt.rawp2adjp(rawp, procs)

adjp <- res$adjp[order(res$index), ]

allp <- cbind(adjp, maxT)

allp <- allp[1:200,]

mt.reject(allp, seq(0, 0.5, 0.1))$r

dimnames(allp)[[2]] <-

c(dimnames(adjp)[[2]], “maxT”)

procs <- dimnames(allp)[[2]]

procs <- procs[c(1, 3, 4, 5, 2)]

cols <- c(1, 2, 3, 5, 6)

ltypes <- c(1, 2, 2, 3, 3)

mt.plot(allp[, procs], stat[1:1000,1], plot-

type = “pvsr”, proc = procs, leg =c(100,

0.9), lty = ltypes, col = cols, lwd = 2)
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