ADJACENCY OF THREE-MANIFOLDS AND BRUNNIAN LINKS

TYE LIDMAN AND ALLISON H. MOORE

Abstract

We introduce the notion of adjacency in three-manifolds. A three-manifold Y is n-adjacent to another three-manifold Z if there exists an n-component link in Y and surgery slopes for that link such that performing Dehn surgery along any nonempty sublink yields Z. We characterize adjacencies from three-manifolds to the three-sphere, providing an analogy to Askitas and Kalfagianni's results on n-adjacency in knots.

1. Introduction

A knot K is said to be n-adjacent to a knot K^{\prime} if there exists a diagram of K containing a set of n crossings such that changing any nonempty subset of them yields a diagram of K^{\prime}. Any knot that is adjacent to the unknot is, of course, unknotting number one, but the condition is much more restrictive. For example, nontrivial knots which are n-adjacent to the unknot for $n \geq 3$ have trivial Alexander polynomial, are non-fibered, non-alternating, and have vanishing Vassiliev invariants of degree less than $2 n-1$. These restrictions on their invariants are shown by Askitas-Kalfagianni AK02 to result from a diagrammatic characterization of n-adjacent knots, $n \geq 3$, as those constructed from certain spatial chord diagrams called Brunnian-Suzuki graphs AK02, Theorem 4.4]. A Suzuki graph is given by a collection of weighted, embedded arcs along an unknotted circle in S^{3}, where the arcs describe a pattern along which a sequence of bandings and clasps converts the graph into a knot.

In this article, we generalize the concept of n-adjacency from knots to three-manifolds. We say that a closed, oriented three-manifold Y is integrally n-adjacent to another threemanifold Z if there exists an n-component link L and integral multi-slope p of the link such that performing Dehn surgery along any nonempty subset of L yields Z. The triple realizing the adjacency will be denoted (Y, L, p). Rational adjacency, denoted (Y, L, α), is defined similarly where rational surgeries are permitted. In an analogy to AskitasKalfagianni, we characterize all n-adjacencies to the three-sphere as those arising from particular Dehn surgeries along Brunnian-like links. This recovers Askitas-Kalfagianni's diagrammatic characterization of knots adjacent to the unknot, and we similarly obtain a statement on the finite type invariants of three-manifolds.

Given a link in a three-manifold, and a choice of surgery slopes, the core curves of the surgery solid tori produce a new link in the surgered manifold. We call this the core or dual of the surgery. Using dual links, it is in fact quite easy to construct examples of adjacent manifolds for all n : Let J be a Brunnian link in S^{3}, and perform $(\pm 1, \ldots, \pm 1)$ surgery on J. This yields a homology sphere Y that is n-adjacent to the three-sphere via

Figure 1. The Poincaré homology sphere results from ($1,1,1$)-surgery on the Borromean rings. The meridians with surgery slopes $(0,0,0)$ realize a 3 -adjacency of the Poincaré homology sphere to S^{3}.

Figure 2. This three-component Hopf-Brunnian link J admits a $(1 / 2,1,1 / 2)$-rational surgery to $-L(3,1)$. The core of J after surgery is a link L realizing the 3 -adjacency of $-L(3,1)$ to S^{3}.
the dual link. The homology sphere will be distinct from S^{3} provided that J is a nontrivial link. For a concrete example, $(1,1,1)$-surgery on the Borromean rings produces the Poincaré homology sphere, which is 3 -adjacent to S^{3}, as shown in Figure 1 . In fact, we will see shortly that all integral n-adjacencies for $n \geq 3$ arise from surgery on Brunnian links.

Next, consider the example in Figure 2. An exercise in Kirby calculus shows that $(1 / 2,1,1 / 2)$-surgery yields $-L(3,1)$ and induced surgery on any proper sublink yields S^{3}. This surgery description will demonstrate that $-L(3,1)$ is 3 -adjacent to S^{3}. Thus, Hopf links can and do appear in the characterization of rational adjacencies. We define the family of Hopf-Brunnian links as follows. An n-component link is Hopf-Brunnian if all $n-1$ component sublinks are split unions of Hopf links and unknots. We prove:

Theorem 1.1. The triple (Y, L, α) realizes an n-adjacency to S^{3} with surgery core J if and only if J is Hopf-Brunnian, the dual surgery slopes of J are of the form $1 / k_{i}, k_{i} \in \mathbb{Z}^{*}$, and any proper Hopf sublink of J must have surgery slopes $\pm(1,1 / 2)$ or $\pm(1 / 2,1)$.

Corollary 1.2. The triple (Y, L, p) realizes an integral n-adjacency to S^{3} with surgery core J if and only if J is Brunnian and the dual surgery slopes of J are ± 1 (signs need not be consistent).

Corollary 1.3. If Y is integrally n-adjacent to S^{3} for $n \geq 3$, or rationally n-adjacent to S^{3} for $n \geq 4$, then Y is an integer homology sphere.

Note that in the case $n=2$, any $\left(1 / k_{1}, 1 / k_{2}\right), k_{i} \in \mathbb{Z}^{*}$, surgery along any link $J_{1} \cup J_{2}$ of unknotted components in S^{3} will yield a manifold adjacent to the three-sphere. In order to prove Theorem 1.1, we give a stronger characterization for self-adjacencies from the three-sphere to itself.

Proposition 3.2. The triple $\left(S^{3}, J, \alpha\right)$ realizes an n-adjacency to S^{3} if and only if J itself is a split union of Hopf links and unknots, all slopes $\alpha_{i}=1 / k_{i}$, where $k_{i} \in \mathbb{Z}^{*}$, and the surgery slopes of Hopf components are either $\pm(1,1 / 2)$ or $\pm(1 / 2,1)$.

Note that the requirement that J itself is a split union of Hopf links and unknots is stronger than requiring J be Hopf-Brunnian.

Using Proposition 3.2, we may now prove Theorem 1.1.

Proof of Theorem 1.1. In Proposition 2.2 below, we show that if (Y, L, α) realizes a rational n-adjacency to S^{3}, then the core of the surgery is an n-component link J in S^{3} and performing α-framed surgery on $\cup_{i \in I} L_{i}$, for any $I \subset\{1, \ldots, n\}$, yields the same result as performing surgery on $\cup_{i \in[n]-I} J_{i}$ with the corresponding dual slopes (see Section 2.1 for more details). In particular, surgery on every proper sublink of J in S^{3} gives back S^{3}. By Proposition 3.2 , every proper sublink of J is a split union of Hopf links and an unlink. The Hopf pairs have surgery coefficients $\pm(1,1 / 2)$ and split unknotted components have surgery coefficients $1 / k, k \neq 0$.

Let us return to n-adjacency in knots. Using Theorem 1.1, we are now able to recover Askitas-Kalfagianni's characterization of knots which are n-adjacent to the unknot AK02, Theorem 4.4].

Theorem 1.4 (Askitas-Kalfagianni). Let K be n-adjacent to the unknot for $n \geq 3$. Then K is the realization of a Brunnian-Suzuki n-graph.

Proof. Let $n \geq 3$, and let K be n-adjacent to the unknot U. The collection of unknotting arcs lifts to a strongly invertible link $L=L_{1} \cup \ldots \cup L_{n}$ in the double cover of S^{3} branched over K, which we will call Y. Likewise, there is a corresponding collection of 'knotting' $\operatorname{arcs} \gamma_{1}, \ldots, \gamma_{n}$ from U to K, which lifts to a strongly invertible link J in S^{3}. The Montesinos trick Mon75] provides a half-integral multi-slope β on J such that β_{i}-surgery on J_{i} corresponds to the associated crossing change downstairs on γ_{i}.

Applying crossing changes associated to any subset of crossing arcs $\cup_{i \in I} \gamma_{i}$ along U yields the same result as applying the complementary $[n]-I$ crossing changes in K. By the n-adjacency of K, this produces the unknot for any proper subset $I \subset\{1, \cdots, n\}$. At the level of the branched double cover, we see that surgery on every proper sublink of J produces S^{3}. (See Proposition 2.2 below.) We now apply Proposition 3.2 to the $(n-1)$ component sublinks of J. Since $n \geq 3$ and none of the surgery slopes are ± 1 (because they are all half-integral), all of the pairwise linking numbers of J must be zero and the proper sublinks are unlinks, i.e. J is Brunnian, and each β_{i} is $\pm 1 / 2$.

Consider now the union of the arcs $\gamma_{1}, \ldots, \gamma_{n}$ together with the unknot U. Again by the Montesinos trick Mon75, an arc with weight (w, z) in the terminology of AK02, Section 3] realizes a surgery in the branched double cover with slope $w+\frac{z}{2}$. The theorem will follow from the following claim.

Claim 1. The graph $G=U \cup \bigcup_{i=1}^{n} \gamma_{i}$ is a Brunnian Suzuki n-graph.

Proof of claim. Notice that no pair of arcs γ_{i} and γ_{j} have endpoints interleaved along the unknot because they would lift to a link $J_{i} \cup J_{j}$ of nonzero linking number, a contradiction. This means that G is admissible, in the terminology of AK02, Definition 3.2]. For any proper subset $I \subset\{1, \ldots, n\}$ of components of $J_{1} \cup \ldots \cup J_{n}$, the quotient under τ is a proper subset of the γ arcs. Because each subset of J is an unlink, and there is a unique strong inversion τ on the unlink [KT80], these descend to arcs embedded disjointly in the spanning disk for the unknot. Morever, because the surgery slopes on each J_{i} are $\pm 1 / 2$, these descend to weighted arcs of the form $(0, \pm 1)$. Thus, subgraphs of G with $n-1$ arcs are standard. The graph G is therefore a Brunnian-Suzuki n-graph, as in AK02, Definition 3.4].

Note that Theorem 1.4 is the key ingredient in the claimed vanishing of the Vassiliev invariants of a knot n-adjacent to the unknot, as mentioned above.

In analogy with the work of Askitas-Kalfagianni, we are also able to apply Theorem 1.1 more generally to prove a vanishing result for finite-type invariants of homology spheres. (For a quick survey on finite-type invariants, see Lin98].)

Corollary 1.5. Let Y be a homology sphere which is integrally n-adjacent to S^{3}. Then all finite-type invariants of order less than $2 n-4$ vanish.

Proof. By Corollary $1.2, Y$ is obtained by surgery on an n-component Brunnian link. The required vanishing result is given by [Mei06, Theorem 1.1].

2. Dehn surgery

2.1. The dual perspective. Let Y be a closed, oriented three-manifold, and let $L=$ $L_{1} \cup \ldots \cup L_{n}$ denote a link in Y. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ denote a multi-slope on L. The notation $Y_{\alpha}(L)$ denotes the three-manifold obtained by performing α_{i} Dehn surgery along L_{i} for all $i=1, \ldots, n$.

Definition 2.1. Consider the triple (Y, L, α), where Y is a closed, oriented 3-manifold, $L=L_{1} \cup \ldots \cup L_{n}$ is a link in Y, and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-slope on L. Let Z be a closed, oriented three-manifold. If $Y_{\alpha_{I}}\left(L_{I}\right)=Z$ for any nonempty subset I of $\{1, \ldots, n\}$, then (Y, L, α) realizes an n-adjacency to Z. We say that Y is integrally n-adjacent to Z if the multi-slopes are integral and rationally adjacent to Z otherwise.

Notice that n-adjacency is not a symmetric relation.

In order to circumvent the difficulty in describing surgeries in arbitrary three-manifolds, we take the following perspective.
Suppose that L is an n-component link in a three-manifold Y with a surgery to S^{3} along the multi-slope α. Let J be the core of the surgery in S^{3}, and write $J=J_{1} \cup \ldots \cup J_{n}$. Then, we will associate to J rational numbers $r=\left(r_{1}, \ldots, r_{n}\right)$ which describe how to "undo" the surgery performed on each J_{i}. To be more precise, in the exterior of L, we have two slopes η_{i} and α_{i} on the boundary torus coming from $L_{i}: \eta_{i}$ is the meridian of L_{i} and Dehn filling along α_{i} corresponds to the non-trivial surgery we are going to do to get to S^{3}. Viewing J as a link in S^{3}, we still can view these slopes in the boundary of a neighborhood of J_{i}. Express $\eta_{i}=p_{i} \mu_{i}+q_{i} \lambda_{i}$, where μ_{i}, λ_{i} are the meridian and longitudes for J_{i} as a knot in S^{3}. (Note that $\mu_{i}=\alpha_{i}$.) We say that the slopes η_{i} and α_{i} are dual to each other. We calculate these in the following order:
(1) First, perform surgery on all components of L to get J in S^{3}, not just some of the components (which still produces S^{3} if L is realizing an n-adjacency).
(2) Then, identify the slopes η_{i} with $r_{i}=p_{i} / q_{i}$.

Note that the adjacency is integral if and only if all p_{i} / q_{i} are integral. This is because $\Delta\left(\eta_{i}, \alpha_{i}\right)=\Delta\left(\mu_{i}, p_{i} \mu_{i}+q_{i} \lambda_{i}\right)=\left|q_{i}\right|$. In general, when discussing the dual link of a surgery to S^{3}, we will assume that it naturally inherits these rational surgery slopes in S^{3} as above.
Now, the data $\left(S^{3}, J, r\right)$ in S^{3} actually recovers (Y, L, α). Performing surgery on all components of J gives Y and by construction L is the core of the surgery on J while the meridian of each J_{i} becomes the slope α_{i}. But, we can also recover sublinks in the following way. If we look at a sublink J^{\prime} of J, without loss of generality, $J_{1} \cup \ldots \cup J_{k}$, then surgery on J^{\prime} produces the same manifold as surgery in Y on $L_{k+1} \cup \ldots \cup L_{n}$. And further, the core of surgery on J^{\prime}, a k-component link, is exactly the image of $L_{1} \cup \ldots \cup L_{k}$ in the surgery on $L_{k+1} \cup \ldots \cup L_{n}$.

Now we return to the case that a rational surgery on L is realizing an n-adjacency from Y to S^{3}. Build $\left(S^{3}, J, r\right)$ as discussed. The above paragraph can be reinterpreted as saying that doing the corresponding surgery on every proper sublink of J gives S^{3}. For the benefit of the reader, we summarize this discussion with the following proposition.

Proposition 2.2. Let α be a multi-slope on an n-component link L in Y. Then (Y, L, α) realizes an n-adjacency to S^{3} if and only if there exists a multi-slope β on a link J in S^{3} such that:
(1) $S_{\beta}^{3}(J)=Y$;
(2) L is the core of the surgery on J;
(3) each α_{i} is the dual slope to β_{i};
(4) surgery on every proper sublink of J yields S^{3}.

Furthermore, the adjacency is integral if and only if β is integral.
2.2. The linking of the dual curves. In light of the dual perspective from Proposition 2.2 , we want to understand the effects of surgery on links in S^{3} whose sublinks also surger to S^{3}. The next lemma allows us to constrain the linking numbers and surgery coefficients for the dual link in S^{3} arising from an n-adjacency.

Lemma 2.3. Suppose that $\left(S^{3}, J, \alpha\right)$ realizes a 2-adjacency to S^{3}. Then either the linking number of J is zero, or the linking number is ± 1 and the surgery coefficients α_{i} are $\pm(1,1 / 2)$ or $\pm(1 / 2,1)$.

Proof. Since surgery on each individual component of $J=J_{1} \cup J_{2}$ produces S^{3}, an integer homology sphere, the surgery coefficient for J_{i} is of the form $1 / q_{i}$. The linking matrix for the surgery presentation on J then gives

$$
1=\left|\operatorname{det}\left(\begin{array}{cc}
1 & q_{2} \ell \\
q_{1} \ell & 1
\end{array}\right)\right|=\left|q_{1} q_{2} \ell^{2}-1\right|
$$

where ℓ is the linking number of J_{1} and J_{2} (say after choosing orientations of each component). Since $q_{1}, q_{2} \neq 0$, we see that $|\ell|=0$ or 1 . If $|\ell|=1$, then we must have that $\left(q_{1}, q_{2}\right)= \pm(1,2)$ or $\pm(2,1)$, as desired.

Proposition 2.4. Suppose that J is an n-component link in S^{3}, with $n \geq 3$, and α is a multi-slope on J. If surgery on every proper sublink of J produces S^{3}, then all pairwise linking numbers are 0 or ± 1. If J_{1} and J_{2} are a pair of components with $\left|\ell k\left(J_{1}, J_{2}\right)\right|=1$, then the slopes are $\pm(1,1 / 2)$ or $\pm(1 / 2,1)$. If $n=3$ and $S_{\alpha}^{3}(J)$ is an integer homology sphere or $n \geq 4$, then each of J_{1} and J_{2} has linking number zero with all other components.

Proof. Since $n \geq 3$, every two-component sublink of J with induced multi-slope from α provides a 2-adjacency from S^{3} to itself. Therefore, by Lemma 2.3 , the pairwise linking numbers are 0 or ± 1 and for the 2-component sublinks with linking number having absolute value 1 , the surgery coefficients are $\pm(1,1 / 2)$ or $\pm(1 / 2,1)$.
Now suppose that $S_{\alpha}^{3}(J)$ is an integer homology sphere. It remains to consider the pairwise linking of J_{1}, J_{2} with the other components. Let J_{3} be another component. Then, we know that the associated surgery on $J_{1} \cup J_{2} \cup J_{3}$ produces $S_{\alpha}^{3}(J)$ if $n=3$ and S^{3} if $n>3$. Either way, the result is an integer homology sphere. Orient J_{1}, J_{2} such that the pairwise linking is 1 , fix an orientation on J_{3} and let ℓ_{1}, ℓ_{2} be the linking numbers of J_{3} with J_{1}, J_{2} respectively. Without loss of generality, the surgery coefficients on J_{1} and J_{2} are 1 and $1 / 2$ respectively. (Otherwise, rearrange the order of the components and/or mirror J and reverse the signs of α.) Suppose for contradiction that ℓ_{1}, ℓ_{2} are not both zero.

The first case is that $\ell_{1} \neq 0$. In this case, by applying the first part of the proposition to the pair $\left(J_{1}, J_{3}\right)$, we see that $\ell_{1}=1$ and the surgery coefficient for J_{3} must be $1 / 2$. Applying the first part of the proposition to the pair $\left(J_{2}, J_{3}\right)$, we see that J_{2} and J_{3} have linking number zero, since the pair of surgery coefficients is not $\pm(1 / 2,1)$ or $\pm(1,1 / 2)$.

In this case, the linking matrix for the 3 -component surgery description computes the order of H_{1} of the surgery on $J_{1} \cup J_{2} \cup J_{3}$ to be:

$$
1=\left|\operatorname{det}\left(\begin{array}{lll}
1 & 2 & 2 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\right|=3,
$$

a contradiction.
The other case is that $\ell_{1}=0$, and so $\ell_{2}=1$. Now we see the surgery coefficients are 1 for J_{1} and J_{3}, and $1 / 2$ for J_{2}. Then, we compute again

$$
1=\left|\operatorname{det}\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right)\right|=3
$$

another contradiction. This completes the proof.

3. Self-adjacencies from S^{3}

In this section, we constrain the self-adjacencies from S^{3} to itself. As a warm-up, we begin with a special case.

Proposition 3.1. Suppose $\left(S^{3}, J, \alpha\right)$ realizes an n-adjacency to S^{3} and the pairwise linking numbers of J vanish. Then J is the unlink and $\alpha_{i}=1 / k_{i}$ for $k_{i} \in \mathbb{Z}^{*}$ for all i.

Proof. First, it is clear that $\alpha_{i}=1 / k_{i}$ for each i by a homological computation. We proceed by induction to show that J is the unlink. The case of $n=1$ is handled by the knot complement theorem GL89. Next we do the case of a 2 -component link, $J_{1} \cup J_{2}$. From the $n=1$ case, each component is unknotted. Since $1 / k_{2}$-surgery on J_{2} is S^{3}, the image of J_{1} in $1 / k_{2}$-surgery on J_{2} has a surgery to S^{3}. Hence, the image of J_{1} is also unknotted. In particular, the component J_{2} in the complement of J_{1} in S^{3} is a knot in a solid torus which has a non-trivial solid torus surgery. By [Gab89], J_{1} is contained in a ball or is a braid in the solid torus, so has non-zero winding number. However, because $\ell k\left(J_{1}, J_{2}\right)=0$, it must be the case that J_{1} is contained in a ball in the complement of J_{2} in S^{3}, meaning J_{1} and J_{2} are unlinked. This completes the proof for $n=2$ components.
For the inductive step, our hypothesis is that J is a Brunnian link and then we will deduce that J is in fact an unlink. This can be found in [GLLM22, Proposition 4.1], but for self-containedness, we present an elementary proof that does not rely on Heegaard Floer homology. Suppose the result is true for ($n-1$)-component links and that (S^{3}, J, α) realizes an n-adjacency to S^{3}. Then J is Brunnian, $J_{1} \cup \ldots \cup J_{n-1}$ is an unlink, and so $\left(1 / k_{1}, \ldots, 1 / k_{n-1}\right)$-surgery on $J_{1} \cup \ldots \cup J_{n-1}$ gives S^{3}. Thus the image of J_{n} must be unknotted after this surgery. Hence, we see that $\left(1 / k_{1}, \ldots, 1 / k_{n-1}, 1 / m\right)$-surgery on J gives S^{3} for arbitrary m. For the sake of concreteness, fix $m=5$.
We claim that the image of $J_{1} \cup \ldots \cup J_{n-1}$ after performing $1 / 5$-surgery on J_{n}, denoted $K_{1} \cup \ldots \cup K_{n-1}$, yields an $(n-1)$-component Brunnian link. To see that the $(n-1)$ component image link is Brunnian, note that all $(n-1)$-component sublinks of J are unlinks by our inductive hypothesis. In particular, $J_{1} \cup \ldots \cup J_{n-2} \cup J_{n}$ is an unlink,
hence $1 / 5$-surgery along J_{n} shows that $K_{1} \cup \ldots \cup K_{n-2}$ is an unlink. A similar argument applies to the other $n-2$-component sublinks of $K_{1} \cup \cdots \cup K_{n-1}$.
Thus, the link $K_{1} \cup \cdots \cup K_{n-1}$ is a Brunnian link with a surgery to S^{3}, and so is an unlink by induction. In other words, $1 / 5$-surgery on J_{n} in the exterior of $J_{1} \cup \ldots \cup J_{n-1}$ produces a reducible 3 -manifold (the exterior of an ($n-1$)-component unlink). Yet, the distance between the trivial slope ∞ and $1 / 5$ is 5 . A theorem of Gordon and Litherland GL84, Theorem 1.1] implies that for any pair of reducible Dehn fillings on an irreducible manifold, the slopes have distance at most four. This is a contradiction. This implies that the exterior of J must be reducible. Hence, J is split. However, a split Brunnian link is an unlink.

We now build on the previous proposition to complete our characterization of the selfadjacencies of S^{3} promised in the introduction.

Proposition 3.2. The triple $\left(S^{3}, J, \alpha\right)$ realizes an n-adjacency to S^{3} if and only if J itself is a split union of Hopf links and unknots, all slopes $\alpha_{i}=1 / k_{i}$, where $k_{i} \in \mathbb{Z}^{*}$, and the surgery slopes of Hopf components are either $\pm(1,1 / 2)$ or $\pm(1 / 2,1)$.

Proof. As in the proof of Proposition 3.1, the knot complement theorem implies that the components are unknotted and of course the surgery coefficients are of the form $1 / k_{i}$.

We begin with the case of $n=2$. Consider $J_{1} \cup J_{2}$. The case that $\ell k\left(J_{1}, J_{2}\right)=0$ follows from Proposition 3.1. By Lemma 2.3, we assume $\ell k\left(J_{1}, J_{2}\right)=1$ and the surgery coefficients are $\pm(1,1 / 2)$. Note that J_{1} is unknotted in $1 / 2$-surgery on J_{2}, so J_{2} can again be viewed as a knot in the solid torus with a solid torus surgery. Therefore, by Gab89], J_{2} is a braid in the complement of J_{1} and the winding number is the linking number of J_{1} and J_{2}. The only winding number 1 braid in the solid torus is the core. We see that $J_{1} \cup J_{2}$ is a Hopf link.

Next, we handle the case of $n=3$. If the pairwise linking numbers are zero, we appeal to Proposition 3.1. So, assume some pair of components J_{1}, J_{2} have nonzero linking number. By Proposition 2.4, J_{1}, J_{2} have surgery coefficients $\pm(1,1 / 2)$ and linking number 1. Further, by Proposition 2.4, we have that J_{3} is algebraically split from J_{1} and J_{2}. By the $n=2$ case of the proof, $J_{1} \cup J_{2}$ must form a Hopf link. We also have that J_{3} is an unknot that is geometrically split from J_{1} and J_{2} individually, but possibly not split from the link $J_{1} \cup J_{2}$.

It remains to show that J_{3} is in fact split from $J_{1} \cup J_{2}$. Since $J_{1} \cup J_{3}$ is an unlink, trivial surgery on J_{2} produces the 2-component unlink $J_{1} \cup J_{3}$. Also, the image of $J_{1} \cup J_{3}$ under $1 / 2$-surgery on J_{2} is a 2 -component unlink because this image is a 2 -component link, all of whose induced surgeries give S^{3}. We now appeal to CGLS87, Corollary 2.4.7]. This states that if an irreducible three-manifold admits two reducible Dehn fillings along slopes of distance at least two on a torus boundary component, one of the filled manifolds contains a lens space summand. However, a link complement in S^{3} cannot contain a lens space summand. As the surgered manifolds are link complements in S^{3}, the exterior of J is reducible, and so J is a split link.

Now, we complete the induction using a similar strategy. Suppose that J has n components. By assumption, all proper sublinks are split unions of unlinks and Hopf links. If J has pairwise linking numbers all zero, we can again apply Proposition 3.1. Therefore, up to reordering of the components, we have at least one two-component sublink $J_{1} \cup J_{2}$ which is a Hopf link. Up to mirroring and reordering J_{1} and J_{2}, the surgery coefficient on J_{1} is $1 / 2$. Trivial surgery on J_{2} produces a split link as does $1 / 2$-surgery, since the resulting link is an $(n-1)$-component link satisfying the same hypotheses of the theorem. Therefore, by applealing again to CGLS87, Corollary 2.4.7], we get that the complement of J is reducible, so J is split. Since all $(n-1)$-component sublinks are split unions of Hopf links and unknots, and because J itself is split, we now have that J is a split union of Hopf links and unknots.

Acknowledgements. TL was supported by NSF DMS-2105469. AHM was supported by NSF Grant DMS-2204148 and The Thomas F. and Kate Miller Jeffress Memorial Trust, Bank of America, Trustee.

References

[AK02] Nikos Askitas and Efstratia Kalfagianni. On knot adjacency. Topology Appl., 126(1-2):63-81, 2002.
[CGLS87] Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen. Dehn surgery on knots. Ann. of Math. (2), 125(2):237-300, 1987.
[Gab89] David Gabai. Surgery on knots in solid tori. Topology, 28(1):1-6, 1989.
[GL84] C. McA. Gordon and R. A. Litherland. Incompressible planar surfaces in 3-manifolds. Topology Appl., 18(2-3):121-144, 1984.
[GL89] C. McA. Gordon and J. Luecke. Knots are determined by their complements. J. Amer. Math. Soc., 2(2):371-415, 1989.
[GLLM22] Eugene Gorsky, Tye Lidman, Beibei Liu, and Allison H Moore. Triple Linking Numbers and Heegaard Floer Homology. International Mathematics Research Notices, 01 2022. rnab368.
[KT80] Paik Kee Kim and Jeffrey L. Tollefson. Splitting the PL involutions of nonprime 3-manifolds. Michigan Math. J., 27(3):259-274, 1980.
[Lin98] Xiao-Song Lin. Finite type invariants of integral homology 3-spheres: a survey. In Knot theory (Warsaw, 1995), volume 42 of Banach Center Publ., pages 205-220. Polish Acad. Sci. Inst. Math., Warsaw, 1998.
[Mei06] Jean-Baptiste Meilhan. On surgery along Brunnian links in 3-manifolds. Algebr. Geom. Topol., 6:2417-2453, 2006.
[Mon75] José M. Montesinos. Surgery on links and double branched covers of S^{3}. In Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), volume No. 84 of Ann. of Math. Studies, pages pp 227-259. Princeton Univ. Press, Princeton, N.J., 1975.

Department of Mathematics, North Carolina State University, Raleigh, NC 27607, USA
Email address: tlid@math.ncsu.edu
Department of Mathematics \& Applied Mathematics, Virginia Commonwealth University, 1015 Floyd Avenue, Box 842014, Richmond, VA 23284-2014, USA

Email address: moorea14@vcu.edu

