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1. INTRODUCTION

Since the 1970s, energy management and control systems for commercial buildings have evolved
under a variety of names including: building energy management systems (or BEMS), building
management systems (or BMS), energy management systems (or EMS), building automation
systems (EIS), HVAC control systems, indoor environment management systems, digital direct
control (or DDC), or energy management control systems. This paper describes these as energy
management systems (EnMS) in accordance with the recent ISO 50001 (ISO, 2011) standard. EnMS
incorporate advances in microprocessor technology and implement standard communication
protocols to retrieve sensor data and correspondingly adjust heating, ventilating, air conditioning
(HVAC) and lighting systems to maintain human comfort levels while minimizing energy
consumption. In addition, these systems log extensive data on system operating conditions.
Research shows that EnMS conserve as much as 10-40% of the energy typically consumed by
commercial buildings (Ahmed, Ploennigs, Menzel, & Cahill, 2010). This represents significant cost
savings for building owners because, according to the U.S. Department of Energy (DOE), over 50%
of the total energy use in buildings is used for HVAC and lighting (Department of Energy, 2003).
One roadblock to achieving these savings is the complexity of these systems and the resulting
inability of building operators to analyze and act on EnMS data and thus realize their full potential.
It has been shown that data coming from EnMS and EIS are underutilized due to improper training
(Piette, Kinney, & Friedman, 2001). This information is of great value for building stakeholders but
can overwhelm them if they do not know how to interpret these data. To minimize the learning
curve, stakeholders will need information that is relevant to them and presented visually in an
intuitive way. This will allow them to take actions that will improve energy efficiency, prolong
equipment life, and most importantly maintain occupants’ comfort levels.

This paper reviews how EnMS control HVAC and lighting systems to both conserve energy while
maintaining human comfort and productivity. It then reviews the challenges facing building
operators and other building stakeholders as they strive to balance the conserve v. comfort
equation. Finally, this paper will propose methods by which building owners and stakeholders can
realize the full potential of EnMS using advanced artificial intelligence and improved information
visualization techniques. This discussion includes the design criteria for a graphic user interface
intuitive to end-users.

2. CAPABILITIES OF ENMS SYSTEMS

In order for an EnMS to log and react to the current conditions of a building it requires input from
comfort sensors and connections to HVAC and lighting control systems. Sensors typically deployed
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to address human comfort and health while minimizing energy consumption measure temperature,
relative humidity (RH), occupancy, illumination, and CO;levels. These sensors are placed
throughout the building to coincide with the different zones being controlled. The size of zones can
range from an individual office space where only one person occupies that zone to a large open area
where multiple people have their workspace. In the case of open spaces, current EnMS have limited
capabilities to address individual comfort levels. The following are brief descriptions of how these
sensors are used in practice and the level of energy savings attributed to them from the literature.

2.1 SENSORS

Temperature/RH sensors are use to monitor indoor, outdoor, supply, mixed, and zone air
temperature and relative humidity. These control chilled /heated water valves and dampers in the
HVAC system to provide cooling or heating as needed for the different zones. They also control
economizers based on if the outside air is adequate to provide the necessary cooling/heating to the
zone. Savings on economizer control can vary from 15% to 50% depending on settings and climate
zone (Hatley et al., 2005).

Occupancy sensors detect activity in a zone and return a control signal that indicates occupancy
status. The two technologies commonly found in these sensors are infrared and ultrasonic. There is
also a hybrid of the two technologies, which overcomes some of the shortcoming of each. Infrared
occupancy sensors detect line-of-sight temperatures; ultrasonic occupancy sensors use the Doppler
principle to detect movement (Watt Stopper, n.d.). They do not count the actual number of
occupants in the zone only the presence of occupants. These sensors are recommended where the
presence of occupants of the space varies a lot throughout the day. These zones can be meeting
rooms, maintenance rooms, restrooms, private offices and even open plan offices. Any zone with
variable daily occupancy is a good application for occupancy sensors. These sensors are usually set
to turn on the lighting fixtures and manage the ‘occupied settings’ for HVAC system control when
the zone is occupied. In day lit spaces, advanced applications are set up as ‘vacancy’ sensors in
terms of lighting control so that lighting is turned on manually and off automatically upon a time
delay (often 5-15 minutes) after vacancy. Lighting energy savings attributed to these sensors range
from 15% to 20% (Eilers, Reed, & Pigg, 1996) with additional savings from component cooling load
reductions.

[llumination control sensors are used to detect the amount of natural lighting that is available for
zones, often referred to as daylight harvesting. These devices are usually set to control lighting
fixtures in places where the fixtures are close to natural light sources. These sensors switch or dim
artificial lighting when natural lighting is sufficient to provide lighting levels for the occupant.
Savings from these systems range from 0% to 89% (Acker & Van Den Wymelenberg, 2009). Low
savings are often caused by poorly commissioned systems or improper user operation e.g.
occupants manually closing blinds due to glare (Acker & Van Den Wymelenberg, 2010). In addition
lighting zone orientation and fenestration type (side lighting vs. top lighting) can play a role in
savings. In the case for side lighting, energy savings for the top quartile is about 82% of the
expected value and almost half the systems installed do not save any lighting energy (Heschong,
Howlett, McHugh, & Pande, 2005). On the other hand, energy saving with top lighting is highly
predictable and effective (McHugh, Pande, Ander, & Melnyk, 2004).

In advanced applications, daylight harvesting system also control motorized blinds to reduce glare,
provide natural desired levels of daylight, and lower cooling loads caused by direct sunlight (]J.-H.
Kim, Park, Yeo, & K.-W. Kim, 2009). These two forms may conflict with each other because blinds
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reduce natural light and artificial light must be increased but there has been research in order to
integrate and optimize these two systems (Galasiu, Atif, & MacDonald, 2004). Cooling load
reductions from using motorized venetian blinds compared to controlling blinds manually save
about 7-15% in energy (E.S. Lee, D.L. DiBartolomeo, & S.E. Selkowitz, 1998).

CO; sensors are used to readout carbon dioxide levels to provide the necessary ventilation for
occupants that are present at any given moment, a system referred to as demand controlled
ventilation (DCV) systems. They provide the minimum level of ventilation when there is no one
present and ramps up to the design occupancy ventilation level when the designed occupancy of the
zone is reached. It is important to note that CO; is being used as a surrogate for actual occupancy
levels. Unlike occupancy sensors, CO, sensors can sense relative zone population. With this
information, ventilation can be provided to prevent the buildup of volatile organic compounds
(VOCs) and other noxious pollutants that cause irritation to building occupants Savings attributed
to these systems are in between 6-22% and it depends on the occupancy patterns, building type,
and climate zone (Roth, Westphalen, Feng, Llana, & Quartararo, 2005).

Additional sensors can be placed in the HVAC equipment that relay information back to the
building operator and to the EnMS about the equipment’s status. These include state loggers
that measure on/off states of motors, fans, valves, or other equipment. Potentiometers
measure damper and valve positions. Differential pressure sensors that monitor filter life.
Current transducers and voltage meters calibrated to calculate energy usage of components
or systems. Rotational sensors that measure rpm of fans or pumps, and flow meters that
measure flow rates of fluids. It is not uncommon for a complete EnMS system to have
thousands of points. For example, a 185,000 SF, 11 story commercial office building studied
has over 10,000 points monitored. The integration of all these sensors is important to truly
gain the benefits that EnMS have to offer(Piette, Kinney, & Haves, 2001). The objective
being the provision of diagnosis, prognosis and other actionable information that is useful
to building operators.

2.2 PROGRAMMING CAPABILITIES

Programming capabilities are another important part of EnMS. Building operators can set the
system to take into account buildings’ operating schedule and individual zone schedules. For
example, if a building’s tenants are there only on weekdays from 7:00 am to 6:00 pm then there is
no need to run the equipment to maintain zone comfort levels for the rest of the time. The
equipment will run as designed for only 44 hours per week and the other 124 hours energy savings
can take place. This does not mean that all the HVAC equipment will be necessarily shut down
completely but the systems will not waste energy trying to maintain occupancy comfort levels
(Automated Logic Corporation, 2008). These methods can save more than 15% energy usage and
also prolongs the life of the equipment (Hatley et al., 2005).

Once the schedules are set, another feature of EnMS can be taken advantage of. This feature is called
optimal start/stop and is used to pre-cool or pre-heat zones before they are occupied or stop
cooling or heating before they become unoccupied using the building’s thermal inertia to maintain
comfort conditions until the scheduled end of occupancy. Some EnMS actually “learn” if the zones
reach comfort levels before occupancy starts. The system will adjust if comfort levels are reached
too late or too soon (Automated Logic Corporation, 2008). EnMS does this by logging the time it
takes to reach the predetermined set point as a function of outdoor air temperature. If the set point
is reached before the zone is occupied then the system will start its functions later to reach the set
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point on schedule the next day. If its reached late it will start sooner in the future. Also, when the
proper economizer and controls are in place the system will use outside air when it is beneficial to
do the pre-cooling/pre-heating (Automated Logic Corporation, 2008).

Another feature in EnMS that can be implemented easily is the ability to apply dynamic set points
for HVAC equipment. These set points are adjusted to reduce power requirement in the equipment
and are used in jurisdictions where energy prices change throughout the course of the day. The
temperature set points can be relaxed in several levels as demand peak for the utility company is
reached (Automated Logic Corporation, 2008). In the same way, set points for the chilled and hot
water can be adjusted depending on load conditions of the building. This will increase the efficiency
of chillers and boilers when they perform at part-load conditions that result from varying outdoor
temperature (Hatley et al., 2005).

Demand Response (DR) is an additional feature that can help avoid peak demand charges. When DR
is enabled in EnMS, the system will shed or shift loads to reduce energy consumption at peak
demand. For example, EnMS can shift HVAC equipment to operate during off-peak hours and
benefit from thermal inertia during peak demand hours. This method of DR is called load shifting.
When the system dims lighting or uses dynamic set points to reduce energy consumption during
peak demand it is called load shedding. In addition to reducing energy usage, utility companies pay
incentives for buildings that are enrolled in DR programs (Newsham & Birt, 2010). Normally,
building managers need outside help to effectively analyze their buildings’ loads to find which loads
are adequate for DR programs (Hatley et al., 2005).

3. PROBLEMS ASSOCIATED WITH ENMS SYSTEMS

The features mentioned above are examples of common practices in programming EnMS.
Systems get more complicated when EnMS are integrated with energy information systems
(EIS). EIS refer to additional software, data acquisition hardware, and communication
systems that provide energy performance data of the building (Motegi, Piette, Kinney, &
Dewey, 2003). These data contain information for all the building’s stakeholders to improve
energy efficiency, comfort levels, and reduce troubleshooting time for HVAC equipment
(Seidl, 2006).

The problem with EIS is that they provide a lot of data to the building’s stakeholders, the building
owner, building operator, and occupants, but not a lot of information that can be acted upon easily
or tailored to specific stakeholders. Figure 1 shows 16 zone temperatures for a single floor and
there is additional data available that is associated with the floor. For example, data from air-
handling units which show supply air temperature, coil temperatures, damper and valve positions,
and CO:levels did not fit on the same graph. Figure 2 shows values captured from the same floor
mentioned in figure 1 related to lighting systems using an energy management system that is
specifically designed for lighting systems. The system integrates its capabilities to include daylight
harvesting, zone scheduling, and load shedding with occupancy sensors and illumination sensors to
provide savings in lighting energy consumption. This control system presents data in graphs along
with baseline energy use to inform building managers how much energy they save when using the
system. For an untrained individual, all of these data can be so overwhelming that they will not use
itat all. In one study, Haris Doukas et al state “to the best of our knowledge, the buildings’ energy
management’s systems operational data of a building are in many cases simply recorded without
being further processed and analyzed, in terms of assisting the selection of possible energy-savings
measures” (Doukas, Nychtis, & Psarras, 2009). These data are mostly used as a monitoring system,
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FIGURE 2: LIGHTING ENERGY MANAGEMENT SYSTEM DATA FOR FLOOR 7
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forgoing opportunities to establish building characteristics and trends in which they can aid with
the continuous improvement for the life of the system (Ahmed et al., 2010).

There are some tools in the market that seek out to resolve the problem of data being presented
without being organized to make improvements to the system. These include EnergyWitness (IDS
Interval Data Systems, Inc., 2008), EnergyICT (EnergyICT, 2011), Facilimetric (Noveda
Technologies, Inc, 2011), Energy Expert (Energy WorkSite, 2011), EfficiencySMART (EnerNOC,
2011) and PACRAT (Santos, Brightbill, & Lister, n.d.). These tools monitor data, make trends, and
some will even analyze data. For example, Energy Expert will use bin data methodology to predict
energy usage based on weather forecasting but it does not control EnMS (Energy WorkSite, 2011).
Adjustments or improvements to equipment must be done manually. PACRAT, performance and
continuous re-commissioning analysis tool, is a tool that integrates with EnMS to diagnose
problems, give recommendations on how to fix them, and provides a list of consequences if
problems are not addressed on time (Santos et al., n.d.). EnerNOC uses a combination of algorithms
and experienced energy analysts to make recommendations to their clients to improve energy
usage and time of usage to prevent demand charges. Their EfficiencySMART system can make
simple recommendations like enabling setbacks or more involved projects that require the
replacement of equipment (EnerNOC, 2011). The presentation of data in these tools can range from
simple trend graphs (EnergyWitness) to dashboards that show almost real time energy
consumption of a building (Facilimetric, EfficiencySMART) to custom reports, but they require
additional fees or software (EnergyICT, EfficiencySMART). All seem to have the capacity to collect
data at the equipment level and have a detailed report on energy consumption within a building. It
is just a matter of installing the necessary sensors or meters.

From the above-mentioned systems, EfficiencySMART and PACRAT are tools that provide
actionable information. The rest rely on the experience of the operator to interpret, analyze, and
improve building performance based on the way these tools present their collected data. . However,
building operators commonly lack the experience and time to use the information gained or use
more advanced features of EnMS (Hatley et al., 2005; Piette, Kinney, & Friedman, 2001). Features
include load shedding, load shifting, diagnosing, and prognosis. The objective of the proposed EnMS
toolset is to provide these advanced features by distilling the knowledge needed to accomplish it.
These strategies must not compromise comfort, health, and productivity and that is why EnMS
require a set of rules established by the operator to accomplish automatic load shedding/shifting
effectively (Powerit Solutions, 2011). Rules need to establish equipment that will not cause
negative consequences when power is reduced or shut down completely. For instance, productivity
can go down if comfort levels are not in an acceptable range. According to ASHRAE standard 55-
1992, the acceptable temperature range for zones in the winter is 68-75F and 73-79F for the
summer (ASHRAE, 1992). Air speed can range from 55 fpm to 120 fpm depending on the zone
temperature (ASHRAE, 1992). In regards to lighting, IESNA recommends a range of 30-50
footcandles for most modern offices (IESNA, 2011). Maintaining comfort during demand response
events is critical for the continuation of this practice, thus supporting the concept of individual
comfort feedback to EnMS.

4. THE PROPOSED METHODS

The scope of this work is to build an EnMS toolset that will aid building stakeholders in improving
the energy efficiency of their buildings by using data that is available from EnMS. This research
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proposes to use Computational Intelligence techniques, specifically Artificial Neural Networks
(ANN) and Fuzzy Logic tools to process the vast quantity of data available from an EnMS to make
actionable information that can more easily be used by a building operator, manager, or occupant.
These techniques were chosen for their generalizing capability (neural networks as universal
approximators and classifiers), and capability of dealing with imprecision (fuzzy logic capable of
encoding linguistic and quantitative uncertainties). Research needs to start by assessing the current
knowledge of building operators for controlling EnMS. In addition, any known strategies operators
use, if any, to collect, store, and analyze building performance data to implement energy efficiency
measures (EEM) need to be documented. Finally, any shortfalls of their current EnMS and how they
would like it to be addressed will also be important to know. The results of this data collection will
inform how to proceed with a toolset that provides actionable information with appropriate
visualization tools that are relevant to the different stakeholders. It will also provide guidance for
additional sensor hardware that may be required in existing building or guidance for new building
design and control of comfort parameters and the role of user feedback.

4.1 INTERVIEWS

Interviews with building operators and/or building owners will give an understanding of their
current knowledge level with EnMS. This information will be deduced when they provide their
current strategies to collect, store, and analyze data. They will also need to explain what features
and functions their EnMS provide. This is important because the more experienced a building
operator, the more features he/she will be able to name in theory. Another important aspect to note
when conducting these interviews is the amount of time building operators or owners spend each
day to make any modifications or to diagnose any problems with the EnMS. The goal of these
interviews is to document any difficulties operators and owners are having with EnMS or
actionable information they wish they could obtain from building performance data. Finally, the
interviews must be conducted in a non-threatening manner and make it clear that the objective this
toolset is to help them perform their job more effectively.

4.2 COMPUTATIONAL INTELLIGENCE TECHNIQUES

Computational intelligence techniques have been successfully applied to many engineering
problems. Some of their main advantages are intelligent system analysis, improved and more
effective system modeling capabilities, automated knowledge extraction and pattern recognition
(Haykin, 2008). Artificial Neural Networks (ANNs) and Fuzzy Logic Systems (FLSs) are proposed to
be integrated with the EnMS for processing the gathered large multi-dimensional datasets and
fusing this information into actionable information usable by the building operators, managers and
occupants.

ANNSs constitute a well established computational model, which is inspired by the biological neural
system. The feed-forward ANN consists of multiple simple processing units - neurons, structured in
single or multiple layers and interconnected via directed edges, as shown in Figure 3. By
propagating an input signal through the connected neurons, the response signal is obtained in the
output layer. The input signals can be connected to the preprocessed data feed from various
building sensors. The ANN can be seen as a massive parallel distributed processor. One of the key
features of ANN is their ability to learn and adapt its structure to the non-linear distribution of the
provided multi-dimensional input data (Linda & Manic, 2009).
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FIGURE 3: MODEL OF ARTIFICIAL NEURON (A), AND FEED-FORWARD ARTIFICIAL NEURAL NETWORK (B).

To reduce the complexity of outputs and integrate all the inputs of the system, it is purposed to use
FLS and ANN controller methods to address issues that building operators are confronted with, in
particular controllers that will learn and adapt to the changing conditions of buildings as well as
those of the occupants. With FLS, there must be a set of rules programmed into the controller so
when these conditions are met the controller can initiate an action (A. Dounis, 1995). The list can
get large and complex for many inputs. With ANNs, there are three layers that interact to produce
one or two outputs from all the inputs of an EnMS (Kwok, Yuen, & Lee, 2011). The first layer is all
the inputs of the system. These are usually taken from the measurements of the EnMS sensors and
can include weather forecasts, occupant input, and historical data. These inputs also need to be
independent variables or not a function of another input (Kwok et al., 2011). The middle layer
makes connections between the inputs and ‘learns’ how each input is correlated to each other. The
third layer is one or two outputs that act on a system. A hybrid of these can also be used. Neural
networks would be the initial data reduction tool and the FLS rules will optimize the results of a few
outputs from the neural networks (see Figure 4). No matter how it is used, FLS and ANN controllers
vary depending on the application but are considered to be the best option to optimize systems (A.
[. Dounis & Caraiscos, 2009).
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ANNSs will be used in several aspects of input data processing. First, self-organizing ANNs can be
used to identify similarity and cluster different data feeds in various regions in the building and
learn the optimal energy management profiles for each similar region. These energy management
profiles can then be suggested to the operator as optimal solution given the previously observed
historical data. The feed-forward ANNs will be used to model in real-time the dynamics of the
building environment, which will enable prediction of various near-future trends and behaviors,
such as peak demand. Such ANN predictor will allow for anticipating significant energy changes, e.g.
pre-cool or pre-heat zones before they are occupied with higher efficiency. Furthermore, the ANN
system modeling can also be used to identify abnormal behavior and deviations from the expected
system performance. In this manner the ANN will provide a real-time assessment of which zones
are not reaching comfort levels on time or zones that reach comfort levels too early.

FLS shave been successfully applied in various engineering areas over the past 40 years (Linda &
Manic, 2011). This fact can be attributed to their ability to cope with the linguistic uncertainty
originating in the imprecise and vague meaning of words. FLSs were initially developed with the
intention to implement a control system capable of complex behaviors, while having a simple and
human-understandable structure (Zadeh, 1975). The core of the fuzzy logic system contains
linguistic fuzzy rules and knowledge. Each fuzzy rule consists of antecedent part and consequent
part modeled using Fuzzy Sets (FSs). Unlike in classical Boolean logic where objects either belong to
a crisp set or they do not, FSs determine the degree of belonging as a real value between 0 and 1.
This real-valued degree of belonging is the fundamental concept that allows FLS to express vague
and overlapping linguistic concepts or assign a single object to multiple sets with different degrees
of belonging.

The unique capability of FLSs to encode human knowledge in a linguistic form will be utilized in the

designed system. The initial interview records will be used to elicit fuzzy rules encoding the
operators’ experience. In addition, the obtained fuzzy rule base will be enhanced by learning
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additional fuzzy rules describing the optimal energy management actions. Furthermore, the FLS
also allow for computing linguistic outputs such as “Low”, “Medium”, “High”. Providing those easy-
to-understand linguistic terms to the operators might contribute the increased usability of the
system and improve the utilization of the available data.

4.3 VISUALIZATION

To understand the underlying inter-dependencies and unique attributes within the collected data,
visual data mining tools such as Self-Organizing Maps will be used. Self-Organizing Maps are
powerful visual data mining tools which can be coupled with other computational intelligence
techniques to provide methodologies that aid the user to identify spatial distributions, important
attributes, similarity and uniqueness within the database, etc. (Wijayasekara, Linda, & Manic,
2011). Using these techniques users are able extract information about important attributes that
contribute to the distribution of the database.

Once the data is analyzed, the results need to be presented in a way that is intuitive, relevant to the
user, and easily adjustable to accommodate individual preferences. This suggests that interactivity
with presentation of data will be important because many users may one particular type of
information, but a smaller set may need to add additional reports or remove certain pieces of
information. A report done by University College Cork agrees with the claim by saying that the user
graphic interface should be tailored to the respective building stakeholder (Stack, Tumwesigye, E.
Menzel, & Wang, 2009). For example, the building owner may want a general overview of energy
consumption of a specific building or specific sub-system within the entire EnMS to assign energy
use to their respective tenants and control costs. By using sub-meters, owners can assign costs for
tenants’ energy use. In turn, tenants will have an incentive to reduce energy that does not exist with
the triple net (NNN) leasing method. The owner can then compare energy consumption on month-
to-month basis. This will help the owner be more involved with implementing/approving energy
efficient measures for the building as a whole. Another stakeholder, the building operator, would
want to use collected data to analyze zones, equipment performance, and diagnose any problems
with the system while maintaining comfort levels. The operator can have different air temperatures
of the HVAC system on an hourly basis. Yet another stakeholder, the occupant, is also included
because their comfort is highly correlated with their satisfaction and productivity (A. I. Dounis &
Caraiscos, 2009).The occupant can provide feedback to the operator to fulfill his/her comfort needs
(Stack et al., 2009). The occupant would like to see current conditions of the zone and have controls
to equipment that is relevant to his/her zone e.g. lights, temperature, and ventilation(Karjalainen &
Lappalainen, 2011). In the future it could be possible for occupants to provide feedback directly to
the EnMS and as an additional input to the advanced learning algorithms described above. This
targeting of information will provide data that is relevant to the different stakeholders and reduce
the complexity of what they encounter.

5. DISCUSSION

Initial interviews support claims made by Piette 2001 and Hatley 2005 regarding building
operators’ lack of knowledge on how to act on building performance data. For example, one
interviewee was simply unaware of the full capabilities of the building EnMS system. Another
reported that current practice is to implement energy efficiency measures only when equipment
needs replacing and “replace it with the best technology that they can afford”. This suggests that
this owner is unaware of or unable to control operational efficiencies but rather expects to replace
equipment to achieve efficiencies. These data lead us to conclude that building operators would
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benefit from more transparent and easy to understand visualization tools. For example, such a
system would allow operators --from a quick glance-- to figure out which zones are not reaching
comfort levels on time or which zones reach comfort levels too early, e.g. when the space is
unoccupied. These graphics might also show building operators performance deviation over time.
And, because building operators wish to avoid typically high peak demand utility charges, they
would benefit from forecasts of peak demand based on the weather, historical performance data,
and tenant schedules. Currently, EnMS do not integrate these data to control HVAC and lighting
equipment, consequently some building operators make building adjustments in response to the
weather based on intuition, what one interviewee calls, ‘sailing the building’. Advanced
visualization tools could also show building operators how individual pieces of equipment perform
in real time. Finally, such tools would support trend analysis that will lead to continuous
improvement of the entire system.

6. CONCLUSION

Advanced visualization tools that display building performance data such that building operators
can act would greatly advance the realization of the EnMS potential. Such tools will enable
proactive building control to conserve energy while maintaining occupant comfort and
productivity. To recap, this toolset will integrate existing EnMS inputs, weather data, building
performance characteristics, occupant feedback and compare these data to optimized energy
consumption models. In turn, this toolset will display data such that building operators can act to
maintain occupants comfort and to make any necessary modifications if parameters change over
the course of the different seasons. The goal of the toolset is to simultaneously increase comfort
while saving additional energy where possible.
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