
1

Modeling and Planning under Uncertainty using
Deep Neural Networks

Daniel L. Marino and Milos Manic Senior Member, IEEE

Abstract—Artificial Neural Networks (ANNs) have been fre-
quently used in industrial applications to model complex sys-
tems. However, using traditional ANNs for long-term planning
tasks remains a challenge as they lack the capability to model
uncertainty. Process noise and approximation errors cause ANN
long-term estimations to deviate from the real behavior of the
system. Unlike traditional ANNs, stochastic models provide a
natural way to model uncertainty, providing estimations over
a range of several possible outcomes. This paper introduces a
stochastic modeling and planning approach using Deep Bayesian
Neural Networks (DBNNs). We use DBNNs to learn a stochastic
model of the system dynamics. Planning is addressed as an open-
loop trajectory optimization problem. We present two approaches
for learning the dynamics: using single-step predictions and
using multi-step predictions. The advantages of the proposed
methodology are: 1) accurate long-term estimations of the system
state-trajectory probability distribution without the need for
expert knowledge of the dynamics; 2) improved generalization
and faster convergence rates in the trajectory optimization task
when using multi-step predictions to train the model; 3) viable
for real-world applications since all expensive optimizations
are executed offline while using a reasonable number of data-
samples. Testing is performed using challenging underactuated
benchmark problems: the Cartpole and Acrobot. The presented
methodology successfully learned the swing-up maneuver using a
relatively small number of iterations, with less than 125 sampled
trajectories, and without any expert knowledge of the dynamics.

Index Terms—Trajectory optimization, uncertainty, Bayesian
neural-networks, variational inference.

I. INTRODUCTION

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted version of the paper appearing in the IEEE Transactions on
Industrial Informatics. DOI: 10.1109/TII.2019.2917520

Control of underactuated non-linear systems is often bro-
ken down into three tasks [1] [2]: modeling system dynamics,
open-loop trajectory planning, and trajectory stabilization. His-
torically, modeling has been performed using first principles.
However, this approach is labor intensive and requires highly
skilled professionals. A promising alternative is to use data-
driven models to learn the system dynamics. Fully data-driven
models provide a flexible approach that does not require
the derivation of complex mathematical models from first
principles, reducing the need for expert knowledge [3].

Deterministic neural-networks have been extensively used in
the control of industrial systems, some applications include:
controlling electric drives [4] [5], robot manipulators [6] and
HVAC systems [7].

Despite the universal approximation properties of ANNs,
standard deterministic ANNs lack the capacity of modeling
uncertainty. As a consequence, deterministic ANNs are sensi-
tive to model-mismatch problems where long-term estimations

Daniel L. Marino and Milos Manic are with the Department of Computer
Science, Virginia Commonwealth University, Richmond, VA 23284 USA
(e-mail: marinodl@vcu.edu; misko@ieee.org).

Modeling	and	Planning
Planning

DBNN
Model

Trajectory	estimations

Loss	(ϕ)

Controls	u[t]

x̂

x̂

u

Plant

Stochastic
Non-linear
Underactuated

x

xu

Fig. 1. Overview: Modeling and planning using DBNNs.

deviate from the behavior of the real system [3] [8]. Because
of the inherent stochastic nature of real systems and the
approximation errors introduced by data-driven modeling, we
cannot expect an algorithm to provide long-term predictions
with 100% accuracy. A more realistic approach is to design
a model that provides accurate long-term predictions of the
probability distribution of the system state trajectory. The
estimations should take into account the uncertainties of both
the plant and the learned model.

Stochastic data-driven models provide a natural way to
model uncertainty, which can be used to mitigate model-
mismatch problems [3]. These models allow us to make
informed decisions using the predictions of the model while
being cautious about the uncertainty of such predictions [9].

In this paper, we address the first two stages of con-
trolling underactuated systems: modeling system dynamics
and open-loop trajectory planning. Our methodology uses a
Deep Bayesian Neural Network (DBNN) to learn a stochastic
model of the system dynamics. The learned model is used to
estimate the probability distribution of long-term system state
trajectories. Planning is addressed as an open-loop trajectory
optimization problem, where long-term trajectory estimations
are used to find optimal control inputs that accomplish a given
task. Fig. 1 shows an overview of the methodology.

The Contributions of the paper are: 1) a methodology
for open-loop planning using DBNN stochastic models, we
focus on studying the performance of long-term trajectory
estimations which are essential for open-loop control; 2) two
approaches for learning system dynamics: using single-step

https://doi.org/10.1109/TII.2019.2917520

2

predictions and using multi-step predictions; 3) a set of tools
to achieve stable multi-step training, especially when using
heteroscedastic models; 4) a comparative analysis between
homoscedastic and heteroscedastic models. For experimental
evaluation we used the Cartpole and Acrobot benchmark
problems.

In this paper, we mainly focus on uncertainties derived from
the approximation nature of the learned model. Uncertainties
in this paper arise from: 1) unexplored areas where data is not
available; 2) approximation errors of the DBNN model; 3) time
discretization; 4) uncertainty from numerical computations in
the simulation.

The rest of the paper is organized as follows: Section
II describes the related work on the area of data-driven
modeling and control. Section III provides a background of
DBNNs and its training using variational inference. Section
IV describes the trajectory optimization task and how the
system dynamics are learned using single-step and multi-step
predictions. Section V presents the experimental evaluation.
Section VI concludes the paper.

II. RELATED WORK

Given the success of Deep Learning in high dimensional
problems[10] and reinforcement learning [11] [12], there is an
increasing interest in applying Deep Neural Networks (DNNs)
in industrial applications. Forecasting [13] [14], fault diagnosis
[15] [16] [17], and continuous low-level control [18] [19] [8]
are some of the recent applications of DNNs.

There is also a growing interest in learning stochastic
models for reinforcement learning and optimal control. In [20]
Variational Bayes is used for robust identification of industrial
processes. In [3] the PILCO algorithm is introduced. The
algorithm uses Gaussian processes to model system dynamics
and provide uncertainty estimations. In [21] Gaussian process
state-space models are trained using variational inference,
providing a mechanism to trade off model capacity and
computation time. In [22] the PILCO algorithm is modified
to use DBNNs, alleviating the problems when working with
high-dimensional large datasets. In [23], a combination of
bootstrapping and dropout is used to estimate uncertainties
on collision avoidance tasks. In [24] the standard Gaussian
process model is extended to handle sequential data by using
an LSTM model. Recent work has been focused on extending
the modeling capabilities of DBNN architectures to include
heteroscedastic and multi-modal distributions [25] [26].

Most control applications of ANNs and DBNNs found in
literature focus on closed loop-control with some variation of
actor-critic design, model predictive control (MPC) or back-
propagation of the dynamics through a feedback controller.
The presented approach is based on the methodology presented
in [22] where DBNN are used for feedback control. In contrast
to the methodologies presented by [3] [22] [25] which focus
on feedback control, in this paper we are interested in eval-
uating the viability of using DBNNs for open-loop trajectory
optimization. In contrast to MPC approaches, our approach
executes all optimizations offline. Once the optimal trajectory
is computed, our approach executes the trajectory in open-

loop, as opposed to MPC where the optimization is executed
in real-time.

III. STOCHASTIC MODELING USING BAYESIAN
NEURAL-NETWORKS

This section presents a brief overview of training DBNNs
using variational inference [27] [28]. Given a dataset D ={

(x(i),y(i))|y(i) ∈ Y ,x(i) ∈X
}|D|
i=1

of input/output pairs of
samples (x(i),y(i)), we would like to learn a probability
distribution p(y|x, w), parameterized by w, that would allow
us to make predictions over previously unseen test points
y∗,x∗.

In the Bayesian setting, the probability distribution for a test
point x∗ can be expressed as follows:

p(y∗|x∗,Y ,X) =

∫
p(y∗|x∗, w)p(w|Y ,X)dw (1)

where p(w|Y ,X) is the probability of w given the training
dataset Y ,X . In other words, p(w|Y ,X) quantifies how well
a given value of w represents the data sampled from the real
system. Using Bayes theorem, this distribution is defined as
follows:

p(w|Y ,X) =
p(Y |X, w)p(w)

p(Y |X)

where p(w) is the prior probability for the parameters of the
model. In practice, the prior is used to prevent over-fitting.

As p(w|Y ,X) is typically intractable, an approximation
qφ(w) is used in practice [28]. The Kullback-Leibler (KL)
divergence is used to measure the difference between these
distributions. The objective then becomes to find the parame-
ters φ∗ of the distribution qφ (w) that minimize the difference
between the distributions p(w|Y ,X) and qφ (w):

φ∗ = arg min
φ

KL (qφ(w)‖p(w|X,Y)) (2)

By solving the minimization problem in Eq. (2), we find the
distribution qφ∗ (w) that best approximates p(w|Y ,X). From
the definition of the KL divergence, we can obtain a more
convenient way to express Eq. (2):

KL (qφ(w)|p(w|X,Y)) =

∫
w

qφ(w)ln

(
qφ(w)

p(w|X,Y)

)
dw

=

[
E

w∼qφ(w)
[−ln (p(Y |X, w))] +KL (qφ(w)‖p(w))

]
︸ ︷︷ ︸

negative log evidence lower bound L(φ)

+ ln (p(Y |X))

Given that P (Y |X) is constant (does not depend on φ),
minimizing the negative log evidence lower bound (ELBO)
L (φ) is equivalent to minimizing the KL divergence in Eq.
(2) [27][28].

Assuming our dataset D is composed of |D| number of
independent and identically distributed samples the loss w.r.t.
the variational parameters φ can be expressed as follows:

L(φ) =

|D|∑
i=1

E
qφ(w)

[
−ln

(
p(y(i)|x(i), w)

)]
+KL (qφ(w)‖p(w))

(3)

3

-3 -2 -1 0 1 2 3

-10

0

10

20

p(y
∗|x∗

, X, Y) approximated using
Heteroscedastic model

training samples

mean

stddev

Fig. 2. Heteroscedastic distribution learned using a Bayesian neural-network.
The estimated standard deviation shows how the uncertainty grows as we
move away from the training dataset

In sections IV-A and IV-B, L(φ) will be used as the
loss for learning systems dynamics, quantifying how well
the model approximates the data sampled from the real
system. The loss L(φ) is composed of two main terms:
Ew∼qφ(w) [ln (p(Y |X, w))] measures how well the data-
driven model fits the data; KL (qφ(w)‖p(w)) usually works as
a regularizer, and often takes the form of an l2 regularization
of the neural-network weights (See Appendix A).

We can optimize Eq. (3) using a Monte-Carlo approach to
approximate the expectation. Furthermore, back-propagation
can be used to calculate the gradients w.r.t. φ if qφ(w) is
represented using the re-parameterization trick [29]. Dropout
is an example of a simple way to re-parameterize a varia-
tional distribution qφ(w) that takes the form of a Mixture of
Gaussians[28].

A common distribution adopted for p(y|x, w) is a multi-
variate Gaussian distribution with diagonal precision τ̂ :

p(y|x, w) = N
(
y | µ̂(x, wµ), diag (τ̂ (x, wτ))

−1
)

(4)

where µ̂(x, wµ), τ̂ (x, wτ) are functions parameterized by
w = wµ ∪ wτ . µ̂ approximates the mean of the Gaussian
distribution, while τ̂ approximates the reciprocal of the vari-
ance.

Using Eq. (4) as our model, the loss in Eq. (3) can be
estimated as follows:

L(φ) ≈ 1

2 |D|

|D|∑
i=1

LR
(
y(i),x(i)

)
+

1

|D|
KL (qφ(w)‖p(w))

(5)

where

LR (y,x) = − log(τ̂x)T 1 +
∥∥∥√τ̂x � (y − µ̂x)

∥∥∥2
µ̂x = µ̂(x, wµ); w ∼ qφ(w)

τ̂x = τ̂ (x, wτ)

We use � to denote the element-wise (Hadamard) product.
1 represents a vector filled with ones. Note that Eq. (5) is a
Monte-Carlo approximation of the loss, using parameters w
sampled from the variational distribution w ∼ qφ(w).

Having obtained the parameters φ∗ that minimize Eq. (5),
the distribution qφ∗(w) can be used to estimate Eq. (1) (the
test prediction) using:

p(y∗|x∗,X,Y) ≈ E
w∼qφ∗ (w)

[p(y∗|x∗, w)]

Depending on how τ̂ is defined, we can use Eq. (4) to
model homoscedastic and heteroscedastic distributions. Ho-
moscedastic models assume the variance is constant, while het-
eroscedastic models assume the variance changes depending
on the inputs x. Fig. 2 shows an example of an heteroscedastic
distributions modeled using DBNNs. This paper makes em-
phasis on heteroscedastic models, as they are more general,
challenging and commonly found in industrial systems [30].

In this paper, µ̂(x, wµ) is modeled using a multi-layer per-
ceptron with dropout. For homoscedastic models, the precision
is defined as a constant τ̂(x, wτ) = τ 2

w, which is jointly
optimized when minimizing Eq. (5). For heteroscedastic mod-
els, τ̂(x, wµ) is a multi-layer perceptron without dropout.
Appendix A describes in detail the variational distributions
and priors used to model the parameters.

IV. MODELING AND PLANNING USING DBNNS

This section describes the presented approach for modeling
and planning under uncertainty using Deep Bayesian Neural-
Networks (DBNNs). Specifically, we present how DBNNs
are trained to approximate non-linear dynamic systems using
single-step and multiple-step predictions. Planning is formu-
lated as a trajectory optimization problem, where controls are
applied in open-loop.

In this paper, we consider fully observable dynamic systems.
We assume a stochastic dynamic system model that takes the
following form:

z[t+1] = z[t] + ∆[t] (6)

∆[t] ∼ N
(
µ[t], diag

(
τ [t]

)−1)
(7)

µ[t] = µ
(
z[t] ⊕ u[t], wµ

)
τ [t] = τ

(
z[t] ⊕ u[t], wτ

)
where z[t] is the state of the system at time step t, and ∆[t]

is the increment when the control signal u[t] is applied on the
system. The symbol ⊕ represents the concatenation operator.
∆[t] is modeled using the DBNN described in Eq. (4), with
inputs/outputs defined as x = z⊕u and y = ∆. Fig. 3a shows
the architecture of the DBNN.

Modeling ∆[t] using a Gaussian distribution serves the pur-
pose of explicitly including a mechanism to handle unmodeled
disturbances (process noise). The variational posterior placed
on the parameters serves the purpose of dealing with the
uncertainties from the learned model, increasing uncertainty
in areas where data is not available. In this paper, we assume
zero measurement noise. Note that in Eq. (6) the noise derived
from ∆[t] is propagated over time. This formulation ensures
that uncertainty increases over time.

The trajectory optimization problem in this paper is defined
as a finite-horizon open-loop control problem with determinis-
tic control inputs u[1], ...,u[Tc]. Finite-horizon problems look

4

for a set of optimal inputs u[t] that minimize a control cost that
depends on the state of the system for a finite number of time
steps. The control cost quantifies how effective the inputs are
in driving the system towards completing a particular task. In
this paper, we only consider open-loop control, which means
that the control signal u[t] does not depend on the current
state z[t]. In contrast, closed-loop approaches look for control
policies that depend on the current state of the system (i.e.
u[t] = g(z[t])).

Concretely, the objective of the trajectory optimization
problem is to find the control inputs u[t] that minimize the
control cost Lc:

min
{u[1],...,u[Tc]}

Lc
(
z[1],u[1], ...,u[Tc]

)
where z[t] is the state of the system at time step t, z[1] is the
initial state of the system, and the control cost Lc is defined
as follows:

Lc
(
z[1],u[1], ...,u[Tc]

)
=

E
z[Tc]

[
LTc

(
z[Tc],u[Tc]

)]
+

Tc−1∑
t=1

E
z[t]

[
Lt
(
z[t],u[t]

)]
(8)

Algorithm 1 Trajectory Optimization using DBNN models
Input: Initial state z[1], control penalty Lc(·)

Output: Sequence of optimal control inputs
{
u∗[t]

}Tc
t=1

1: Initialize dataset D with Uo system trajectories of length
Tc, using random control inputs

D ←
{

(∆
(i)
[t] , z

(i)
[t] ,u

(i)
[t])
}i=Uo,t=Tc
i,t=1

2: for j = 1 to max-iter do
3: Modeling: Fit dynamics by minimizing:

φ∗ = arg minL(φ)
where L(φ) is either:

• The single-step loss in Eq. (9) (section IV-A)
• The multi-step loss in Eq. (10) (section IV-B)

4: Planning: Run trajectory optimization by minimizing
the control cost in Eq. (8):
u∗[t] = arg minLc

(
z[1],u[1], ...,u[Tc]

)
Section IV-C describes how the expectations on Eq. (8)
are approximated using particles.

5: Collect U new trajectories from the real system using
u[t] = u∗[t] + λε, where λ is used as an exploration
parameter

D ← D ∪
{

(∆
(i)
[t] , z

(i)
[t] ,u

(i)
[t])
}i=U,t=Tc
i,t=1

6: end for
7: return Sequence of optimal controls u∗[t]

Algorithm 1 describes the open-loop trajectory optimiza-
tion approach using DBNN models. Planning is performed
completely offline and depends only on the control loss and
the long-term estimations of the DBNN model. We used
ADAM [31] for all optimization tasks. In each iteration, new
data-samples are collected from the system in order to to
continuously improve the learned DBNN model. Fig. 3b and

3c show the flow-chart for single-step and multi-step training,
respectively. Single-step uses one-step prediction for learning
the system dynamics. Multi-step uses predictions over several
time steps. The following sections describe the details of
single-step and multi-step approaches for fitting the dynamics.

A. Training using single-step prediction
Given the Markovian properties of fully-observable systems,

a common approach to fit the dynamics is by using single-step
predictions [3] [22]. Under this approach, the training loss fits
the dynamics by only taking into account predictions made
one step ahead. For a mini-batch

{
(∆(i), z(i),u(i))

}
of |X|

number of samples the loss is expressed as follows:

L(φ) =
1

2 |X|

|X|∑
i=1

LR
(
∆(i), z(i) ⊕ u(i)

)
+

1

|D|
KL (qφ(w)‖p(w)) (9)

where |D| is the total number of samples in the training
dataset. Note that the single-step loss in Eq. (9) is defined
w.r.t. the parameters φ of the variational distribution qφ(w).
As shown in Fig. 3a, Dropout is only applied to µ̂.

B. Training using multi-step predictions
Improved performance has been observed when fitting se-

quential models using multi-step/long-term predictions [14].
By forcing the model to use its own predictions to predict
further in the future, we ensure that the model takes into
account the compounding errors that get propagated over time,
thus improving generalization and encouraging learning better
internal representations.

Multi-step training is performed using mini-batches of size
|X|, composed of an initial state z(i)[1] with a sequence of
control and state increments:

mini-batch =

{
z
(i)
[1] ,
{(

∆
(i)
[t] ,u

(i)
[t]

)}Tm
t=1

}|X|
i=1

where u(i)
[t] is the control input of sample i at time t and ∆

(i)
(t)

is the corresponding state increment. Training using multi-step
predictions is achieved using the following loss:

L(φ) =
1

2 |X|Tm

|X|,Tm∑
i,t=1

LR
(
∆

(i)
[t] , ẑ

(i)
[t] ⊕ u

(i)
[t]

)
+

1

|D|
KL (qφ(w)‖p(w)) (10)

where ẑ(i)[t] is the estimated state at time t:

ẑ
(i)
[t] = z

(i)
[1] +

t−1∑
k=1

µ̂
(i)
[k] � ε

1√
τ̂
(i)
[k]

(11)

where:

µ̂
(i)
[k] = µ̂

(
ẑ
(i)
[k] ⊕ u

(i)
[k], wµ

)
, wµ ∼ qφ(w)

τ̂
(i)
[k] = τ̂

(
ẑ
(i)
[k] ⊕ u

(i)
[k], wτ

)

5

z u

Δ ∼  (, diag()μ̂ τ ̂)−1

= +z ̂ [t+1] z ̂ [t] Δ̂
[t]

DNN
(z ⊕ u,)τ ̂ wτDNN with

Dropout

(z ⊕ u,)μ̂ wμ

(a) DBNN model

DBNN
Model

z u

Δ

Control
inputs

Predicted next state

Loss

Current
state

(b) Single-step training

DBNN
Model

z u

Δ

Current
state

Control
inputs

Predicted next state

Loss

DBNN
Model

z u

Δ

Gradient
monitor

Control
inputs

Predicted next state

DBNN
Model

z u

Δ

Control
inputs

Predicted next state

Gradient
monitor

⋮

(c) Multi-step training

Fig. 3. Modeling dynamic systems using DBNNs

The loss in Eq. (10) is a standard unrolling of the neural-
network, usually employed in the Backpropagation Through-
Time algorithm [32].

The multi-step propagation in Eq. (11) uses a single sample
realization of the DBNN probability distribution. This single
sample realization is used in the multi-step loss from Eq. (10),
which can be interpreted as a single-sample MC approximation
of the expectation in Eq. (3). This method provides a noisy but
efficient way to perform mini-batch optimization for learning
the dynamics of the system. A more accurate estimation of
the multi-step loss can be made by using multiple-particles
(see section IV-C). However, using multiple particles leads
to excessive computational burden. In the experiments we
evidenced that using a single particle is enough to obtain a
stable optimization for learning the system dynamics.

One of the challenges posed by multi-step training is unsta-
ble gradient propagation. Back-propagation is well known to
suffer from exploding/vanishing gradient problems when ap-
plied over unrolled networks [33]. Furthermore, compounding
errors that result from model mismatch can also destabilize
the optimization.

In order to ensure a stable propagation of gradients, we took
the following actions: 1) weights are initialized according to
[34]; 2) impose the bounds (τmin, τmax) on τ̂ ; 3) monitor the
norm of the gradients.

Heteroscedastic models are particularly sensitive to unstable
gradient propagation when trained using multi-step predic-
tions. The instability can be understood by looking at the
gradients of LR w.r.t. τ̂ and µ̂ (see Appendix B for derivation):

∂LR
∂τ̂

= − 1

τ̂
+ (∆− µ̂)2 (12)

∂LR
∂µ̂

= −2τ̂ � (∆− µ̂) (13)

In order to ensure stable gradient propagation, we need to
ensure the value of τ̂ is neither excessively large nor small.
Eq. (12) shows how small values of τ̂ can cause gradients to
explode. Eq. (13) shows how large values of τ̂ from over-
confident estimations can also lead to exploding gradients
when the difference between ∆ and µ̂ is large. In Eq. (11)
we can also see how extremely small values of τ̂ results in
excessive errors being propagated over time, which in turn

results in large gradients in both Eq. (12) and (13) (large
∆− µ̂).

We use the following activation function in the output layer
of τ̂ in order to constrain the value of τ̂ to be in a given range
(τmin, τmax):

f (h) = (τmax − τmin) Sig (h) + τmin (14)

where Sig(·) is the sigmoid function and h represents the
pre-activations on the output layer. Because the output of the
sigmoid function is in the range (0, 1), the maximum value
that τ̂ = f(h) can take is τmax when Sig(h) = 1. Likewise,
the minimum value that τ̂ can take is τmin when Sig(h) = 0.
Note that the sigmoid activation function f(h) is only applied
in the output layer. For the hidden layers, we used the ReLU
activation function.

As a final line of defense for exploding gradients, we
place gradient monitors between the unrolled networks. These
monitors evaluate the norm of the gradients and reset the
gradients to zero if the norm is larger than a predefined value.
Fig. 3c shows the unrolling of the neural network with the
gradient monitors for the multi-step training approach.

C. Long-term trajectory estimations using the learned DBNN
model

Trajectory optimization uses the long-term estimations of
the DBNN model to find the control sequence that minimizes
the control cost. In this case, the state trajectory is estimated
using a standard sequential Monte-Carlo approach [22]. Given
an initial state z[1] and the list of control inputs

{
u[t]

}Tc
1

, we
estimate the system state trajectory using a set of P particles,
all starting from the initial z[1] state. The state ẑ(p)[t] of each
particle p at time t is estimated as follows:

ẑ
(p)
[t] = z[1] +

t−1∑
k=1

µ̂
(p)
[k] � ε

1√
τ̂
(p)
[k]

(15)

where:

µ̂
(p)
[k] = µ̂

(
ẑ
(p)
[k] ⊕ u[k], wµ

)
, wµ ∼ qφ(w)

τ̂
(p)
[k] = τ̂

(
ẑ
(p)
[k] ⊕ u[k], wτ

)

6

Eq. (15) is a standard unrolling of the neural-network. The
expectations on the control cost in Eq. (8) are approximated
using the sample mean of the particles:

E
z[t]

[
Lt
(
z[t],u[t]

)]
≈ 1

P

P∑
p=1

Lt
(
ẑ
(p)
[t] ,u[t]

)
The standard deviation of the particles is used for measuring

and visualizing the uncertainty of the predicted state trajectory.

D. Computational complexity

The dominant operation in Algorithm 1 is the vector-
matrix products performed during the DBNN forward and
backpropagation computations. The complexity of these op-
erations depends primarily on the size of the weight matrices.
Assuming the networks (µ̂, τ̂) are composed by (Lµ, Lτ)
hidden layers, with (Mµ,Mτ) hidden units in each layer, the
number parameters of the DBNN can be roughly approximated
as follows:

|w| = Lµ
(
M2
µ

)
+ Lτ

(
M2
τ

)
(16)

We use this expression to quantify the space complexity of
the algorithm. The time complexity of forward and backward
computations for a mini-batch of size |X| can be approxi-
mated as follows:

|X|Tm
(
Lµ
(
M2
µ

)
+ Lτ

(
M2
τ

))
(17)

where Tm is the number of multi-step predictions. Long-
term trajectory computations used for trajectory optimiza-
tion (control) have an equivalent time complexity of
PTc

(
Lµ
(
M2
µ

)
+ Lτ

(
M2
τ

))
, where P is the number of par-

ticles.
Eq. (16) and (17) demonstrate further potential benefits of

using multi-step and heteroscedastic models. The dominant
term in Eq. (16) and (17) is the square of hidden units M2

µ and
M2
µ. This shows that increasing the number of hidden units for

a homoscedastic model is very expensive. On the other hand,
increasing the number of time steps Tm in multi-step training
has a much lower cost regarding time complexity, and no cost
in space complexity is incurred. For our application, space
complexity is more valuable than time complexity because the
optimizations are performed offline.

Eq. (16) also shows that adding a heteroscedastic model
with N hidden units is cheaper than adding such units into a
homoscedastic model:

Lµ
(
M2
µ

)
+ Lµ

(
N2
)
< Lµ (Mµ +N)

2

V. EXPERIMENTS

Underactuated mechanical systems are commonly found in
industrial applications [35] and provide interesting benchmark
problems for controls. Therefore, for experimental evaluation,
we selected the Cartpole (Fig. 4a) and Acrobot (Fig. 4b)
as benchmark problems. In addition to having underactuated
dynamics, these systems also have unstable fix-points and in
the case of the Acrobot, chaotic behavior when no control is
applied.

z1

z0

u

(a) Cartpole

uz0

z1

(b) Acrobot

Fig. 4. Illustration of the benchmark problems being considered

The objectives of the experiments are: 1) validate the use
of the presented stochastic modeling framework for obtain-
ing long-term predictions with uncertainty; 2) evaluate the
advantages of using heteroscedastic models; 3) evaluate the
advantages of multi-step training.

The highlights of the experimental evaluation are: 1) train-
ing using multi-step predictions provided better generalization
and faster convergence rates in the trajectory optimization task,
compared to single-step training; 2) heteroscedastic models
provided estimations with lower uncertainty when compared
to homoscedastic models; 3) the presented methodology is
suitable for real-world applications; 4) multi-step training is
stable, even when we use only one particle for the Monte-
Carlo estimations during training. The experiments demon-
strated that the methodology is able to provide accurate long-
term predictions of non-linear underactuated systems. The
methodology is suitable for real-world applications as the
experiments demonstrate it is sample-efficient, i.e. it requires
a relatively low number of samples from the real system.
Furthermore, planning is performed completely offline. All
expensive optimizations are executed offline, which means that
they are not required to run in real-time.

A. Experiment setup

In our experiments, the trajectory optimization task is to
perform the swing-up maneuver for Cartpole and Acrobot. The
maneuver entails driving the poles from a downward position
at time t = 0, to an upward position at t = Tc.

The state for the Cartpole is four-dimensional z =
[z0, z1, ż0, ż1], where z0 ∈ [−1, 1] represents the position of
the cart and z1 ∈ [−4, 4] represents the position of the pole
in radians. ż0 and ż1 represent the time derivatives of z0 and
z1, respectively.

The state for the Acrobot is also four-dimensional z =
[z0, z1, ż0, ż1], where z0 ∈ [−4, 4] represents the position of
the first pole and z1 ∈ [−4, 4] the position of the second pole
in radians.

For both Cartpole and Acrobot, the coordinate system was
configured such that the [0, 0, 0, 0] state corresponds to the
poles in the upward position. The simulations were performed
using OpenAI Gym [36] with PyBullet [37]

The objective of the trajectory optimization is to reach the
target state z∗[Tc] = [0, 0, 0, 0] at time Tc. To achieve this

7

objective, the losses LTc ,Lt from Eq. (8) were defined as
follows:

LTc
(
z[Tc],u[Tc]

)
=(z[Tc] − z

∗
[Tc]

)TQT (z[Tc] − z
∗
[Tc]

) (18)

Lt
(
z[t],u[t]

)
=uT[t]Quu[t] (19)

where QT ,Qu are diagonal matrices. LTc penalizes for reach-
ing a state different than z∗[Tc] at the end of the trajectory, while
Lt penalizes for high control inputs.

We evaluated the performance of different DBNN archi-
tectures using two criteria: 1) The performance on the open-
loop control task; 2) The quality of the DBNN long-term
predictions.

Given that the control sequence u∗ obtained with Algorithm
1 is applied in open-loop, accurate long-term predictions
are necessary to successfully reach the target state z∗[T]. We
measured the quality of long-term trajectory predictions using:
1) the deviation of the real trajectory z from the predicted
trajectory ẑ; 2) the standard deviation of the estimations; 3)
the containing-ratio of long-term predictions on a test dataset.
The containing-ratio (CR-n) is the percentage of real samples
inside n− standard deviations.

We measured the deviation of the real trajectory (z[t]) from
the predicted probability distribution (ẑ[t]) using the following
metrics:

δµ(z, ẑ) =
1

T

T∑
t=1

‖z[t] −Mean(ẑ[t])‖22 (20)

δσ(z, ẑ) =

∥∥∥∥∥ 1

T

T∑
t=1

|z[t] −Mean(ẑ[t])|
STD(ẑ[t])

∥∥∥∥∥ (21)

where Mean(ẑ[t]) and STD(ẑ[t]) are the sample-mean and
sample standard-deviation of the particles in Eq. (15). Eq. (21)
provides a natural way to interpret the accuracy of the pre-
dictions in terms of a Standard Score (z-score). The goal is
to obtain long-term estimations with low uncertainty. On the
other hand, we do not want over-confident estimations, the real
trajectory should be contained inside three standard deviations
of the predicted distribution.

Table I lists the architectures considered in the
experiments. OS stands for homoscedastic-single-step,
ES heteroscedastic-single-step, OM homoscedastic-multi-
step, and ES heteroscedastic-multi-step. The table shows
the number of hidden units and layers used for µ̂ and τ̂ .
For example, µ̂[50, 50] means a DBNN with two hidden
layers and 50 hidden units in each layer. For the Cartpole
we used pdrop = 0.1, Tc = 50 and for the Acrobot
pdrop = 0.03, Tc = 110. We used ReLU activation functions
for the hidden layers.

To demonstrate the advantages of stochastic models over
deterministic models, we compared the performance of the
presented stochastic approach with a variation of the deter-
ministic sequence-to-sequence LSTM model presented in [14].
Given that we consider only fully observable systems, instead
of an LSTM encoder, we used a linear model to obtain the
initial state of the LSTM decoder described in [14].

TABLE I
MODEL ARCHITECTURES

Cartpole Acrobot
Architecture µ τ Tm µ τ Tm

LSTM [10, 10] - 30 [25, 25] - 30

OS (baseline) [50, 50] - - [100, 100] - -
ES [50, 50] [25] - [100, 100] [50] -
OM [50, 50] - 10 [100, 100] - 10

EM [50, 50] [25] 10 [100, 100] [50] 10

B. Results

Table II shows the control performance achieved using the
architectures from Table I. Given that the target state is located
at z∗ = 0, we evaluate the control performance using: 1) the
average absolute value of the final state

∣∣z∗Tc∣∣; 2) the average
magnitude of the final state ‖z∗Tc‖. We also report the average
control cost Lc of the real trajectory. Overall, Table II shows
the EM model had the best performance on the control task
for both Cartpole and Acrobot, with the lowest control cost
Lc. The deterministic LSTM had the worst performance in the
control task for both systems.

Table III shows the quality of the estimated long-term
trajectories. The table shows the STD magnitude and deviation
of long-term estimations on: 1) a testing dataset, composed
of trajectories that were not used to train the model; 2) the
optimal trajectories found through iterations of Algorithm
1. Overall, EM model provided the estimations with the
lowest uncertainty. EM model also provided the most accurate
trajectories according to δµ.

The LSTM model was unable to provide accurate long-term
predictions. In addition to being unable to provide uncertainty
estimations, LSTM was prone to over-fitting, which explains
the relative small number of units used for this model and the
higher number of Tm used for training. Table III shows LSTM
had the highest mean deviation σµ on the testing dataset.

Table IV shows the containing-ratios on the testing dataset,
with T = Tc time-step estimations. Table IV shows the

0 2

‖STD(ẑ)‖

0.0

0.5

1.0

1.5

2.0

Predicted ‖STD(ẑ)‖ density
Pdrop = 0.05

OM

EM

(a) Density distribution of ‖STD‖

0.1 0.2 0.3

Pdrop

0.4

0.6

0.8

1.0

Deviation δσ(z, ẑ)

OM

EM

(b) Deviation δσ for different val-
ues of Dropout

Fig. 5. Comparison between OM and EM estimations of long-term trajectories
(Cartpole) on testing dataset. a) OM provides estimations with lower uncer-
tainty (‖STD‖ closer to zero) b) The deviation δσ is reduced by increasing
dropout.

8

0 5 10 15 20

0

500

1000

Cartpole, Homoscedastic
µ([50, 50]), Pdrop(0.1)

single-step

multi-step

0 5 10 15 20

0

100

200

300

400

Cartpole, Heteroscedastic
µ([50, 50]), τ([25]), Pdrop(0.1)

single-step

multi-step

(a) Cartpole

0 5 10 15 20

0

2500

5000

7500

10000

Acrobot, Homoscedastic
µ([100, 100]), Pdrop(0.03)

single-step

multi-step

0 5 10 15 20

0

1000

2000

3000

Acrobot, Heteroscedastic
µ([100, 100]), τ([50]), Pdrop(0.03)

single-step

multi-step

(b) Acrobot (small sized DBNNs)

0 5 10 15 20

0

1000

2000

Acrobot, Homoscedastic
µ([350, 350]), Pdrop(0.05)

single-step

multi-step

0 5 10 15 20

0

500

1000

1500

Acrobot, Heteroscedastic
µ([350, 350]), τ([50]), Pdrop(0.05)

single-step

multi-step

(c) Acrobot (large sized DBNNs)

Fig. 6. Final trajectory cost LT for singe-step and multi-step training during iteration j = [1, ..., 20] of Algorithm 1. Multi-step training improves the
convergence rate. Optimal trajectories are found after few iterations, demonstrating the viability for real-world applications.

TABLE II
CONTROL PERFORMANCE OF ALGORITHM 1

Average
∣∣z[Tc]

∣∣ Average Average
|z0| |z1| |z2| |z3| ‖z[Tc]‖ Lc

Cartpole
LSTM 0.37 1.37 1.05 5.29 5.73 25.785
OS (baseline) 0.52 0.85 2.66 4.56 5.99 15.995
ES 0.56 0.75 1.24 4.21 4.98 15.061
OM 0.25 0.35 2.05 1.55 2.96 5.898
EM 0.41 0.26 2.75 1.04 3.07 5.298
Acrobot
LSTM 2.65 2.51 3.92 6.48 10.22 197.366
OS (baseline) 1.36 3.10 2.68 1.80 5.34 81.991
ES 1.42 1.76 2.84 2.68 5.02 67.654
OM 0.99 1.18 3.34 4.65 6.50 60.519
EM 0.50 1.61 2.45 2.74 4.56 21.025

containing-ratios for 1σ (CR-1), 2σ (CR-2), and 3σ (CR-
3), where σ stands for standard deviation. The table also
shows the skewness of the test samples after computing their
corresponding z-score. This table allows us to compare the
quality of the uncertainty estimations provided by the different
models. Overall, we see that the containing-ratios approximate
the (68-95-99.7) rule of the Normal distribution, with the EM
model providing the best CRs.

C. Comparative analysis: Heteroscedastic vs Homoscedastic

Heteroscedastic models provided estimations with lower
uncertainty compared to homoscedastic models. Table III
shows the estimations of ES and EM models have lower
standard deviations compared to OS and OM models. For the
Acrobot model, the reduction is considerable, a result that can
be attributed to the higher difficulty posed by the Acrobot
dynamics. Fig. 5a shows the distribution of estimated ‖STD‖

TABLE III
LONG-TERM PREDICTION PERFORMANCE ON TEST DATASET AND

OPTIMAL TRAJECTORIES

Test dataset Optimal trajectory z∗

δµ ‖STD‖ δσ δµ ‖STD‖ δσ

Cartpole
LSTM 0.367 - - 5.59 - -
OS (baseline) 0.252 2.96 0.72 5.59 0.60 1.03
ES 0.282 0.77 0.74 3.15 0.23 1.20
OM 0.086 1.46 0.56 4.84 0.52 0.99
EM 0.071 0.43 0.42 1.55 0.21 1.01
Acrobot
LSTM 12.71 - - 48.74 - -
OS (baseline) 3.70 27.91 0.85 65.53 3.26 0.67
ES 1.76 6.64 0.87 17.75 0.85 1.45
OM 1.47 13.88 0.57 34.69 2.28 0.60
EM 0.80 4.15 0.59 6.19 0.68 1.15

TABLE IV
CONTAINING-RATIOS OF LONG-TERM PREDICTIONS ON TEST DATASET

CR-1 CR-2 CR-3 skewness

Cartpole
OS (baseline) 0.52 0.96 1.00 [-0.09 , 0.05 , -0.71 , 0.34]
ES 0.78 0.94 0.96 [-4.92 , -1.68 , -10.87, -1.26]
OM 0.67 0.97 1.00 [0.09 , -0.61 , -0.07, -0.33]
EM 0.79 1.00 1.00 [0.21 , 0.92 , 1.27, 2.35]
Acrobot
OS (baseline) 0.35 0.91 0.99 [0.33 , 0.13 , 0.05 , 0.13]
ES 0.47 0.93 0.99 [-0.09 , 0.12 , -0.02 , -0.29]
OM 0.58 0.97 1.00 [0.81 , 0.29 , 0.29 , 0.23]
EM 0.70 0.95 0.99 [0.10 , 0.55 , 0.30 , -0.10]

values on the test dataset. This figure shows in more detail the
lower uncertainty provided by heteroscedastic models.

Although heteroscedastic models provided estimations with
lower uncertainty, the experiments also showed that het-

9

0 10 20 30 40 50

-2

0

ẑ0 Trajectory

0 10 20 30 40 50

0

2

4

ẑ1 Trajectory

mean

stddev

real

(a) Estimations during first iterations have high uncertainty (‖STD‖)

0 10 20 30 40 50

-1

0

1

ẑ0 Trajectory

0 10 20 30 40 50

0

2

4

ẑ1 Trajectory

mean

stddev

real

(b) Estimations on final iterations have low uncertainty (‖STD‖)

Fig. 7. Estimated optimal trajectories found during the execution of Algorithm
1 for the Cartpole. The standard deviation is used to quantify and visualize
the uncertainty. The algorithm is able to find optimal open-loop trajectories,
providing accurate long-term predictions of the system trajectory with low
uncertainty.

eroscedastic models are more likely to provide overconfident
estimations. Table IV shows that for the Cartpole, ES had the
lowest CR3 score and the worst skewness.

Fig. 5b shows how increasing Dropout can be used to reduce
the deviation δσ(z, ẑ), reducing the chance of obtaining over-
confident estimations. This serves as a tool for alleviating
potential model-mismatch problems.

D. Comparative analysis: single-step vs multi-step training

Multi-step training had the advantage of improving gener-
alization, providing accurate long-term predictions with lower
deviation and better containing-ratios in the testing dataset.
The combination of heteroscedastic and multi-step training
provided the best performance in the control (Table II) and
estimation tasks (Tables III and IV).

Tables III and IV serve as evidence of the improved
generalization of multi-step training. Table III shows that
multi-step training reduces the deviation (δµ and δσ) between
the predictions and the real behavior of the system. EM models
provided accurate estimations with the lowest uncertainty

0 20 40 60 80 100

2

3

ẑ0 Trajectory

estimated

real

0 20 40 60 80 100

-2.5

0.0

2.5

ẑ1 Trajectory

(a) Model-mismatch when using deterministic LSTM model. The estimated
trajectory deviates from the real trajectory from t=45

0 20 40 60 80 100

0.0

2.5

5.0

ẑ0 Trajectory

0 20 40 60 80 100

-2.5

0.0

2.5

ẑ1 Trajectory

mean

stddev

real

(b) EM provides accurate long-term estimations that match the trajectory of
the real system

Fig. 8. Long-term optimal trajectory estimations provided by EM and LSTM
models for the Acrobot. Deterministic LSTM is unable to provide accurate
long-term predictions.

(‖STD‖) without being overconfident (low deviation and best
containing-ratios).

Table IV shows that multi-step training improves the
containing-ratios of long-term predictions. This is of particular
interest when using heteroscedastic models. Multi-step training
alleviates the problem of overconfident estimations given by
ES models. The best containing-ratios correspond to EM
models.

Fig. 6 shows a comparison of the performance between
single-step and multi-step training using different architec-
tures. The figure shows the value for the final control cost
L[Tc] on each iteration j of Algorithm 1. Fig. 6 shows that
for both, Cartpole and Acrobot, multi-step training provides
faster convergence rates for the trajectory optimization task.

Fig. 6 also shows the viability of the algorithm for real-
world control applications. By iteration j = 7 most of the
experiments had converged to an optimal trajectory. For the
Cartpole (Fig. 6a), the algorithm converges after the first
couple iterations. For the experiments, we used Uo = 20
initial trajectories and U = 15 trajectories were collected
from the simulation in each iteration of Algorithm 1. Overall,

10

0 5 10 15 20

Iteration j

0.4

0.6

0.8

1.0

Containing Ratio

CR-1

CR-2

CR-3

(a) Cartpole

0 5 10 15 20

Iteration j

0.4

0.6

0.8

1.0

Containing Ratio

CR-1

CR-2

CR-3

(b) Acrobot

Fig. 9. Containing-ratio of long-term test trajectories during iteration j of
Algorithm 1. The containing-ratios approximate the (68-95-99.7) rule after
few iterations.

TABLE V
BEST VALUES OF FINAL STATE z[T] AFTER EXECUTING THE OPTIMAL

TRAJECTORY USING EM MODEL.

System z0 z1[rad] z2 z3[rad/s]

Cartpole -0.40 [m] 0.03 -2.27 [m/s] -0.47
Acrobot -0.22 [rad] -0.39 -1.39 [rad/s] -0.46

the algorithm only required 125 trajectories sampled from the
system to find an optimal solution.

When compared to homoscedastic models, Fig. 6b and 6c
show that heteroscedastic models allowed us to use smaller
DBNNs. Fig. 6c shows that the performance of OM models
can be improved by increasing the number of hidden layers.
However, this comes at the expense of higher computational
complexity. Using small DBNNs has the advantage of reduced
memory requirements for the optimization tasks.

E. Long-term predictions using EM models

Fig. 7 shows the predictions of the state trajectory for the
Cartpole during first (7a) and final (7b) iterations of Algorithm
1. We used the standard deviation of the predictions to visual-
ize the uncertainty. Fig. 7a shows that the algorithm starts with
high uncertain predictions. After convergence, Fig. 7b shows
the trajectory estimations are made with low uncertainty.

Fig. 8 shows a comparison of the long-term trajectory
estimations provided by LSTM and EM models. Fig. 8a shows
that LSTM models suffer from model mismatch problems,
where the estimated trajectory deviates from the real trajectory.
In contrast, Fig. 8b shows the EM model is able to provide
accurate long-term predictions.

Table V presents the best values of the final state z[T] during
the execution of Algorithm 1. Table V and Fig. 8b show that
Algorithm 1 is able to find open-loop trajectories that drive
the system close to the target state (z = 0).

Fig. 9 shows the containing-ratios on the test dataset in
each iteration j of Algorithm 1. Although the quality of the
uncertainty estimation is poor in the first iteration, the figure
shows the containing-ratios quickly approximate the (68-95-
99.7) rule of the Normal distribution.

0 2 4 6 8

Unrolling (t)

0.0

0.1

0.2

0.3

0.4

Gradient propagation ‖δLc/δẑt‖
(cartpole, heteroscedastic)

0.50

0.35

0.20

0.05

0.00

Fig. 10. Gradient propagation for different values of Dropout. We observe a
stable increase of the gradient magnitude as the gradients are back-propagated

F. Gradient propagation

Unstable gradient propagation poses a challenge for multi-
step training. Appropriate selection of (τmin, τmax) and
weight initialization allowed us to achieve stable optimization.
The bounds (τmin, τmax) were necessary to stabilize multi-
step training and considerably improved the performance of
the models trained using single-step approach.

Fig. 10 shows the magnitude of the backpropagated gra-
dients for different dropout probabilities. The gradients grow
steadily as they are back-propagated. Increasing the dropout
probability reduced the rate in which gradients grow. The
figure shows how gradients grow quickly without dropout,
reaching the point where the gradient monitors are activated,
preventing excessively large gradients from destabilizing the
training.

G. Discussion

In this paper we covered the first two stages for controlling
underactuated systems: modeling and open-loop planning. The
focus of the presented approach was to study the performance
of DBNN models on providing accurate long-term estimations
for open-loop planning. The accuracy of the learned stochastic
model allowed us to plan completely offline and execute the
trajectory in open-loop. This approach allowed us to move all
computationally expensive optimizations offline and make the
presented approach applicable on real-world scenarios.

However, applying the trajectory in open-loop has two
challenges: 1) performance degrades for excessively long
trajectories; 2) control is sensitive to external disturbances.
As shown in Fig. 7b and 8b, as time increases, the uncertainty
is also increasing. This behavior is a design choice that results
from propagating the uncertainty overtime in Eq. (6). Due
to process noise and approximation errors, the uncertainty
should increase over time. However, this results in estimations
with low confidence when planning over excessively long
trajectories.

In order to further improve control performance and guar-
antee robustness against external noise, trajectory stabilization
techniques can be used on top of our approach. Techniques
such as Time-Varying LQR feedback stabilization [1] can be
introduced to stabilize the system around the optimal open-
loop trajectory found with Algorithm 1.

11

VI. CONCLUSION

In this paper, we presented an approach for modeling
and planning under uncertainty using Deep Bayesian Neural-
Networks. We presented a method for learning dynamics using
multi-step predictions. The approach includes different tools
for ensuring stable learning of the dynamics for heteroscedas-
tic models. The learned model was successfully used in a
trajectory optimization task.

The presented data-driven modeling and planning approach
was able to find optimal trajectories that can perform the
swing-up maneuver for both Cartpole and Acrobot, without
the need for expert knowledge of the dynamics. The learned
stochastic model was able to accurately estimate long-term
state trajectories together with the uncertainty of the predic-
tions. Compared to single-step training, multi-step training
showed improved generalization and faster convergence rates
in the trajectory optimization task. The accuracy of the esti-
mated trajectory probability distributions allowed us to plan
completely offline and execute the optimal trajectory in open-
loop.

The success of the presented multi-step training approach,
which uses single Monte-Carlo particles, is particularly inter-
esting for future research, especially for partially observable
systems. The use of single particles provides an efficient
approach for training the model using back-propagation and
mini-batch stochastic optimization. Future research will be
conducted on extending and evaluating the presented model
for partially-observable systems. Furthermore, trajectory sta-
bilization techniques will be investigated in order to improve
control performance and ensure robustness against external
disturbances.

APPENDIX A
VARIATIONAL DISTRIBUTIONS

Assuming µ̂ and τ̂ are composed by Lµ and Lτ hidden
layers, respectively, the variational distributions for the pa-
rameters are defined as follows:

wµ =
{
A(l),a(l)

}Lµ
l=1

; wτ =
{
B(l), b(l)

}Lτ
l=1

qφ

(
A

(l)
[:,i]

)
= PdropN

(
0, σ2

aI
)

+ (1− Pdrop)N
(
A

(l)
φ[:,i], σ

2
AI
)

qφ

(
a(l)
)

= N
(
a
(l)
φ , σ

2
aI
)

qφ

(
B

(l)
[:,i]

)
= N

(
B

(l)
φ[:,i], σ

2
BI
)

; qφ

(
b(l)
)

= N
(
b
(l)
φ , σ

2
bI
)

where A,a represent the weights and bias of µ̂ and B, b the
weights and bias of τ̂ . The notation A(l)

[:,i] represents the ith
column of A(l). We follow [28] to define the distribution of
qφ

(
A

(l)
[:,i]

)
as a mixture of Gaussians with dropout probability

Pdrop.
The priors for the parameters were defined as follows:

p
(
A

(l)
[:,i]

)
= N

(
0, β2

AI
)

; p
(
B

(l)
[:,i]

)
= N

(
0, β2

BI
)

We do not regularize the bias parameters, hence no priors are
placed on a(l) or b(l).

To simplify the model, we choose not to optimize over
the variance parameters of the variational distributions. Given

that the variational distribution and priors are defined using
Gaussian distributions, the KL divergence is computed as
follows:

KL(qφ(w)|p(w)) =
∑
l

∥∥∥A(l)
∥∥∥2
F

β2
A

+
∑
l

∥∥∥B(l)
∥∥∥2
F

β2
B

+K

where K is a constant that is ignored during optimization and
‖A‖F is the Frobenius norm. This expression can be derived
directly from the KL divergence between Gaussians and the
approximation presented in [28] for dropout.

During inference, we use the mean of the distributions
directly as single point estimates. This allows us to repre-
sent the following weights and biases directly as variational
parameters: a(l) = a

(l)
φ , B(l) = B

(l)
φ , b(l) = b

(l)
φ .

Furthermore, the weight matrices of µ̂ can be re-
parameterized using a Bernoulli distribution:

A(l) ∼ A(l)
φ diag (α)

where αi ∼ Bern (Pdrop) [28]. Finally, the trainable varia-
tional parameters φ = φµ∪φτ for heteroscedastic models are:

φµ =
{
A

(l)
φ ,a

(l)
φ

}Lµ
l=1

; φτ =
{
B

(l)
φ , b

(l)
φ

}Lτ
l=1

For homoscedastic models, φτ = {τm}.

APPENDIX B
LOSS GRADIENTS

The gradients of LR presented in Eq. (12) and (13) can be
obtained using the following differentiation rules [38]:

∂ (ln |Ω|)
∂Ω

= Ω−T ;
∂
(
vTΩv

)
∂Ω

= vvT (22)

∂
(
vTΩv

)
∂v

=
(
Ω + ΩT

)
v

Let v = (y − µ̂) and Ω = diag (τ̂), i.e. Ω is a diagonal
matrix where the diagonal is equal to τ̂ . We can express the
loss LR from Eq. (5) as follows:

LR = − log |Ω|+ vTΩv

where Ω is symmetric (Ω = ΩT). Using the differentiation
rules from Eq. (22), the gradients of LR can be expressed as
follows:

∂LR
∂Ω

= −Ω−1 + vvT ;
∂LR
∂v

= 2Ωv

The gradient ∂LR∂τ̂ in Eq. (12) is equal to the diagonal of ∂LR
∂Ω .

Finally, by using the chain rule we obtain the gradient ∂LR∂µ̂ =

−∂LR∂v which is equal to the gradient shown in Eq. (13).

REFERENCES

[1] R. Tedrake, “LQR-trees: Feedback motion planning on sparse random-
ized trees,” in Proc. of Robotics: Science and Systems V, Seattle, USA,
June 2009.

[2] ——. (2018) Underactuated robotics: Algorithms for walking, running,
swimming, flying, and manipulation. [Online]. Available: http:
//underactuated.mit.edu/

http://underactuated.mit.edu/
http://underactuated.mit.edu/

12

[3] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408–423,
Feb 2015.

[4] W. Zine, Z. Makni, E. Monmasson, L. Idkhajine, and B. Condamin,
“Interests and limits of machine learning-based neural networks for
rotor position estimation in ev traction drives,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 5, pp. 1942–1951, May 2018.

[5] Z. Wang, C. Hu, Y. Zhu, S. He, K. Yang, and M. Zhang, “Neural
network learning adaptive robust control of an industrial linear motor-
driven stage with disturbance rejection ability,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 5, pp. 2172–2183, Oct 2017.

[6] C. Yang, Y. Jiang, Z. Li, W. He, and C. Su, “Neural control of bimanual
robots with guaranteed global stability and motion precision,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1162–1171,
June 2017.

[7] N. K. Dhar, N. K. Verma, and L. Behera, “Adaptive critic-based event-
triggered control for hvac system,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 1, pp. 178–188, Jan 2018.

[8] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), May 2018, pp. 7559–7566.

[9] D. Marino, K. Amarasinghe, M. Anderson, N. Yancey, Q. Nguyen,
K. Kenney, and M. Manic, “Data driven decision support for reliable
biomass feedstock preprocessing,” in 2017 Resilience Week (RWS), Sep.
2017, pp. 97–102.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529–533, 2015.

[12] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne,
Y. Tassa, T. Erez, Z. Wang, S. M. A. Eslami, M. A. Riedmiller, and
D. Silver, “Emergence of locomotion behaviours in rich environments,”
arXiv:1707.02286 [cs.AI], July 2017.

[13] M. Khodayar, O. Kaynak, and M. E. Khodayar, “Rough deep neural
architecture for short-term wind speed forecasting,” IEEE Transactions
on Industrial Informatics, vol. 13, no. 6, pp. 2770–2779, Dec 2017.

[14] D. L. Marino, K. Amarasinghe, and M. Manic, “Building energy load
forecasting using deep neural networks,” in IECON 2016 - 42nd Annual
Conference of the IEEE Industrial Electronics Society, Oct 2016, pp.
7046–7051.

[15] L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional neural
network-based data-driven fault diagnosis method,” IEEE Transactions
on Industrial Electronics, vol. 65, no. 7, pp. 5990–5998, July 2018.

[16] H. Hu, B. Tang, X. Gong, W. Wei, and H. Wang, “Intelligent fault
diagnosis of the high-speed train with big data based on deep neural
networks,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4,
pp. 2106–2116, Aug 2017.

[17] W. Lu, B. Liang, Y. Cheng, D. Meng, J. Yang, and T. Zhang, “Deep
model based domain adaptation for fault diagnosis,” IEEE Transactions
on Industrial Electronics, vol. 64, no. 3, pp. 2296–2305, March 2017.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning Representations
(ICLR), May 2016.

[19] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[20] F. Guo, H. Kodamana, Y. Zhao, B. Huang, and Y. Ding, “Robust
identification of nonlinear errors-in-variables systems with parameter
uncertainties using variational bayesian approach,” IEEE Transactions
on Industrial Informatics, vol. 13, no. 6, pp. 3047–3057, Dec 2017.

[21] R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational gaussian process
state-space models,” in Proc. of the 27th International Conference on
Neural Information Processing Systems, 2014, pp. 3680–3688.

[22] Y. Gal, R. T. McAllister, and C. E. Rasmussen, “Improving pilco with
bayesian neural network dynamics models,” in ICML Workshop on Data-
Efficient Machine Learning, June 2016.

[23] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, “Uncertainty-
aware reinforcement learning for collision avoidance,” arXiv:1702.01182
[cs.LG], Feb 2017.

[24] M. Al-Shedivat, A. G. Wilson, Y. Saatchi, Z. Hu, and E. P. Xing,
“Learning scalable deep kernels with recurrent structure,” Journal of
Machine Learning Research, vol. 18, no. 82, pp. 1–37, 2017.

[25] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft,
“Learning and policy search in stochastic dynamical systems with
bayesian neural networks,” in 5th International Conference on Learning
Representations (ICLR), April 2017.

[26] T. M. Moerland, J. Broekens, and C. M. Jonker, “Learning multi-
modal transition dynamics for model-based reinforcement learning,”
arXiv:1705.00470 [stat.ML], Aug 2017.

[27] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[28] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in Proc. of the 33nd
International Conference on Machine Learning (ICML), June 2016, pp.
1050–1059.

[29] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd
International Conference on Learning Representations (ICLR), 2014.

[30] D. Hein, S. Depeweg, M. Tokic, S. Udluft, A. Hentschel, T. A. Runkler,
and V. Sterzing, “A benchmark environment motivated by industrial
control problems,” in 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), Nov 2017, pp. 1–8.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations (ICLR),
May 2015.

[32] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, Oct
1990.

[33] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks.” in Proc. of the 30th International Conference
on Machine Learning (ICML), vol. 28, 2013, pp. 1310–1318.

[34] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS, May 2010, pp. 249–256.

[35] N. Sun, T. Yang, Y. Fang, B. Lu, and Y. Qian, “Nonlinear motion
control of underactuated three-dimensional boom cranes with hardware
experiments,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 3, pp. 887–897, March 2018.

[36] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” arXiv:1606.01540 [cs.LG],
June 2016.

[37] E. Coumans and Y. Bai. (2016) Pybullet, a python module for
physics simulation for games, robotics and machine learning. [Online].
Available: https://pybullet.org/

[38] K. B. Petersen and M. S. Pedersen. (2008) The matrix cookbook.
[Online]. Available: https://www.math.uwaterloo.ca/%7Ehwolkowi/
matrixcookbook.pdf

Daniel L. Marino (marinodl@vcu.edu) received his
B.Eng. in automation engineering from La Salle
University, Colombia, in 2015. He is currently a
research assistant and a doctoral student at Virginia
Commonwealth University. His research interests in-
clude stochastic modeling, deep learning and optimal
control.

Milos Manic (misko@ieee.org) Milos Manic
(misko@ieee.org) (SM’06-M’04-StM’96) received
the Dipl.Ing. and M.S. degrees in electrical engi-
neering and computer science from the University
of Niš, Niš, Serbia in 1991 and 1997 respectively,
and the Ph.D. degree in computer science from
the University of Idaho in 2003. Dr. Manic is a
Professor with Computer Science Department and
Director of VCU Cybersecurity Center at Virginia
Commonwealth University. He completed over 30
research efforts in the area of data mining and

machine learning applied to cybersecurity, critical infrastructure protection,
energy security, and resilient intelligent control. Dr. Manic has given over
30 invited talks around the world, authored over 180 refereed articles in
international journals, books, and conferences, holds several U.S. patents
and has won 2018 R&D 100 Award for Autonomic Intelligent Cyber Sensor
(AICS). He is an officer of IEEE Industrial Electronics Society, founding chair
of IEEE IES Technical Committee on Resilience and Security in Industry, and
general chair of IEEE IECON 2018, IEEE HSI 2019.

https://pybullet.org/
https://www.math.uwaterloo.ca/%7Ehwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/%7Ehwolkowi/matrixcookbook.pdf

	Introduction
	Related work
	Stochastic modeling using Bayesian neural-networks
	Modeling and planning using DBNNs
	Training using single-step prediction
	Training using multi-step predictions
	Long-term trajectory estimations using the learned DBNN model
	Computational complexity

	Experiments
	Experiment setup
	Results
	Comparative analysis: Heteroscedastic vs Homoscedastic
	Comparative analysis: single-step vs multi-step training
	Long-term predictions using EM models
	Gradient propagation
	Discussion

	Conclusion
	Appendix A: Variational Distributions
	Appendix B: Loss Gradients
	References
	Biographies
	Daniel L. Marino
	Milos Manic

