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Abstract—Object categorization in images is fundamental to
various industrial areas, such as automated visual inspection,
fast image retrieval and intelligent surveillance. Most existing
methods treat visual features (e.g., scale-invariant feature trans-
form, SIFT) as content information of the objects, while regarding
image tags as their contextual information. However, the image
tags can hardly be acquired in completely unsupervised settings,
especially when the image volume is too large to be marked. In
this work, we propose a novel contextual multivariate information
bottleneck (CMIB) method to conduct unsupervised image object
categorization in multiple visual contexts. Unlike using manual
contexts, the CMIB method first automatically generates a set of
high-level basic clusterings by multiple global features, which are
unprecedentedly defined as visual contexts since they can provide
overall information about the target images. Then, the idea of
the data compression procedure for object category discovery is
proposed, in which the content and multiple visual contexts are
maximally preserved through a “bottleneck”. Specifically, two
Bayesian networks are initially built to characterize the relation-
ship between data compression and information preservation.
Finally, a novel sequential information-theoretic optimization
is proposed to ensure the convergence of the CMIB objective
function. Experimental results on seven real-world benchmark
image datasets demonstrate that the CMIB method achieves
better performance than the state-of-the-art baselines.

Index Terms—Object category discovery, visual contexts, in-
formation bottleneck, mutual information, Bayesian networks.

I. INTRODUCTION

OBJECT categorization in images has been an active and
fundamental research topic, and a promising image clus-

tering algorithm lays a good foundation for various industrial
areas, such as automated visual inspection [1], fast image
retrieval [2], [3] and intelligent surveillance [4], [5]. Recently,
contextual information, a type of available and complementary
information that provides rich positive details for target data,
has been used to enhance the accuracy of object categorization
models. In the task of object recognition and categorization
of images, a large number of studies [6], [7], [8], [9], [10],
[11], [12], [13] have also shown the validity of contextual
information.
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Fig. 1. The pipeline of unsupervised image object categorization in multiple
visual contexts based on the proposed CMIB. First, CMIB adopts content
feature to characterize the local information of the target object, while
automatically generating a set of high-level basic clusterings by multiple
global features, which are unprecedentedly defined as visual contexts in this
study. Then, the object category discovery in unlabeled images is creatively
formulated as a data compression procedure, in which the content and multiple
visual contexts are maximally preserved through a “bottleneck”. In other
words, automatically constructed visual contexts can be utilized as auxiliary
information to improve the quality of image clustering based on content
feature. Note that, it is still unsupervised since the visual contexts come from
the unlabeled image data.

Generally, the most popular strategy is to use the artificial
marks of the target images as their contexts, such as user tags,
captions and concurrent texts of the target images. However,
existing methods always assume that the labeled training data
are typically available for both the images and its contexts [6],
[7], [8], [9], [10], [13], [14], which allows direct inference
of the relationship between the image object categories and
their contexts. Obviously, the ground-truth label and most
types of contexts are often scarce and precious since they
require a considerable amount of manpower and material
resources, especially when the size of the image data is too
large to be marked. This motivates us to conduct the study
on unsupervised image object categorization by automatically
constructing contexts from the unlabeled image data.

Recently, several types of contexts based on multiple feature
representations have been proposed for the task of unsuper-
vised object categorization in unlabeled images. For instance,
[11], [12] proposed a context-aware clustering algorithm, in
which the spatial neighbors of multiple primitive features
are treated as their spatial contexts. [15] introduced a dual



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2939278, IEEE
Transactions on Industrial Informatics

2

assignment k-means algorithm for action clustering, which
finds action categories by utilizing the scene features as the
target action’s contextual information, i.e., the scene that the
target action takes place. As shown in the above methods,
different possible feature representations are complementary
to each other and can be naturally treated as the contexts
of the target objects, such as spatial neighbors of multiple
features [11], [12] and scene features [15]. However, existing
methods always directly incorporate the content and contextual
information, which may be problematic since the content and
contexts are heterogeneous [16]. More importantly, the visual
features are usually represented by several high dimensional
descriptors, and dealing with them simultaneously always
results in the curse of dimensionality.

In this work, a novel, general-purpose contextual multivari-
ate information bottleneck (CMIB) is proposed to discover
object categories in unlabeled images by devising multiple
visual contexts. As shown in Fig. 1, the CMIB method adopts
one content feature (such as SIFT) to characterize the local
information of the target objects, while using global features to
describe the object’s contexts, such as global shape, color and
texture. Instead of directly incorporating content and context
features, CMIB method unprecedentedly defines the high-level
clusterings automatically generated by multiple global features
as multiple visual contexts, which naturally have the ability to
leverage complementary information from heterogeneous raw
content and context features. In particular, the automatically
constructed visual contexts are group-level partitions of the
target objects and can be utilized as auxiliary information
to improve the quality of image clustering based on content
feature. Note that it is still unsupervised since the visual
contexts come from the unlabeled image data without any
prior knowledge. Then, the task of unsupervised image object
categorization in multiple visual contexts is formulated as
an information maximization function, in which two novel
Bayesian networks are built to characterize the relationships
between the content and multiple visual contexts. Moreover,
a novel sequential information-theoretic solution is proposed
to ensure the convergence of the objective function of CMIB.
The main contributions of this work are as follows:

• A novel CMIB is proposed for unsupervised object
categorization in totally unlabeled images by devising
multiple visual contexts. It is the first attempt to utilize
the high-level clustering generated by global features as
multiple visual contexts, which naturally have the ability
to leverage heterogeneous features.

• The object category discovery in unlabeled images is
creatively formulated as a data compression procedure
through a “bottleneck”, in which two Bayesian networks
are built initially to characterize the relations between the
data compression and information preservation.

• A novel sequential information-theoretic optimization is
proposed to ensure the convergence of the objective
function of CMIB. The proposed technique is completely
unsupervised and outperforms the existing state-of-the-art
baselines on several benchmark datasets.

This paper is structured as follows. Section II analyzes
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Fig. 2. Structural representation of Gin and Gout in the MIB framework.
(a) In the data compression part, the solid arrows from X to T1, · · · , Tn

represent multiple compressed representations of X , while the dashed arrow
between X and Y indicates a joint probability distribution p(X,Y ). (b) In
the information preservation part, the solid arrows denote the information that
should be maximized with respect to Y . IGin and IGout are the amount of
information in these two networks.

the related work about context-based clustering methods and
the background of MIB. Section III formulates the proposed
CMIB. In Section IV, we report and discuss the experimental
results. Finally, Section V concludes the paper.

II. RELATED WORK

A. Unsupervised Context-Based Methods

Recently, context-based clustering [11], [12], [17], [13],
[15], [18] has been a valuable unsupervised learning topic
in machine learning and its various industrial applications.
However, all the existing context-based clustering approaches
treat the target object’s content and contextual information
equivalently. In practice, the content and contextual informa-
tion of the same object have their own structures, and their
distributions are always heterogeneous. Thus, inappropriately
integrating them will degrade the clustering performance.

Essentially, contextual information is a complement to the
content information of an object. In this regard, it is pertinent
to discuss multi-view and ensemble clustering methods. Both
aim to improve the clustering performance by considering
the complementary effect of multiple related components.
Specifically, multi-view clustering methods [19], [20], [21],
[22] aim to construct mappings, connections or agreements
between multiple distinct views. In multi-view methods, the
complementary views can be seen as the contexts of other
views. In particular, low-level visual features are the most
prevalent means to represent the different views of the objects
in images. However, the dimensions of these visual features
are always very high especially when dealing with them simul-
taneously. Moreover, how to control the balance of different
views also remains a challenging task.

Different from multi-view clustering methods, ensemble
clustering approaches [23], [24] refer to combining different
clusterings of a given data collection into a single partition
that is a better fit than existing clusterings. The information
provided by auxiliary clusterings can also be seen as the
context of the target data. However, the existing ensemble
clustering methods yield the final partition without accessing
the original feature representations of the images, which limits
the final results in terms of the quality of existing base
clusterings. In this study, we intend to discover the object
category in unlabeled images by considering its content and
visual contexts simultaneously.
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B. Multivariate information bottleneck

The information bottleneck (IB) method [25] is one of the
best among many clustering algorithms previously proposed,
and concentrates on searching the cluster structure T of single
source data X while only Y serves as a relevant variable. As
a multivariate extension of IB, multivariate information bottle-
neck (MIB) [26], [27] uses the concept of multi-information
to quantify the shared information between more than two
variables, an example problem of multiple variables is shown
in Fig. 2. Given a set of random variables X = {X1, · · · , Xn},
the multi-information can be defined as

I(X) = DKL[p(X)||p(X1) · · · p(Xn)]. (1)

where DKL indicates the Kullback-Leibler divergence [28].
In the MIB framework, the probabilistic model Bayesian

network is adopted to characterize the relationships of multiple
variables. Given a set of random variables X = {X1, · · · , Xn}
and a set of latent variables T = {T1, · · · , Tn}, a Bayesian
network with graph Gin indicates the compressed relationship
from X to T. Another Bayesian network with graph Gout

represents which conditional dependencies and independencies
we want T to be able to generate. Both Gin and Gout are
defined over X

⋃
T. Thus, the objective function of MIB can

be defined as follows:

Lmin[p(T|X)] = IGout(X,T)− β−1 · IGin(X,T), (2)

where p(T|X) is the mapping from X to T, β strikes a balance
between the data compression information preservation in Gin

and Gout.The multi-information IG with respect to a Bayesian
network G defined over X ∼ p(X) is computed as

IG(X) =
∑
i

I(Xi; PaGXi
), (3)

where PaGXi
are the parents of Xi in G, and I(Xi; PaGXi

) is
the mutual information between Xi and PaGXi

.
MIB can manage multiple variables by utilizing the concept

of multi-information. However, the original MIB method as-
sumes that different information sources have completely ho-
mogenous data distributions. Obviously, this strict assumption
is a major disadvantage of the original MIB since different
data sources are often heterogeneous. In the proposed CMIB
framework, to relieve the distinct gap between heterogeneous
feature spaces, the high-level basic clusterings generated by
the multiple global features are unprecedentedly defined as
multiple visual contexts, which naturally have the ability
to leverage complementary information from heterogeneous
sources. To the best of our knowledge, this is the first work
to define multiple visual contexts to relieve the distinct gap
among heterogeneous features.

III. CONTEXTUAL MULTIVARIATE INFORMATION
BOTTLENECK

Most existing object categorization methods treat visual fea-
tures (e.g., scale-invariant feature transform, SIFT) as content
information of the objects, while regarding artificial marks
as the contextual information. However, artificial marks are
not available in complete unsupervised settings, especially
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Fig. 3. The structural model of the CMIB method for unsupervised object
category discovery in images. (a) In this part, the solid arrow from X to
T means X is mapped into its compressed representation T . At the same
time, the dashed arrows from X to Y and W1,W2, · · · ,Wk indicate that
the source data X has one content variable and multiple visual contexts.
(b) In this part, the solid arrows specify the information contained in the
content information Y and visual contexts W1,W2, · · · ,Wk are maximally
preserved.

when the image volume is too large to be marked. In this
paper, we propose a novel unsupervised object categorization
method called CMIB, that can discover the object category
in unlabeled images by simultaneously considering content
feature and multiple visual contexts.

A. Problem formulation

In this section, we explain the novel unsupervised object cat-
egorization method called CMIB, which discovers the object
categories in unlabeled images by simultaneously considering
one content feature and multiple visual contexts. First, we give
the definition of the visual contexts.

Definition 1 (Visual Contexts). Given an unlabeled image
collection X and its k global feature representations, the visu-
al contexts of the objects are the clusterings W1,W2, · · · ,Wk

constructed by the k global features.

In this study, we utilize the source variable X , content
variable Y , multiple visual contexts W1,W2, · · · ,Wk and the
final category (cluster) T to characterize the problem of CMIB.
The source variable X denotes an unlabeled image collection
with a set of samples {x1, x2, · · · , xn}. The content variable
Y indicates one discriminative content feature (such as SIFT)
of the image collection X . Correspondingly, we can construct
the joint distribution p(X,Y ) between the source data and
its content feature according to the prevalent bag-of-visual-
words (BoVW) model [29], and the details can be found in
Section IV-B. Then, any clustering algorithm with promising
performance (e.g., IB algorithm in this study) can be utilized
to construct multiple basic clusterings W1,W2, · · · ,Wk ac-
cording to the other k global features. For clarity, we first
define the task of CMIB.

Definition 2 (CMIB). Given an source variable X taking
value from {x1, x2, · · · , xn}, there are one content variable
Y that indicates the content feature and k visual contexts
W1,W2, · · · ,Wk that denote the multiple clusterings con-
structed by the k global features. The goal of CMIB is to
discover the potential object categories T = {t1, · · · , tM}
hidden in the unlabeled image collection X , where M is the
number of categories. In other words, the task of CMIB is to
find an optimal encoding scheme p(t|x) from X to T , while
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maximally maintaining the information of the content variable
and multiple visual contexts.

B. Objective Function of CMIB

In this section, the objective function of the CMIB algorithm
is presented. CMIB treats one local feature variable of the
object as the content information Y , while exploiting the
base clusterings W1,W2, · · · ,Wk obtained by other glob-
al features as its visual contexts. As illustrated in Fig. 3,
CMIB involves two parts: data compression and information
preservation. We construct two Bayesian networks Gin and
Gout to characterize the relationships between the variables in
the two parts. In Bayesian network Gin, the dashed edges
indicates that the source variable X has multiple relevant
information. Specifically, the dashed edge X → Y means
the relation defined by the joint distribution p(X,Y ). The
dashed edge X → W1,W2, · · · ,Wk indicates that the source
data X has multiple visual contexts W1,W2, · · · ,Wk. The
solid edge X → T means that X will be compressed into
its compressed representation T . In Bayesian network Gout,
the solid edge T → Y reflects that T should capture the
local content information Y about source data X . The solid
edge T → W1, · · · ,Wk reflects that T should capture all the
visual context information W1,W2, · · · ,Wk. In other words,
the network Gin represents the compressing relationship from
X to T , while Gout expresses that T should simultaneously
preserve the relevant information of content information Y and
multiple visual contexts W1,W2, · · · ,Wk. Similar to [27], the
multi-information in Gin and Gout can be defined as follows:

IGin = I(X;T ) + I(X;Y ) +
∑k

i=1 I(X;Wi), (4)

IGout = I(T ;Y ) +
∑k

i=1 I(T ;Wi), (5)

where I(X;T ) is the term of mutual information [28] that
measures how many bits are conveyed from the source variable
X to its compressed representation T . I(T ;Y ) measures
how much information the variable T maintains about the
content information Y , and

∑k
i=1 I(T ;Wi) measures the

information contained in variable T about the visual contexts
W1,W2, · · · ,Wk. Once the joint distribution p(X,Y ) and
visual contexts W1,W2, · · · ,Wk are given, the terms I(X;Y )
and

∑k
i=1 I(X;Wi) are constant and can be ignored. Thus,

the objective function of CMIB can be written as follows:

Lmax{p(t|x)} = IGout − β−1 · IGin

= I(T ;Y ) +
k∑

i=1

I(T ;Wi)− β−1I(X;T ),
(6)

where β strikes a balance between the information preservation
and data compression.

The remaining task of the unsupervised object categoriza-
tion is to maximize the value of the objective function (6).
Obviously, the terms in the objective function (6) cannot
be directly calculated, thus, we propose a novel sequential
information-theoretic optimization to make them computable.
The proposed optimization is essentially a sequential “draw-
and-merge”, which always performs better than agglomerative
methods [30], especially when dealing with larger datasets, as

shown in Section III-F. In this work, we concentrate on the
“hard” clustering setting, where p(t|x) is 0 or 1. Now, the goal
of CMIB becomes to maximize the objective function (6).

C. Optimization of CMIB

To maximize the objective function (6) of CMIB, we
propose a sequential information-theoretic optimization, which
is essentially a “draw-and-merge” procedure. The draw-and-
merge optimization is performed by the following steps:

1) Random initialization. The source image collection X
is partitioned into M categories T = {t1, · · · , tM} stochasti-
cally. The mapping from X to T is denoted by p(t|x), where
p(t|x) = 1 means x belongs to the category t, and p(t|x) = 0
means x does not belong to t.

2) Draw. Each image x ∈ X is drawn in order from its
current category and is treated as a singleton category {x}.

3) Merge. To ensure that the total number of categories
is M , the {x} should be merged into category tnew. Let
∆L({x}, t) be the exact difference between the value of
the objective function (6) before and after the merge. Since
CMIB maximizes (6), {x} should be merged into category
tnew = argmint∈T ∆L({x}, t).

4) Convergence check. Repeat 2) and 3) until every x is
not allocated to new category.

Now, the key issue is to compute the value change
∆L({x}, t) before and after x is merged into some category
t ∈ T . Next, we give the probability computation when x
is merged into a certain category t ∈ T as the following
definition.

Definition 3. Suppose a certain {x} is merged into some
category t, and thus generates another new category t′, the
probability change caused by the merge step is defined as

p(t′) = p(x) + p(t),

p(y|t′) =
p(x)

p(t′)
p(y|x) +

p(t)

p(t′)
p(y|t),

(7)

where p(t′) is the prior probability after merging {x} into
category t, p(y|t′) is the joint probability distribution of
category t′ over the relevant information Y .

Let Lbef and Lnew represent the value of Eq. (6) before and
after the single category x is allocated to the category t. Then
the value change ∆L({x}, t) can be calculated as follows:

∆L({x}, t) = Lbef − Lnew = [I(T bef ;Y )− I(Tnew;Y )]+
k∑

i=1

[I(T bef ;Wi)− I(Tnew;Wi)]−

β−1[I(T bef ;X)− I(Tnew;X)]

= ∆Icontent +
k∑

i=1

∆Iicontext − β−1∆Icompress,

(8)
where T bef and Tnew are the categories before and after
x is merged. ∆Icontent is the value change of the CMIB
objective function caused by content information Y . ∆Iicontext
is the value change caused by the i-th visual context Wi.
∆Iicompress is the value change caused by compressing X
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into its compressed representation T . From Eq. (8), we can
see that the total value change ∆L({x}, t) can be obtained
from the calculation of ∆Icontent, ∆Iicontext and ∆Icompress.
First, according to Definition 2 and the definition of the mutual
information, ∆Icontent can be computed as follows:

∆Icontent = I(T bef ;Y )− I(Tnew;Y )

= p(x)
∑
y

p(y|x)log
p(y|x)

p(y)
+ p(t)

∑
y

p(y|t)log p(y|t)
p(y)

− p(t′)
∑
y

p(y|t′)log p(y|t
′)

p(y)

= p(x)
∑
y

p(y|x)log
p(y|x)

p(y)
+ p(y)

∑
y

p(y|t)log p(y|t)
p(y)

−
∑
y

p(x)p(y|x)log
p(y|t′)
p(y)

−
∑
y

p(t)p(y|t)log p(y|t
′)

p(y)

= p(x)
∑
y

p(y|x)log
p(y|x)

p(y|t′)
+ p(t)

∑
y

p(y|t)log p(y|t)
p(y|t′)

= p(x)DKL[p(y|x)||p(y|t′)] + p(t)DKL[p(y|t)||p(y|t′)]
= [p(x) + p(t)]JSΠ[p(y|x), p(y|t)].

(9)

where JSΠ is the Jensen-Shannon (JS) divergence [28] to
compute the distance of two distributions, and Π = {π1, π2} =

{ p(x)
p(x)+p(t) ,

p(t)
p(x)+p(t)}. Since p(t′) ≥ 0 and JSΠ ≥ 0, thus,

∆Icontent ≥ 0. Similar analysis yields

∆Icompress = [p(x) + p(t)]JSΠ[p(x), p(x|t)]. (10)

Next, we present how to initially compute the probabilistic
terms in Eq. (9) and (10). As shown in Fig. 4, once given
the joint distribution p(X,Y ), we can partition X into M
categories T = {t1, · · · , tM} stochastically and obtain a ini-
tialized category partition p(T, Y ) by the random initialization
in draw-and-merge optimization, where p(t) =

∑
x∈t p(x).

Now, all the probabilistic terms in these two equations can be
computed from p(X,Y ) and p(T, Y ) as follows: the marginal
probability p(x) =

∑
y∈Y p(x, y), p(t) =

∑
x∈t p(x); the

conditional probability p(y|x) = p(x,y)
p(y) , p(y|t) = p(y,t)

p(t) ,

p(x|t) = p(t|x)p(x)
p(t) .

D. Relatedness Between Content and Visual Contexts

Now, we present the calculation of ∆Iicontext. The sequen-
tial draw-and-merge procedure is an iterative procedure in
essence. We use Tmid = {tmid

1 , tmid
2 , · · · , tmid

M } to present the

Algorithm 1 CMIB Algorithm
1: Input:

Joint distribution p(X,Y )
Multiple visual contexts W1, · · · ,Wk

Trade-off parameter β
Cardinality value M

2: Random initialization: Stochastically divide
the image collection X into M categories
T = {t1, t2, · · · , tM}; Calculating the marginal
probability p(x) =

∑
y∈Y p(x, y), p(t) =

∑
x∈t p(x); the

conditional probability p(y|x) = p(x,y)
p(y) , p(y|t) = p(y,t)

p(t) ,

p(x|t) = p(t|x)p(x)
p(t) .

3: repeat
4: for each image x ∈ X do
5: Draw: draw image x from its original category.
6: Calculate merge costs ∆L({x}, t) by Eq. (8), which

is computed from Eq. (9), Eq. (10) and Eq. (12).
7: Merge: Allocate image x into a new category tnew

that should satisfy tnew = arg mint∈T ∆L({x}, t).
8: end for
9: until Every x is not allocated into new category

10: Output: The final category T of image collection X

temporary partition in a certain iteration of CMIB conducted
by the content variable, where M is the number of categories.
Similarly, let W l be the l-th clustering partition of multiple
auxiliary visual contexts W1,W2, . . . ,Wk, which takes values
from W l = {wl

1, w
l
2, · · · , wl

M}. To measure the relationship
between the content information and the visual contexts, we
construct the co-occurrence matrix between Tmid and W l.

As mentioned earlier, there are n images in the source
data X = {x1, x2, . . . , xn}. Let ni be the number of images
allocated into category tmid

i (1 ≤ i ≤ M). Let nj be the
number of images allocated into category wl

j (1 ≤ j ≤ M).
Let nij be the number of images allocated into category
tmid
i and wl

j at the same time. Thus, the joint co-occurrence
distribution of categories Tmid and visual context W l can be
computed as follows:

p(tmid
i ) =

ni
n
, p(tmid

j ) =
nj
n
, p(tmid

i , wl
j) =

nij
n
. (11)

The mutual information of Tmid and W l can be computed:

I(T ;W l) =

M∑
i=1

M∑
j=1

p(tmid
i , wl

j) log
p(tmid

i , wl
j)

p(tmid
i )p(tmid

j )
. (12)

Thus, the total value change in Eq. (8) can be obtained.
The pseudocode of CMIB is given in Algorithm 1. Next, we
present how to deal with a fresh unseen data point that is
available only after the optimization. We use xnew to indicate
a fresh unseen data point. First, the fresh data point xnew
is transformed into a co-occurrence vector by the bag-of-
visual-word model. Then, xnew is randomly allocated into one
cluster after the optimization of Algorithm 1 is finished. Now,
the proposed draw-and-merge optimization is performed again
until the objective function converges. Note that, since the
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TABLE I
DETAILS OF THE SEVEN IMAGE DATASETS FOR OUR EXPERIMENTS.

Datasets Category size Data size Codebook size
Soccer 7 280 1000
A-Yahoo 11 1100 1000
Dslr 31 489 1000
Webcam 31 795 1000
Amazon 31 2813 1000
CIFAR-10 10 15000 1000
NUS-22 22 10500 1000

Airplane Tiger Bicycles MugAcmilan Barcelona Liverpool Chelsea
(b) NUS-22(a) Soccer

Fig. 5. Example image categories from the Soccer and NUS-22 datasets.

visual contexts in this study is the group-partition information
for an image dataset, there is no visual contexts for a singleton
fresh data point. Thus, the merger cost is calculated just
according to the Eq. (9) and Eq. (10) for the fresh data xnew.

E. Theoretical Analysis

1) Convergence: In this section, we prove the convergence
of the objective function of the CMIB algorithm from upbound
and monotone increasing. Next, we give Theorem 1.

Theorem 1. The objective function of the CMIB algorithm
can converge to a stable solution.

Proof. First, we prove each draw-and-merge procedure do not
decrease the value of the objective function. In CMIB, since
the single category {x} is allocated to the category tnew that
tnew = arg mint∈T ∆L, there must exist information loss
once x is merged into the new categories, i.e., ∆L ≥ 0. In
other words, the “draw-and-merge” optimization will increase
the function (6). Second, we prove the objective function (6)
is upper bounded. The objective function (6) can be divided
int two parts: I(T ;Y ) − β−1I(X;T ) and

∑k
i=1 I(T ;Wi).

The first part is the objective function of original IB, and its
upbound was proven in [31]. For the second part, we obtain
I(T ;Wi) ≤ I(T ;W ) by assuming X has a true clustering W .
Thus, the objective function (6) is upper bounded. Therefore,
the objective function of CMIB can converge to a stable
solution.

2) Complexity: In this section, we analyze the time com-
plexity of CMIB. In step 2, the source data X is partitioned
into different categories with random initialization, so this step
takes O(1). In the main loop, the complexity of drawing data
point x at step 5 is O(1). The computation of the merge cost in
step 6 takes O(M |Y |), where M is the number of categories,
and |Y | is the dimension of the content feature. Therefore, the
overall time complexity of CMIB is O(M |X||Y |), where |X|

Unlabeled images Feature extraction Codebook
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Fig. 6. Image representation with the bag-of-visual-words model.

is the volume of data points. In the next experimental section,
we will show the convergence of the objective function (6).

IV. EXPERIMENTS

In this section, we conduct experiments to demonstrate the
effectiveness of the proposed CMIB.

A. Image datasets

In our experiments, seven real-world image datasets includ-
ing different object categories are employed for evaluation:
Soccer [32], A-Yahoo [33], Dslr, Webcam and Amazon [34].
The detailed information is shown in Table I. Some example
images in Soccer and NUS-22 are shown in Fig. 5.

Soccer 1 contains images collected from 7 soccer teams,
containing 40 images per class, for a total of 280 images.

A-Yahoo 2 consists of 12 objects which were collected
from the Yahoo image search. We select 11 categories in our
experiments, with each category containing 100 images.

Dslr, Webcam and Amazon 3 consist of images captured
with a digital SLR camera, recorded with a simple webcam
and download from www.amazon.com, respectively. These
three image datasets contain 31 object categories, which make
them quite challenging to be partitioned due to the high
diversity of the object categories.

CIFAR-10 4 (Canada Institute For Advanced Research)
consists of 15000 32x32 color images in 10 classes, with 1500
images per class.

NUS-22 5 consists of online images and the associated
tags, with a total number of 81 unique categories. We select
22 categories with a total number of 10500 images in our
experiment.

B. Data representation

We exploit the popular bag-of-visual-words (BoVW) model,
which has been widely used in various vision tasks, to repre-
sent the image collections. In the BoVW model, the following
steps should be implemented:

1http://lear.inrialpes.fr/people/vandeweijer/data
2http://vision.cs.uiuc.edu/attributes/
3https://people.eecs.berkeley.edu/ jhoffman//domainadapt
4http://www.cs.toronto.edu/ kriz/cifar.html
5http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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TABLE II
THE AC (%) COMPARISON OF CMIB WITH THE ORIGINAL IB AND FOUR OTHER TYPICAL CLUSTERING METHODS.

Datasets IB
k-means NCuts pLSA LDA CMIBSIFT Color Attention TPLBP

Soccer 35.86 ± 1.9 52.07 ± 4.2 23.68 ± 1.3 43.14 ± 2.2 49.46 ± 0.2 47.04 ± 3.9 49.04 ± 4.0 56.04 ± 3.2
A-Yahoo 26.88 ± 1.1 19.11 ± 0.8 33.19 ± 1.2 23.43 ± 1.3 21.43 ± 0.2 31.39 ± 1.4 32.93 ± 0.9 36.26 ± 1.6

Dslr 42.81 ± 1.5 34.45 ± 1.3 39.72 ± 2.0 32.63 ± 2.0 31.49 ± 0.7 30.82 ± 1.5 33.01 ± 1.2 49.32 ± 0.8
Webcam 38.84 ± 1.3 28.62 ± 1.2 36.28 ± 1.0 20.84 ± 1.2 31.56 ± 0.6 29.60 ± 1.7 28.73 ± 1.1 42.18 ± 2.6
Amazon 24.48 ± 0.8 12.56 ± 0.6 26.51 ± 1.2 13.33 ± 0.5 15.08 ± 0.2 18.85 ± 1.4 15.86 ± 1.3 29.17 ± 1.3

CIFAR-10 18.57 ± 0.9 20.13 ± 0.8 19.79 ± 1.1 13.88 ± 0.4 17.36 ± 0.5 15.86 ± 0.8 15.98 ± 0.2 25.44 ± 1.5
NUS-22 13.12 ± 1.0 12.42 ± 0.7 17.57 ± 1.2 15.72 ± 0.6 18.55 ± 0.4 16.90 ± 0.3 14.76 ± 0.5 21.84 ± 1.5
Average 28.65 25.62 28.11 23.28 26.42 27.21 27.19 37.18
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Fig. 7. The NMI comparison of CMIB with typical clustering methods.

1) Feature detection. We first detect the interest points
for each image. In particular, Harries corner detection [35]
is adopted to detect the local interest points, while a dense
sampling method [36] is utilized to capture the dense inter-
est points for the global image features. In this study, 128
dimensional SIFT [35], 36 dimensional Color Attention [37]
and 256 dimensional TPLBP [38] descriptors are utilized to
represent the content feature, global color and texture features,
respectively.

2) Codebook generation. A visual codebook is built using
the k-means algorithm and Euclidean distance as the clustering
metric for each type of descriptor. We set the number of
clusters as 1000, i.e, there are 1000 visual words in each
codebook.

3) Mapping descriptors into the codebook. All the
descriptors are mapped into their corresponding visual word
index.

4) Counting occurrence. The occurrence number of each
visual word is counted for each image, thus each image can
be represented by a histogram vector including occurrence
number of visual words.

Fig. 6 presents an illustration of the image representation
with the BoVW model. Given an unlabeled image collection
X = {x1, · · · , xn}, we can obtain the visual codebook
Y = {y1, · · · , yd} by the BoVW model, where n and d
are the number of images and visual words in the codebook,
respectively. Based on the BoVW model, each image can
be transformed into a histogram vector, thus, we obtain the
conditional distribution of the visual words as p(y|x) =

n(y|x)∑
y′∈Y n(y′|x) , where n(y|x) is the number of occurrences of

the word y in the image x. To avoid an undesirable bias due to
different numbers of features in images, we set a uniform prior
distribution p(x) = 1

n . Thus, the joint distribution between the
source image variable X and the visual word variable Y (we

also call it a relevant variable in this study) can be computed
by p(x, y) = p(y|x)p(x). In this study, we designate the SIFT
as the content information of the object, while the global color
and texture features are utilized to generate the visual contexts.

C. Comparison methods

We adopt five types of comparison methods: 1) Informa-
tion bottleneck. 2) Traditional clustering methods: k-means,
normalized cuts (NCuts) [39], probabilistic latent semantic
analysis (pLSA) [40], and latent Dirichlet allocation (L-
DA) [41]. 3) Ensemble clustering methods: cluster-based simi-
larity partitioning algorithm (CSPA), hyper-graph partitioning
algorithm (HGPA), meta-clustering algorithm (MCLA) [23]
and locally weighted evidence accumulation (LWGP) [24].
4) Multi-view clustering methods: coregularized multi-view
spectral clustering (CRSC) [20], cotraining multi-view spectral
clustering (CTSC) [19], robust multi-view spectral cluster-
ing (RMSC) [21] and multivariate information bottleneck
(MIB) [27]. 5) Image clustering methods: local discriminant
models and global integration (LDMGI) [42], clustering-by-
composition (CC) [43] and ensemble projection (EP) [44].

To ensure the fairness of comparisons, all the input datasets
are represented by the widely used BoVW model. The total
number of clusters is provided for all the clustering algorithms.
To fairly compare performance of IB, MIB and CMIB, we
fix the trade-off parameter β as 40. For NCuts, LDMGI
and CC, the number of nearest neighbors is fixed as 5
according to [42], [43], and the best regularization parameter
in LDMGI is searched in {10−8, 10−6, · · · , 106, 108}. For
LDA, the Dirichlet parameter α = M/50, where M is the
number clusters of each dataset. For CTSC, CRSC and RMSC,
Gaussian kernels are used to build the similarity matrix for
each single view, and the regularization parameter λ is varied
from 0.01 to 0.05 and the best result is reported. For LWGP,
the cluster uncertainty parameter θ = 0.4 for all datasets. For
EP, we set the number of weak training sets as 1000, where
the training sets are created by performing a random walk
sampling [44] on the unlabeled images, and the number of
training images for each class is set as 9. In this study, we use
the ground-truth label to evaluate the final clustering quality of
all baselines, and all clustering stages do not involve looking
at the ground-truth label. Besides, the number of clusters need
to be specified up front for all the baselines used in this study
including CMIB.
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TABLE III
THE AC (%) COMPARISON OF CMIB WITH STATE-OF-THE-ART ENSEMBLE AND MULTI-VIEW CLUSTERING METHODS.

Datasets Ensemble clustering Multi-view clustering CMIBCSPA HGPA MCLA LWGP CTSC CRSC RMSC MIB
Soccer 53.93 ± 0.1 39.89 ± 6.0 47.11 ± 0.3 50.69 ± 2.3 38.39 ± 3.7 31.46 ± 1.9 27.04 ± 1.8 51.12 ± 3.0 56.04 ± 3.2

A-Yahoo 32.79 ± 0.3 20.75 ± 1.4 32.17 ± 0.6 32.46 ± 1.2 31.43 ± 1.1 29.00 ± 0.6 25.20 ± 0.4 32.17 ± 1.4 36.26 ± 1.6
Dslr 45.58 ± 0.5 39.38 ± 1.5 42.25 ± 0.4 41.74 ± 2.1 41.29 ± 1.5 36.08 ± 1.3 35.92 ± 1.5 44.26 ± 1.0 49.32 ± 0.8

Webcam 40.75 ± 0.1 33.19 ± 2.1 37.42 ± 0.7 39.85 ± 2.2 38.25 ± 2.0 36.31 ± 0.8 28.74 ± 1.1 39.28 ± 2.3 42.18 ± 2.6
Amazon 25.19 ± 0.6 14.67 ± 0.7 22.85 ± 0.4 23.37 ± 1.5 26.08 ± 1.0 21.32 ± 0.6 15.43 ± 0.5 20.62 ± 1.1 29.17 ± 1.3

CIFAR-10 23.68 ± 0.3 16.16 ± 1.2 18.66 ± 0.5 18.78 ± 2.0 21.02 ± 1.3 18.66 ± 0.8 20.80 ± 1.0 21.15 ± 1.2 25.44 ± 1.5
NUS-22 20.72 ± 0.4 18.55 ± 1.6 17.90 ± 0.7 16.76 ± 1.6 18.63 ± 1.4 19.28 ± 0.7 17.36 ± 0.9 19.38 ± 1.6 21.84 ± 1.5
Average 34.67 26.08 31.45 31.95 30.73 27.44 24.36 32.57 37.18
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Fig. 8. The NMI comparison of CMIB with state-of-the-art ensemble and
multi-view clustering methods.

D. Evaluation metrics

In this paper, we employ two metrics, normalized mutual
information (NMI) and clustering accuracy (AC) [19], to
evaluate the performance of the different methods.

Given an image xi, let li and ti be the ground-truth label
and the obtained cluster label respectively, so AC is:

AC =

∑n
i=1 δ(li,map(ti))

n
, (13)

where n is the total number of images and δ(li,map(ti))
is the delta function that equals 1 if x = y, otherwise the
delta function equals 0, and map(ti) is the optimal mapping
function that permutes clustering labels to match the ground-
truth labels. The optimal mapping is obtained by the Kuhn-
Munkres algorithm [45].

Unlike AC, NMI is an information theoretic-based met-
ric [23], that estimates the quality of the clustering results
by measuring the degree of agreement between the learned
clusters and the ground-truth class. NMI can be estimated by

NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j

nin̂j√
(
∑c

i=1 ni log ni

n )(
∑c

j=1 n̂j log
n̂j

n )
, (14)

where ni indicates the number of images in cluster Ci (1 ≤
i ≤ c), n̂j is the number of images in ground-truth class Lj

(1 ≤ j ≤ c), and ni,j indicates the number of images that are
in the intersection between cluster Ci and class Lj . The larger
the value of NMI the better the clustering results will be.

TABLE IV
THE AC (%) COMPARISON OF CMIB WITH STATE-OF-THE-ART IMAGE

CLUSTERING METHODS.

Datasets LDMGI CC EP CMIB
Soccer 43.21 ± 0.5 47.75 ± 2.2 48.21 ± 0.4 56.04 ± 3.2

A-Yahoo 28.11 ± 1.1 32.27 ± 0.6 30.87 ± 1.5 36.26 ± 1.6
Dslr 37.51 ± 1.6 47.27 ± 1.7 36.22 ± 1.6 49.32 ± 0.8

Webcam 33.53 ± 1.0 40.97 ± 0.8 24.47 ± 0.6 42.18 ± 2.6
Amazon 19.56 ± 0.7 26.04 ± 1.0 20.81 ± 0.5 29.27 ± 1.3

CIFAR-10 18.05 ± 3.4 19.57 ± 1.2 20.79 ± 0.1 25.44 ± 1.5
NUS-22 17.09 ± 0.1 18.11 ± 0.9 16.32 ± 0.8 21.84 ± 1.5
Average 28.15 33.14 28.24 37.18
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Fig. 9. The NMI comparison of CMIB with state-of-the-art image clustering
methods.

E. Comparative Analysis

In this part, extensive experiments are conducted to demon-
strate the effectiveness of CMIB compared with seven types
of comparison methods.

1) Baselines without visual contexts: We conduct experi-
ments to verify the performance of CMIB compared with the
original IB method. From Table II, we have the following
observations. First, the clustering results (AC) of the IB
algorithm on the three cues are different. This demonstrates
that a single type of feature is not sufficiently discriminative
and stable for different datasets. Second, by incorporating
multiple visual contexts, the proposed CMIB method clearly
performs better than the IB algorithm.

Further experiments are conducted to compare the CMIB
with four other traditional clustering approaches: k-means, N-
Cuts [39], pLSA [40] and LDA [41]. From Table II and Fig. 7,
we observe that the CMIB method significantly outperforms
all other traditional clustering methods, which is mainly caused
by the visual contexts used in our CMIB method.

2) Comparison with ensemble and multi-view clustering
methods: Essentially, contextual information is a complement
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Fig. 10. The AC values of CMIB on the seven datasets with different trade-off parameters.

to the content information of an object. In this regard, it is
pertinent to discuss multi-view and ensemble clustering meth-
ods. Both aim to improve the performance of the unsupervised
object categorization model by considering the complementary
effect of multiple related components.

In this section, we first conduct comparative experiments
with ensemble clustering methods (CSPA, HGPA, MCLA [23]
and LWGP [24]) to demonstrate the effectiveness of CMIB.
We utilize the original IB to construct 30 base clusterings
for the above ensemble clustering methods, in which each
feature generates 10 clusterings. From Table III and Fig. 8, the
CMIB outperforms all four ensemble clustering methods on
the seven datasets. This is mainly because ensemble clustering
methods usually limit the final results to the quality of the
existing base clusterings. The proposed CMIB method can deal
with the original feature (content feature) and visual contexts
(basic clusterings) simultaneously and relieve the overreliance
of ensemble clustering methods on auxiliary clusterings.

To further demonstrate the performance of CMIB, we
compare it with other four multi-view clustering methods:
CTSC [19], CRSC [20], RMSC [21] and MIB [46]. In this
experiment, we treat each feature (SIFT, Color Attention
and TPLBP) as one input view of the multi-view clustering
methods. From Table III and Fig. 8, we can see that the
performances of CMIB are also significantly better than the
multi-view clustering methods. The CMIB algorithm also
outperforms the original MIB, mainly because the original
MIB can only address information sources with complete-
ly homogenous data distributions, while the multiple visual
contexts in the proposed CMIB naturally have the ability to
address heterogenous features.

3) Comparison with state-of-the-art image clustering meth-
ods: For comparison with promising unsupervised object cat-
egorization methods, we adopt local discriminant models and
global integration (LDMGI) [42], clustering-by-composition
(CC) [43] and ensemble projection (EP) [44] as baselines.
As shown in Table IV, the average AC values of the CMIB
algorithm on the seven datasets obtain 17.47%, 13.98%, and
17.41% improvements, compared with the other three base-
lines. We have the same observations in terms of NMI in
Fig. 9.

F. Explanation of impact factors

1) Parameter analysis: In CMIB, β strikes a balance be-
tween information preservation and data compression. Thus,
we conduct an experiment to investigate the impact of β on

 

Fig. 11. The relationship between internal CVIs value of the CMIB and the
number of categories. Note that, the larger CH and SI value and the smaller
DB value are preferred. The red points indicate the peak values of CH SI and
DB.

the performance of CMIB. Specifically, we vary the values of
β from the space {1, 5, 10, 15, 20, 40, 60, 80, 100, 140}.
From Fig. 10, we obtain the following observations: First,
when β → 0, CMIB performs poorly since it only addresses
the compression from source images X to its compressed
representation T , i.e., the object category in this study. When
increasing the value of β, CMIB performs much better be-
cause it strikes a balance between the data compression and
information preservation. We set β to 40 on all the datasets in
this study.

2) The influence of different numbers of categories: In real
world clustering applications, the number of categories M is
often unknown. Although the external cluster validity indices
(CVIs) can accurately evaluate the quality of a clustering by
measuring the similarity or dissimilarity between the ground-
truth and candidate categories, it is impossible to generate the
ground-truth with different numbers of clusters for one dataset.
Thus, we resort to internal cluster validity indices (CVIs) [47]
to measure the quality of clustering with different numbers of
clusters, which evaluate the quality of clustering results based
only on the data themselves. As evaluation metrics without
ground-truth label, we adopt Calinski-Harabasz values (CH),
Silhouette values (SI), Davies-Bouldin values (DB), as they
are widely used in the literature.

Fig. 11 presents the CH, SI and DB values of CMIB on
the Soccer dataset by varying the number of categories from
3 to 10. As shown in this figure, we obtain the following
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Fig. 12. Time complexities with respect to different sizes of CIFAR-10 and
NUS-22 datasets.

TABLE V
THE AC (%) VALUE OF CMIB ON DIFFERENT MULTITUDES OF FEATURES.

THE THREE COLUMNS ARE THE RESULTS OF CMIB WITH THE VISUAL
CONTEXTS BY ONE AND TWO TYPES OF GLOBAL FEATURES. THE

UNDERLINED RESULTS SHOW THE SECOND BEST RESULTS.

Datasets CMIB
SIFT+Color SIFT+TPLBP SIFT+Color+TPLBP

Soccer 53.46 ± 2.8 38.23 ± 2.2 56.04 ± 3.2
A-Yahoo 29.17 ± 1.4 35.64 ± 1.8 36.26 ± 1.6

Dslr 45.63 ± 1.1 47.38 ± 0.9 49.32 ± 0.8
Webcam 40.12 ± 2.1 40.16 ± 1.8 42.18 ± 2.6
Amazon 26.43 ± 0.9 28.42 ± 1.4 29.27 ± 1.3

CIFAR-10 22.56 ± 1.2 20.08 ± 1.8 25.44 ± 1.5
NUS-22 15.23 ± 1.5 20.49 ± 1.3 21.84 ± 1.5
Average 33.23 32.91 37.18

observations. First, the values of the three CVIs fluctuates to a
certain degree with varying the numbers of categories. Second,
the corresponding cluster numbers are 7, 7 and 8 when the CH,
SI and DB obtain the optimal value on the Soccer dataset.
They are close to the number of the known genuine class of
the Soccer dataset, which is 7. Thus, the internal CVIs can
provide some guidance for the automatic determination of the
numbers of categories.

3) Time complexity analysis: In this study, we propose a
novel sequential information-theoretic solution to optimize the
objective function of the CMIB algorithm. To compare the
running time of the sequential solution with the agglomerative
solution, we design an agglomerative optimization based on
[30] to optimize CMIB and call it “agglomerative CMIB”.
To distinguish, we name the sequential solution “sequential
CMIB”. As shown in Fig. 12, the running times of the sequen-
tial and agglomerative CMIB are comparable when the data
size is small. With an increase in data size, the time increment
of the agglomerative CMIB is larger than that of the sequential
one. As shown in Section III-E, the time complexity of the
sequential CMIB is O(M |X||Y |), where M , |X| and |Y | are
the category number, data size and feature dimensionality. In
clustering scenario, the category number is always far smaller
than the number of datasets, i.e., M << |X|, thus, we can
obtain significant run time improvement.

4) Multitude of feature representations: The proposed
CMIB adopts a content feature (SIFT in this study) to char-
acterize the content information of the target object, while
automatically generating a set of visual contexts by multiple
global features. Thus, we conduct experiments to show the

impact of different multitudes of feature representations on
the performance of CMIB. As shown in Table V, we obtain
the following observations. First, the AC values of CMIB fluc-
tuate to a certain degree when considering individual global
feature. This is mainly caused by the distinguishing abilities
of different features. For instance, the TPLBP features cannot
depict the Soccer data very well (refer to Table II), therefore,
the results of CMIB are not satisfactory results by considering
SIFT + TPLBP on Soccer dataset. Second, the clustering
performance of CMIB is superior and stable when considering
two visual contexts. This also verifies the robustness of CMIB
on multitude of possible feature representations. We believe
the performance of CMIB can be further improved by more
promising features, such as CNN feature.

5) The performance on classification metrics: In essence,
both clustering and classification approaches aim to distin-
guish a set of data instances into categories. Specifically,
the clustering approaches divide unlabeled data into a set of
disjoint subsets with high intra-cluster similarity and low inter-
cluster similarity, while the classification approaches first train
a classifier using labeled data, then a new-coming unlabeled
data instance is labeled by the classifier. Thus, some typical
classification metrics can be adopted to evaluate the perfor-
mance of clustering method once the ground-truth label is
given, which is usually used in the literature of external cluster
validity indices [47].

In this section, we adopt F1-Measure [48] to further
evaluate the performance of CMIB. F1-Measure depicts the
overall performance of the clustering or classification results,
which refers to the harmonic average of precision (i.e., the
ratio of true positives to all instances predicted as positive)
and recall (i.e., the ratio of true positives to all instances that
are actually positive). F1-Measure is defined as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

F1 −Measure =
2 · precision · recall
precision+ recall

,
(15)

where TP, FP and FN are the number of true positives, false
positives and false negatives, respectively. The larger the value
of F1-Measure the better the clustering results will be.

Fig. 13 presents the F1-Measure comparison of CMIB
with all the baselines on the seven datasets. From Fig. 13,
we can observe that the proposed CMIB algorithm performs
much better than other baselines in terms of the F1-Measure
metrics. The comparison with typical classification metrics
further demonstrates the effectiveness of the proposed CMIB
algorithm, which also would open up a much wider audience
for this study.

6) Convergence analysis: Fig. 14 shows the number of
iterations of the CMIB algorithm on the seven datasets. It
can be observed that function (6) increases monotonically and
reaches convergence rapidly in a limited number of iterations.

V. CONCLUSIONS

We propose a novel contextual multivariate information
bottleneck (CMIB) approach, which aims to discover the
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Fig. 13. The F1-Measure comparison of CMIB with all the baselines on the seven datasets used in this study.
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Fig. 14. The iterations of CMIB on the seven datasets.

object category in unlabeled images by simultaneously con-
sidering content information and their visual contexts. Rather
than using the manual contexts, we focus on automatically
constructing visual contexts from the unlabeled image data.
CMIB treats object category discovery as a data compression
procedure, in which both content and contextual information
can be preserved maximally. Specifically, CMIB utilizes two
Bayesian networks to characterize the relationship between
data compression and information preservation. We present
extensive experiments showing that the performance of our
CMIB method is superior to other existing state-of-the-art
baselines. In future research, we will investigate more mean-
ingful visual contexts and test the proposed method on more
realistic applications, for example, unsupervised domain adap-
tation via multi-task clustering.

REFERENCES

[1] Y. Park and I. S. Kweon, “Ambiguous surface defect image classification
of amoled displays in smartphones,” IEEE Transactions on Industrial
Informatics, vol. 12, no. 2, pp. 597–607, 2016.

[2] J. Yang, B. Jiang, B. Li, K. Tian, and Z. Lv, “A fast image retrieval
method designed for network big data,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 5, pp. 2350–2359, 2017.

[3] T.-T. Do and N.-M. Cheung, “Embedding based on function approx-
imation for large scale image search,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 3, pp. 626–638, 2018.

[4] L. Zhao, Z. He, W. Cao, and D. Zhao, “Real-time moving object segmen-
tation and classification from hevc compressed surveillance video,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 28,
no. 6, pp. 1346–1357, 2017.

[5] D. Li, Z. Zhang, X. Chen, and K. Huang, “A richly annotated pedes-
trian dataset for person retrieval in real surveillance scenarios,” IEEE
Transactions on Image Processing, vol. 28, no. 4, pp. 1575–1590, 2019.

[6] S. Kumar and M. Hebert, “A hierarchical field framework for unified
context-based classification,” in International Conference on Computer
Vision, 2005, pp. 1284–1291.

[7] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Be-
longie, “Objects in context,” in International Conference on Computer
Vision, 2007, pp. 1–8.

[8] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky, “Exploiting
hierarchical context on a large database of object categories,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2010, pp. 129–
136.

[9] X. Song, S. Jiang, and L. Herranz, “Joint multi-feature spatial context
for scene recognition on the semantic manifold,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 1312–1320.

[10] L. Yang, K. Tang, J. Yang, and L. J. Li, “Dense captioning with joint
inference and visual context,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 1978–1987.

[11] J. Yuan and Y. Wu, “Context-aware clustering,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[12] H. Wang, J. Yuan, and Y. Tan, “Combining feature context and spatial
context for image pattern discovery,” in International Conference on
Data Mining, 2011, pp. 764–773.

[13] V. Nguyen, D. Phung, X. Nguyen, and H. H. Bui, “Bayesian nonpara-
metric multilevel clustering with group-level contexts,” in International
Conference on Machine Learning, 2014, pp. 288–296.

[14] G. Lin, C. Shen, A. van den Hengel, and I. Reid, “Exploring context with
deep structured models for semantic segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1352–
1366, 2018.

[15] S. Jones and L. Shao, “Unsupervised spectral dual assignment clustering
of human actions in context,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 604–611.

[16] F. Kamangar, “Heterogeneous image feature integration via multi-modal
spectral clustering,” in Computer Vision and Pattern Recognition, 2011,
pp. 1977–1984.

[17] J. Wang, Z. Chen, and Y. Wu, “Action recognition with multiscale spatio-
temporal contexts,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2011, pp. 3185–3192.

[18] D. Harwath, A. Torralba, and J. Glass, “Unsupervised learning of
spoken language with visual context,” in Advances in Neural Information
Processing Systems, 2016, pp. 1858–1866.

[19] A. Kumar and H. Daume, “A co-training approach for multi-view
spectral clustering,” in International Conference on Machine Learning,
2011, pp. 393–400.

[20] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view spectral



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2939278, IEEE
Transactions on Industrial Informatics

12

clustering,” in Advances in Neural Information Processing Systems,
2011, pp. 1413–1421.

[21] R. Xia, Y. Pan, L. Du, and J. Yin, “Robust multi-view spectral clus-
tering via low-rank and sparse decomposition,” in AAAI Conference on
Artificial Intelligence, 2014, pp. 2149–2155.

[22] Z. Zhang, L. Liu, F. Shen, H. T. Shen, and L. Shao, “Binary multi-
view clustering,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 7, pp. 1774–1782, 2019.

[23] A. Strehl and J. Ghosh, “Cluster ensembles-a knowledge reuse frame-
work for combining multiple partitions,” Journal of Machine Learning
Research, vol. 3, pp. 583–617, 2003.

[24] D. Huang, C. D. Wang, and J. H. Lai, “Locally weighted ensemble
clustering,” IEEE Transactions on Cybernetics, vol. 48, no. 5, pp. 1460–
1473, 2018.

[25] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” in Annual Allerton Conference on Communnication, Control
and Computing, 1999, pp. 368–377.

[26] N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby, “Multivariate
information bottleneck,” in Conference in Uncertainty in Artificial
Intelligence, 2001, pp. 152–161.

[27] N. Slonim, N. Friedman, and N. Tishby, “Multivariate information
bottleneck,” Neural Computation, vol. 18, no. 8, pp. 1739–1789, 2006.

[28] T. M. Cover and J. A. Thomas, Elements of Information Theory, 1991.
[29] J. Philbin, O. Chum, J. Sivic, and A. Zisserman, “Object retrieval with

large vocabularies and fast spatial matching,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[30] N. Slonim, “Agglomerative information bottleneck,” in Advances in
Neural Information Processing Systems, 1999, pp. 617–623.

[31] ——, “The information bottleneck: Theory and applications,” Ph.D
Dissertation, Hebrew University, 2002.

[32] J. V. D. Weijer and C. Schmid, “Coloring local feature extraction,” in
European Conference on Computer Vision, 2006, pp. 334–348.

[33] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by
their attributes,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 1778–1785.

[34] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category
models to new domains,” in European Conference on Computer Vision,
2010, pp. 213–226.

[35] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[36] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-
features image classification,” in European Conference on Computer
Vision, 2006, pp. 490–503.

[37] F. S. Khan, J. D. Weijer, and M. Vanrell, “Top-down color attention for
object recognition,” in International Conference on Computer Vision,
2009, pp. 979–986.

[38] L. Wolf, T. Hassner, and Y. Taigman, “Descriptor based methods in the
wild,” in European Conference on Computer Vision, 2008.

[39] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[40] T. Hofmann, “Probabilistic latent semantic analysis,” in Conference on
Uncertainty in Artificial Intelligence, 1999, pp. 289–296.

[41] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[42] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang, “Image clustering using
local discriminant models and global integration,” IEEE Transactions on
Image Processing, vol. 19, no. 10, pp. 2761–2773, 2010.

[43] A. Faktor and M. Irani, “Clustering by composition - unsupervised
discovery of image categories,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 6, pp. 1092–1106, 2014.

[44] D. Dai and L. J. V. Gool, “Unsupervised high-level feature learning by
ensemble projection for semi-supervised image classification and image
clustering,” CoRR, vol. abs/1602.00955, 2016.

[45] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Dover Publications, 1998.

[46] X. Yan, Y. Ye, and Z. Lou, “Unsupervised video categorization based on
multivariate information bottleneck method,” Knowledge-Based Systems,
vol. 84, pp. 34–45, 2015.

[47] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, and S. Wu, “Understanding
and enhancement of internal clustering validation measures,” IEEE
Transactions on Cybernetics, vol. 43, no. 3, pp. 982–994, 2013.
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