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Abstract—The Deep Self-Organizing Map (DSOM) was intro-
duced to embed hierarchical feature abstraction capability to
SOMs. This paper presents an extended version of the original
DSOM algorithm (E-DSOM). E-DSOM enhances the DSOM in
two ways: 1) learning algorithm is modified to be completely
unsupervised, and 2) architecture is modified to learn features
of different resolution in hidden layers. E-DSOM has three main
advantages over the original DSOM: 1) improved classification
accuracy, 2) improved generalization capability and 3) need of
fewer sequential layers (reduced training time). E-DSOM was
tested on benchmark and real-world datasets and was compared
against DSOM, SOM, Stacked Autoencoder (AE), and Stacked
Convolutional Autoencoder (CAE). Experimental results showed
that the E-DSOM outperformed DSOM with improvements of
classification accuracy up to 15% while saving training time up
to 19% on all datasets. Moreover, E-DSOM evidenced better
generalization capability compared to the DSOM by showing
superior performance on all datasets with induced noise. Further,
E-DSOM showed comparable performance to the AE and the
CAE while outperforming them on two datasets.

Index Terms—Deep Self Organizing Maps; Unsupervised
Learning; Image classification; Deep Learning; Generalization

I. INTRODUCTION

The ubiquity of image sensing devices has led to the
generation of substantial amounts of image data in real-world
industrial settings[1]. In addition to the directly acquired im-
ages, recently it has been shown that numerical data acquired
from industrial processes can be viewed as images so that
image data mining techniques can be applied on them [1], [2].
Successful mining of these images (classification, clustering)
can lead to several advantages including process optimization,
fault diagnosis, and improved cyber-security [1], [3], [4], [5],
[6], [7].

In image classification, deep learning algorithms such as
Deep Convolutional Neural Networks (CNN) have shown
unprecedented performance [8], [9]. Recent attempts have
focused on improving the efficiency of these algorithms by
developing light-weight deep neural networks [10]. Despite
many advantages, one major drawback of these state-of-the-
art image classification algorithms is that they are dependent
on the availability of large labeled datasets. The scarcity of
labeled data in the real world is a major hurdle to deploy
supervised models in the real-world [3], [11], [12], [13].
Therefore, unsupervised approaches are ideal to leverage the
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abundantly available unlabeled data in industrial applications
[3], [12], [13].

Several unsupervised image classification methodologies
have been explored in literature such as Bayesian hierarchical
clustering [14], [15] and Markovian models [16]. In more
recent attempts, specialized deep learning methodologies such
as Spiking Neural Networks (SNN) [17] and Generative Ad-
versarial Nets (GANs) [18] were proposed. These algorithms
have shown comparable performance with supervised algo-
rithms for the MNIST dataset [17]. However, these models
have some limitations when it comes to deploying them in the
real-world. For example, the complex architecture of SNNs
leads to low understandability and requirements of specialized
hardware to deploy [19], [20]. Similarly, GANs suffer from
poor interpretability and has been shown that they suffer
from high training times [21], [22]. In addition, deep learning
methodologies such as stacked convolutional Autoencoders
(CAEs) have shown much promise in unsupervised learning
for image classification [9], [23]. In this work, we focus on
using Self-Organizing Maps (SOMs) based methodology for
image classification using unsupervised deep learning.

The SOM is an unsupervised learning architecture capable
of mapping high-dimensional data distributions onto low-
dimensional distributions while preserving the most important
topological relationships of input data. Therefore, SOMs are
suitable for visualizing and mining high dimensional data [24],
[25], [26]. Other advantages of SOMs include interpretability
and understandability [23], [27], ease of optimization [28], and
better capability of revealing overlapping structures in clusters
compared to traditional clustering methods [29]. SOMs have
been successful in a multitude of areas including speech
recognition, robotics and process control [27], [30], [31], [2],
[3], [4], [5], [6], [7], [8]. The major drawback of SOMs is its
limited capability of high-level feature abstraction due to the
shallow structure [32].

One of the recent attempts at alleviating this limitation
was to explore a deep architecture of SOMs, named Deep
Self-Organizing Maps (DSOM) by Liu et al [25]. Authors
tested the DSOM on the MNIST dataset and were able to
achieve a better classification accuracy compared to the single
layer SOM. Since DSOM architecture uses the same learning
mechanism as SOMs, it inherits all the advantages of SOMs
mentioned above. However, the authors of [25] explored a
supervised learning algorithm with DSOM and thus relied
on the availability of labeled data. In our previous work, we
explored a parallelized version of an unsupervised DSOM.
It showed promising results on the MNIST dataset [33]. An



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2906083, IEEE
Transactions on Industrial Informatics

2

accurate unsupervised DSOM architecture has the following
main advantages: 1) the ability to leverage unlabeled datasets,
2) hierarchical feature abstraction based unsupervised learning,
and 3) the ability to deploy without special hardware.

This paper presents an extended architecture of the initially
proposed DSOM (E-DSOM). E-DSOM enhances the DSOM
in two ways: 1) the learning algorithm is completely unsu-
pervised and 2) the architecture learns features of different
resolutions in parallel in a single hidden layer. Please note
that in the rest of the paper, DSOM refers to the architecture
proposed by Liu et al. in [25] and E-DSOM refers to the
architecture presented in this paper. The main contributions of
this work are summarized as follows:

1) An unsupervised, easy to understand, easy to implement
deep SOM architecture for image classification. The goal
of this work is not to improve on the accuracies of other
supervised learning architectures such as CNN. The goal
is to present an unsupervised learning methodology,
with high-level feature abstraction capability for image
classification.

2) A deep SOM architecture capable of learning features
of different resolutions simultaneously. We hypothesize
that this capability improves classification accuracy and
the generalization capability of the model. Further, we
hypothesize that this will result in a shallower model
compared to the DSOM and lead to reduced training
times.

The rest of the paper is organized as follows. Section II
provides the background which includes SOM and DSOM al-
gorithms; Section III presents the E-DSOM algorithm; Section
IV presents the experimental setup and results, and finally,
Section V concludes the paper and discusses future directions.

II. BACKGROUND

This section provides the background information needed to
present the E-DSOM algorithm. First, the single-layered SOM
is introduced. Then, the DSOM algorithm proposed by Liu et
al. in [25] is presented.

A. Self-Organizing Maps

SOMs consist of a topological neuron grid (typically 2D)
with each neuron consisting of a weight vector. The SOM
adapts itself to the topological properties of input data using
the unsupervised “winner-take-all” learning algorithm. Both
DSOM and E-DSOM use this as the underlying learning
mechanism in the hidden layers.
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Fig. 1. Two layered DSOM architecture used for handwritten character
recognition [25]

TABLE I
ALGORITHM FOR TRAINING THE SELF-ORGANIZING MAP

Algorithm I: SOM Training
Inputs: Training set of images (X)
Outputs: Trained SOM
1: Random Weight initialization
2: for each epoch e do
3: for number of training samples do
4: x← pick random input record from X
5: md← initialize to the largest float
6: for number of neurons in SOM do
7: di ← ‖X −Wi‖

% find the BMU
8: if di < md do
9: BMUx ←Wi % weight of BMU

10: BMUIndexx ← i % index of BMU
11: md← di
12: end if
13: end for

% update weights
14: for number of neurons in SOM neighborhood do

15: n←− e−
(
BMUx−w

2δt2

)
16: 4Wi ←−Wi × α× η × (x− w)
17: Wi ←−Wi +4Wi

18: end for
% Decay the neighborhood and learning rate

19: end for
20: end for

The learning algorithm for a SOM is given in Algorithm I
(Table I). For each input pattern, the SOM selects the neuron
that best matches the pattern in terms of Euclidean distance.
This neuron is called the Best Matching Unit (BMU). Then,
the SOM updates weights of the neurons in the neighborhood
of the BMU so that they move closer to the BMU (line 14-18
in Algorithm I). The learning rate and the radius of the BMU
neighborhood are used as the controlling hyper-parameters.

The learning rate and the neighborhood radius is decayed
with time. The neighborhood radius is halved at each epoch.
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The learning rate is decayed as follows:

η(t) = 0.49
(
1− e

epochs

)
+ 0.01 (1)

Where e is the current epoch and epochs is the total number
of epochs. The most important hyper-parameter of the SOM is
the size of the map. If the map size is too small, it will lead to
the model not capturing the feature space adequately (under-
fitting). Conversely, if the map size is too large, it will lead to
over-fitting the training data and unnecessary computations.

B. Deep Self-Organizing Maps

The DSOM is a multi-layered SOM architecture, which
consists of an input layer, hidden layers, and an output layer.
The initial design of DSOMs merged the concepts of SOMs
and Convolution Neural Networks (CNNs). SOMs provided
the underlying learning mechanism to DSOM while CNNs
inspired the high-level feature abstraction process.

In CNNs, in each hidden layer, each unit (neuron) receives
inputs from a subset of units in the preceding layer (local re-
ceptive field/patch) [34], [35]. The lower-level features learned
in the preceding layer are combined in the current hidden layer
to generate higher-level features. This idea was incorporated
into the DSOM architecture so that higher-level layers are
capable of learning more abstract information than lower-level
layers.

Although DSOM uses local receptive fields, the function
of hidden layers is completely different from CNN. In CNN
hidden layers, a convolution operation followed by a pooling
step generates the feature map for the next layer. Conversely,
hidden layers in DSOM process the patches with SOMs and
aggregate the BMUs to generate the feature map. Therefore,
the only similarity between DSOM and CNN is the notion

of the local receptive field. Figure 1 shows a DSOM archi-
tecture with two hidden layers, which was used for MNIST
classification by Liu et al [25].

The function of each layer in the DSOM can be summarized
as follows:
Input layer: Forwards the input images to the DSOM
Hidden Layer: Each hidden layer consists of two phases: 1)
SOM phase and 2) sampling phase. In the SOM phase, each
input image is segmented into smaller local regions (patches).
Then, each patch is sent to its own SOM unit in this layer,
i.e. each patch is processed by its own SOM. Each SOM
finds the BMU for the input patch using the Algorithm I. In
the sampling phase, the BMUs of the hidden SOM units are
combined to generate a single 2D grid (see Figure 2). This 2D
grid acts as the input image (feature map) to the next hidden
layer. This process is repeated for all hidden layers.
Output layer: The output layer contains a single SOM. It
receives the feature map generated by the last hidden layer.
The output SOM extracts abstract and pertinent information
for classification.

III. EXTENDED DEEP SELF-ORGANIZING MAPS

This section presents the E-DSOM architecture, its unsu-
pervised learning algorithm, classifier implementation and a
discussion on computational complexity.

A. E-DSOM Architecture

Similar to the DSOM architecture, the E-DSOM consists
of an input layer, hidden layers, and an output layer. The
main differences in the E-DSOM architecture are in the hidden
layers. As opposed to the DSOM, E-DSOM hidden layers
contain several parallel layers (See Figure 3). Each parallel
layer has its SOM phase and sampling phase. In the sampling
phase, first, a feature map for each parallel layer is created.
Then, those feature maps are combined to generate one feature
map.

E-DSOM uses different sized patches (multi-scale patches)
in parallel SOM layers of the hidden layers. It has been
shown that multi-scale patch approaches help to improve clas-
sification accuracy by extracting complementary information
[36], [37]. Figure 3 shows an E-DSOM architecture with two
parallel layers with different patch sizes.

The above architecture modification enables the algorithm
to learn feature spaces of different size and resolution by
using different map sizes and patch sizes in the parallel layers.
We hypothesize that this ability will 1) improve classification
accuracy, 2) improve generalization capability, and 3) reduce
the need for sequential hidden layers (reduce training time). In
this work, more emphasis is laid on changing the patch size,
i.e., changing the size of the local region of focus to enable
the learning features of different resolutions.

B. Training the E-DSOM

Training algorithm of the E-DSOM is presented in Algo-
rithm II (Table II). Similar to the SOM and DSOM, weights
of the network are randomly initialized. In a hidden layer,
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TABLE II
ALGORITHM FOR TRAINING THE E-DSOM

Algorithm II: E-DSOM Training
Inputs: Training set of images (X)
Outputs: Trained E-DSOM

1: Random Weight initialization
2: for each epoch e do
3: for number of training samples do
4: x← pick random input record from X
5: for each hidden layer l do
6: featureMapList← empty list of length P
7: for each parallel SOM layer p do
8: featureMapList[p]← ParallelLayer(x)
9: end for

10: x← CombinedSampling(featureMapList)
11: end for
12: OutputSOM ← Algorithm I ( x )

% Find the BMU for ( x ) using SOM algorithm
13: end for
14: end for

Procedure I: ParallelLayer
Inputs: Input record (x), Number of patches (p)
Outputs: Sampled featureMap

1: featureMap← empty list of length p
2: for each patch x‘ do:
3: indexx ← the location of x‘ w.r.t. x
4: BMUx‘ ← get BMU index for x‘ on corresponding SOMx‘

5: featureMap[index]← BMUindex
6: end for

Procedure II: CombinedSampling
Inputs: List of feature maps from each parallel layer ( featureMapList )
Outputs: Combined Feature Map

1: comFeatureMap← Append featureMapList to a single list
2: l← length of comFeatureMap

3: if
√
l /∈ N for; N = {1, 2, 3, 4, ...}

4: Use zero-padding on comFeatureMap until
√
l ∈ N

5: CFM ← Reshape comFeatureMap to a 2D vector of size
√
l ∗
√
l

6: return CFM

the SOM phase consists of P parallel SOM layers with P
different patch sizes (Algorithm II, lines 7-9). For each patch
size, the number of patches along one dimension is calculated
as follows:

Nmap = ceil
(M −K

S

)
+ 1 (2)

where ceil(·) calculates the smallest integer upper, M is the
pixel width/height of the input image X (M×M image) K is
the width/height of the patch (K×K patch) and S is the stride
of the patch. Therefore, Nmap×Nmap number of patches are
created form the input image for each patch size (see Figure
2), i.e. Nmap ×Nmap number of SOMs are created for each
parallel layer.

In all the parallel SOM layers, the BMU selection for its
respective patches is carried out followed by its sampling pro-
cess(see Procedure I). Therefore, P feature maps are created
(see Algorithm II) [25]. All feature maps are converted to one-
dimensional arrays and concatenated into a single array. Then,
the resultant array is reshaped to a 2D grid which acts as the
input image to the next hidden layer (see Procedure II).

After processing the hidden layers, the combined feature
map generated from the last hidden layer acts as the input
to the output SOM. The output layer SOM is trained using
Algorithm I.

C. Classifier

A classifier is implemented based on the trained output layer
SOM to assign the class labels to the input records. It has to be
noted that E-DSOM algorithm is trained purely unsupervised,
without using any prior knowledge about class labels.

The classifier requires some labeled data. Each neuron in the
output layer SOM is assigned a class label using the labeled
dataset. First, the labeled dataset is processed through the
trained E-DSOM. For each neuron j in the output layer, the
number of times it was selected as the BMU for each class is
stored as, N j,c

BMU where c is the class label. The class label
with the highest BMU frequency is assigned as the neuron
label:

labelj = argmax
c

N j,c
BMU (3)

In case of a tie one of the tied labels of maximum N j,c
BMU

values, is assigned at random.
Once each output SOM neuron is assigned a class label, test

data can be classified using the E-DSOM. When an input data
record (image) is processed through the E-DSOM, the label
of its BMU in the output layer is assigned to the data record.

D. Computational Complexity

As mentioned, each hidden layer consists of multiple par-
allel layers where each patch is processed by a separate SOM
(Procedure I), i.e., for each patch, Algorithm I is used to
find the BMU and the BMUindex is stored in its feature map
(Algorithm II steps 7 to 9). The Algorithm I executes in two
phases. Phase 1 calculates the Euclidean distances between the
input vector x and the SOM units and finds the best matching
unit (BMU). Phase 2 updates the neuron weights in the BMU
neighborhood. The computational complexity of each phase in
the E-DSOM hidden layer can be expressed as follows:

O(K2N2N2
map) (4)

Where K2 is the number of elements in a single patch, N2

is the number of units in a SOM and N2
map is the num-

ber of patches/SOMs. Both phases are highly parallelizable.
Therefore, traversing the SOM for distance calculation and
weight update can be reduced to O(1) in the ideal case.
Therefore, for a highly parallelized ideal implementation, the
above computational complexity can be reduced to:

O(K2N2
map) (5)

In the combined sampling phase of a hidden layer, all the
feature maps from P parallel layers are combined into one
(Procedure II). Concatenating these arrays take linear compu-
tational complexity. Therefore, the computational complexity
of creating the combined sampling map can be expressed as
follows:

O(N2
mapP ) (6)

The P parallel layers can be executed in parallel. Therefore,
increasing the number of parallel layers very little effect on the
computational time is given in Eq. (5). However, it does affect
Eq. (6). When the number of parallel layers (p) increase, the
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TABLE III
THE DSOM ARCHITECTURE

Hidden Layer 1 Hidden Layer 2 Output Layer
Dataset Map Size Patches (K) Stride Map Size Patches (K) Stride Map Size
MNIST 4–24 10-20 2 15 6 1 8
GSA 4–24 3-7 2 14–16 3–5 1 5–8
SP-HAR 4–24 5-17 2 14–16 3–7 1 5–8

TABLE IV
THE E-DSOM ARCHITECTURE

Dataset Hidden Layer 1 Output Layer
Map Size Patches (K) Stride Map Size

MNIST 4-24 10-20 2 8
GSA 4-24 3-7 2 5-8
SP-HAR 4-24 5-17 2 5-8

time taken to combine them into a combined sampling layer
increase linearly.

When considering the space complexity of the E-DSOM
model, the number of parameters that need to be stored per
hidden layer can be approximated as follows:

|θ| = PK2N2N2
map (7)

The number of parameters that need to be stored linearly grows
with the number of hidden layers. This can be used to infer
the space complexity of the model. Unlike time complexity,
space complexity grows with the increase of parallel layers.

IV. EXPERIMENTS AND DISCUSSION

This section discusses the experiments and results. The
experimental setup is presented followed by a comparative
analysis against DSOM and other state-of-the-art unsupervised
algorithms.

A. Datasets

Three datasets were used for experimentation: 1) MNIST
[38], 2) Gas Sensor Array Drift (GSAD) dataset [39], and
3) Smart Phone dataset for Human Activity Recognition (SP-
HAR) [38] . All the datasets were normalized to zero mean
and unit variance. For all datasets, balanced subsets of the data
records were selected to alleviate the class imbalance problem.
Further, data records in numerical datasets (GSAD and SP-
HAR) were converted into 2D square images.

The MNIST dataset contains images of hand-written char-
acters (digits from 0-9), each 28 × 28 pixels in size. The
complete MNIST dataset contains 55000 train images and
10000 test images. In this work, a significantly smaller training
set of 3000 images was used to reduce the classifier training
time. The complete testing set (10000 images) was used to
test the accuracy of the algorithms.

The GSAD dataset contains 13910 records collected from
16 chemical sensors from a gas delivery facility. The dataset
contains data about 6 gases and the classifier’s goal is to
discriminate between the gasses. The dataset contains data
collected for 36 months. In this work, only the first 21 months
were used to avoid concept drift in data. A balanced dataset of
4500 records was selected and the train/test split was chosen as

2400/2100. The sensor data were rearranged to a 2D grid and
is processed as an image. Since each data record consists of
121 dimensions, each data record was arranged to an 11× 11
image.

SP-HAR consists of 10299 smartphone sensor records of
30 subjects performing six different daily living activities.
A balanced dataset of 4792 records was selected and the
train/test split of 3300/1492 was chosen. Similar to the GSAD
dataset, data were rearranged to a 2D grid. Since the dataset
contained 561 dimensions, the features were reduced to the
closest square number (529) using information gain based
feature selection. Then, each record was re-arranged into a
23× 23 image.

B. Hyper-parameter and Model Architecture Selection

As mentioned in Section I, we hypothesize that due to the
parallel architecture of E-DSOM, a shallower model compared
to the DSOM can be used. This results in a reduction of serial
operations, resulting in reduced training time. In order to test
this, for all the tests, a DSOM with two hidden layers and an
E-DSOM with only one hidden layer were implemented. In the
E-DSOM hidden layer, two parallel layers were implemented.

Table III summarizes the architecture and the hyper-
parameters chosen for DSOM for the three datasets. For the
MNIST dataset, the set of hyper-parameters were selected
based on the experiments done by Liu et al [25] and our pre-
vious work [33]. For the other datasets, the hyper-parameters
were selected experimentally through cross-validation. For
each dataset, different experiments were conducted by chang-
ing the map size and the patch size within the ranges shown
in Table III.

Table IV presents details of the E-DSOM architecture.
Different combinations of patch sizes and map sizes were
tested within the presented ranges. Across parallel layers of
the same model, different patch sizes were used, but the map
size was kept the same. The shallower model of E-DSOM
enabled the use of bigger patch sizes than the DSOM. In order
to ensure a fair comparison of classification accuracies, the
output layer of DSOM and E-DSOM was implemented with
a SOM of the same size.

C. Experimental Results: MNIST

Classification accuracies for the MNIST dataset is pre-
sented in Table V. The DSOM was able to achieve the best
test accuracy of 83.468% while E-DSOM was able to achieve
87.118 % (A 3.65% improvement).

Generalization capability was analyzed with noisy test
data. Table V and Fig. 4 (a) show the performance of the two
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TABLE V
CLASSIFICATION ACCURACY COMPARISON BETWEEN DSOM AND E-DSOM

Dataset Model Layer1 Test Accuracy for Different Noise level (%)
Patch
Scale1

Patch
Scale2

Map
Size1

Map
Size2

Train
Acc

Test
Acc 2 5 10 20 40 50 60

MNIST DSOM 10 - 24X24 - 85.06±
1.94

83.47±
2.85

83.37±
3.04

83.14±
2.81

83.14±
2.68

82.39±
2.63

74.46±
2.72

62.00±
3.25

20.37±
1.55

EDSOM 10 20 24X24 24X24 88.04±
1.96

87.12±
2.41

87.12±
2.35

87.15±
2.14

86.88±
2.17

86.51±
1.87

79.91±
1.77

69.34±
1.98

23.63±
1.71

GSAD DSOM 3 - 24X24 - 83.35±
2.73

57.24±
8.63

49.76±
6.19

45.20±
3.18

38.08±
1.93

32.59±
1.45

27.12±
0.83

23.84±
0.45

21.88±
1.27

EDSOM 3 9 24X24 24X24 91.24±
1.19

72.73±
6.78

66.82±
5.06

61.19±
3.90

50.01±
4.89

37.86±
3.34

28.59±
3.64

24.12±
2.03

22.45±
2.41

SP-HAR DSOM 11 - 24X24 - 62.85±
1.08

57.88±
2.31

56.90±
3.28

55.60±
2.37

52.58±
2.32

44.81±
2.12

27.17±
2.92

19.52±
2.19

17.78±
0.76

EDSOM 11 17 22X22 22X22 67.39±
1.12

64.36±
0.28

63.22±
1.22

61.90±
0.83

58.22±
1.57

48.51±
2.69

24.14±
1.46

19.69±
0.88

17.35±
1.01

TABLE VI
GENERALIZATION ERROR COMPARISON BETWEEN DSOM AND E-DSOM

Dataset Model Generalization Errror (%) for different Noise Levels

0 2 5 10 20 40 50 60 Computational
Time (s)

MNIST DSOM 1.59 1.69 1.92 1.92 2.67 10.60 23.06 64.69 3788
EDSOM 0.92 0.92 0.89 1.16 1.53 8.12 18.69 64.41 3114

GSAD DSOM 26.10 33.59 38.15 45.27 50.76 56.23 59.51 61.46 390
EDSOM 18.51 24.42 30.05 41.23 53.38 62.65 67.12 68.78 313

SP-HAR DSOM 4.97 5.95 7.25 10.27 18.04 35.68 43.32 45.07 3098
EDSOM 3.04 4.18 5.49 9.18 18.88 43.25 47.70 50.04 2602

algorithms. There was no significant difference in classifica-
tion accuracy for both models until the noise level increased
beyond 20%. Despite the drop in accuracy beyond 20% noise,
it was observed that E-DSOM consistently outperformed the
DSOM. Further, E-DSOM showed a lower generalization error
at all the noise levels (see Table VI).

When computational time was compared (Table VI), it
was observed that the E-DSOM was able to reduce the training
time by more than 670 seconds compared to the DSOM (17%
improvement).

D. Experimental Results: GSAD

Classification accuracies for the GSAD dataset are pre-
sented in Table V. DSOM achieved 57.24% as its best classi-
fication accuracy while E-DSOM achieved 72.73% (A 15.49%
improvement).

Generalization capability: Classification accuracies with
noisy data are presented in Table V and Figure 4 (b). E-DSOM
outperformed DSOM at all noise levels. Further, the E-DSOM
showed a lower generalization error at noise levels of 0%-20%
(see Table VI).

When computational time was considered (Table VI), it
was observed that the E-DSOM was able to finish training
more than 70 seconds faster than the DSOM with GSAD
dataset (19% improvement).

E. Experimental Results: SP-HAR

Classification accuracies for the SP-HAR dataset are pre-
sented in Table V. DSOM was able to achieve a maximum
test accuracy of 57.88% while E-DSOM was able to achieve
64.36 (6.48% improvement).

In terms of generalization capability, E-DSOM outper-
formed DSOM at all noise levels except at 40% and 60%
(Table V and Figure 4(c)). Further, E-DSOM showed a lower
generalization error for 0%-10% noise levels (see Table VI).

Table VI shows the computational times of the two models.
E-DSOM was able to finish training over 490 seconds faster
than the DSOM for SP-HAR dataset (around 16% improve-
ment).

F. Overall Results Discussion

For MNIST and GSAD datasets, E-DSOM showed superior
performance in classification accuracy, generalization capabil-
ity and computational time.

For the SP-HAR dataset, the E-DSOM achieved superior
classification performance and reduced computational time.
However, the E-DSOM failed to outperform the DSOM at
noise levels beyond 40%, but scores remained comparable.
SP-HAR dataset contains data from smartphone sensors, which
can be less precise than the industrial grade sensors in GSAD.
The noisy data could be the reason for the lower classification
accuracies shown by both algorithms.

The overall classification accuracy results support our hy-
pothesis that the E-DSOM architecture with parallel layers is
able to achieve better/higher accuracy with a fewer number of
serial layers compared to DSOM, i.e., using less computational
time.

G. Analysis: Effect of patch size and map sizes on classifica-
tion accuracy

The analysis studied the effect of the two most important
hyper-parameters—patch size and map size—on the classifi-
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Fig. 4. Change in accuracy with different noise levels for E-DSOM and DSOM. (a) MNIST, (b) GSAD and (c) SP-HAR
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Fig. 5. Effect of patch size and map sizes on classification accuracy for E-DSOM and DSOM: (a) MNIST, (b) GSAD, (c) SP-HAR

cation accuracy. We used square maps of the size range 4–
24 and different square patch sizes with each map size. For
simplicity, the parameters were changed only in the first layer
of both algorithms.

For MNIST and GSAD datasets, patch sizes in the range
of 10–20 pixels (per dimension) and 3–7 pixels were used,
respectively. The patch size was incremented in two pixels
between tests. Patch sizes for SP-HAR were kept within the
range of 5-17 and incremented in four pixels between tests
(See Table I and II).

The results from the analysis are given in box and whisker
graphs (See Figure 5(a) (c)). Each box plot relates to specific
map size. The height of the box plot indicates the variability
of classification accuracy for the different patch sizes, i.e., a
shorter box plot indicates low variability classification accu-
racies and vice-versa.

Effect of Map Size: Classification accuracies were observed
for different map sizes. For all tests, E-DSOM outperformed
the DSOM in classification accuracy. Further, for all datasets,
if the map size wasn’t very low, E-DSOM’s classification
accuracies remained consistent across map sizes. Conversely,
DSOM showed significant variations in its classification accu-
racies across map sizes with the exception of MNIST. Further,
the smallest map size yielded the smallest classification accu-
racy for both models. This is expected as a small map can be
inadequate to capture the feature space.

Therefore, from these datasets, it can be inferred that for
the E-DSOM, as long as the map size is not too small, the
classification accuracies will not change much with the map
size. However, with the DSOM, in order to find the optimal
map size, a thorough cross-validation process is needed.

Effect of Patch Size: As mentioned, for each map size,

several patch sizes were tested. The E-DSOM consistently
outperformed the DSOM despite different configurations. With
the exception of SP-HAR dataset, the classification accuracies
remained fairly consistent across different patch sizes with E-
DSOM (shorter box plots). However, in DSOM, the results
varied significantly across patch sizes for a single map size
(taller box plots). In the SP-HAR dataset, the E-DSOM
algorithm showed some variability for the patch sizes when
the map size was 8 and 12. Therefore, it can be inferred that
generally, the E-DSOM algorithm shows less dependency on
the patch sizes when compared to the DSOM. This leads to
an easier process of hyper-parameter selection. This could be
a result of E-DSOM balancing out the effect of patch size by
detecting complementary features of different resolutions in
the parallel layers.

H. Comparison of E-DSOM with other unsupervised algo-
rithms

The proposed E-DSOM architecture was compared against
three other unsupervised algorithms: 1) single layer SOM, 2)
stacked Autoencoder and 3) stacked Convolutional Autoen-
coder. A single layer SOM with an 8 × 8 neuron grid was
implemented for the completeness purpose.

Stacked Autoencoders (AE) are deep unsupervised learn-
ing architectures [9]. AE consists of two functions, an encoder,
and a decoder. Encoder learns a compressed representation
of the input data and decoder reconstructs the input data
using the compressed representation. AEs are widely used
for dimensionality reduction [40], feature learning and data
denoising [23]. In this paper, AEs was implemented with a
SOM (8×8) connected to the last hidden layer. The SOM was



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2906083, IEEE
Transactions on Industrial Informatics

8

TABLE VII
COMPARISON OF TEST ACCURACIES OF UNSUPERVISED ALGORITHMS

Dataset Test Accuracy (%)

SOM DSOM E-
DSOM

Stacked
AE

Stacked
CAE

MNIST 71.26 83.47 87.12 84.24 81.93
GSAD 66.62 57.24 72.73 63.59 70.12
SP-
HAR 62.80 57.88 64.36 67.41 66.47

trained with the encoded data, and the same classifier as E-
DSOM was implemented. AEs with up to three hidden layers
were tested and the best classification results are reported.

Stacked Convolutional Autoencoders (CAEs) are a variant
of AEs that contains convolutional layers. CAEs are unsuper-
vised learning algorithms, which use the building blocks—
convolution layers and max-pooling layers—of supervised
CNNs [40]. Similar to AE, CAE was implemented with up to
three hidden layers followed by a SOM classifier. The number
of filters was changed within the range 4–30. The kernel
size was set to 3 × 3 as it resulted in the best classification
accuracies. ReLU activation function was used for the non-
linear transformations.

Table VII presents the test accuracy comparison between
algorithms. For MNIST, E-DSOM achieved the best accuracy
while AE came in second. Single layers SOM showed the
lowest accuracy for the MNIST. For GSAD, E-DSOM yielded
the best accuracy while CAE showed the second best accuracy.
DSOM showed the lowest accuracy for the GSAD dataset.
For the SP-HAR dataset, the AE and CAE came in first and
second respectively, in terms of classification accuracy. DSOM
showed the lowest accuracy for the SP-HAR dataset.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a deep self-organizing map architec-
ture (E-DSOM) for unsupervised image classification. The E-
DSOM extended the originally proposed Deep Self-Organizing
Maps (DSOM), in two ways: 1) the learning algorithm was
modified to be completely unsupervised, 2) the architecture
was modified to learn features of different resolutions in
parallel. The modifications were made to improve the fol-
lowing: 1) classification accuracy, 2) generalization capability
and 3) training time. E-DSOM was tested on three datasets
and compared with DSOM. E-DSOM outperformed DSOM
in terms of classification accuracy with improvements of
up to 15%. Generalization capability was tested by adding
noise to test data. E-DSOM outperformed DSOM at all noise
levels (barring one instance with comparable results), evi-
dencing better generalization capability. Computational time
was improved by gaining the same or better classification
accuracies with a shallower model. E-DSOM showed training
time improvements up to 19%. Therefore, empirical evidence
supports our hypothesis.

Further, E-DSOM architecture was compared to other un-
supervised algorithms. E-DSOM showed comparable perfor-
mance to the AE and the CAE while outperforming them
on two datasets. Therefore, empirical results show that E-

DSOM algorithms are competitive and a viable option for
unsupervised learning.

As future work, the following avenues will be explored:
1) capability of creating low dimensional embedding of high
dimensional datasets using E-DSOM; 2) capability of using
E-DSOM as lightweight networks which can match with
design requirements of mobile and embedded applications
(MobileNets [10]), 3) incorporating negative data-mining [41]
and cross-modal learning [42] to E-DSOM.
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