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Abstract—Characterizing communications in smart-grid dis-
tributed control systems is fundamental for understanding the
expected behavior and identify abnormal scenarios. In this
paper, we present a stochastic data-driven approach to model
the the communication network in smart-grid systems. Our
approach uses Mixture Poisson distributions to model the packet
communication between the network devices. The network is
modeled using a directed graph, where each edge represents a
Poisson distribution of the packets being transmitted. Parameters
are learned using mini-batch Expectation Maximization in order
to scale to large datasets. The advantages of the presented
approach are 1) unsupervised data-driven discovery of represen-
tative communication patterns, 2) intuitive visualization of the
expected behavior, 3) scalability to large datasets, 4) coherent
and interpretable model. Tests were conducted in a simulated
SCADA microgrid distributed control system environment.

Index Terms—Anomaly Detection, Poisson processes, Cyber-
physical systems.

I. INTRODUCTION

The smart-grid revolution fueled by the need for high-
penetration clean energy sources and cost-effective electricity
generation and distribution has produced a highly intercon-
nected electrical network [1]. Information and communication
technologies (ICTs) play a central role in this revolution as
they support communication and control functions in cyber-
physical systems. However, the inclusion of ICTs technologies
has open numerous vector attacks which are increasingly
targeting critical infrastructure [2]. Machine-Learning-based
Anomaly Detection provides an important tool to detect such
attacks and improve situational awareness [3].

Understanding communication patterns on Cyber-Physical
systems is essential to perform anomaly detection and protect
infrastructure that relies on ICTs. Machine-Learning black-box
models provide an appealing approach for anomaly detection
as they require little-to-no prior-knowledge. However these
models are often hard to interpret [4], with complicated
decision boundaries that can open the door to unexpected new
vector attacks [5].

Instead of using a black-box model, we present an approach
based on the use of Poisson mixture distribution to model the
communication network. Following this approach, we work
towards improving coherence and interpretability over black-
box models. The Poisson model serves as a coherent and
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Fig. 1: Illustration of the communication modes learned by
the Mixture-Poisson model.

natural distribution to model the packet rate between different
devices of the network.

We present a data-driven stochastic anomaly detection sys-
tem called PM-ADS (Poisson Mixture Anomaly Detection
System). PM-ADS models the communication network using
Poisson distributions while using data to learn the model
parameters. The presented approach measures the commu-
nication on a network using a packet sniffer and learns
the network behavior profiles using the collected data. The
learned behavior profiles are then used to identify abnormal
communication that do not match the expected behavior.

Figure 2 offers a visual representation of the presented
approach. The objective is to learn a multi-modal distribution
that represents the different behaviors of the system. Each
mode represents a particular behavior (state) of the system.
After learning these communication modes, we can identify
anomalous behavior (previously unseen) and known attacks
by comparing the current state of the system w.r.t. the learned
communication modes.

For learning the parameters, we present a mini-batch Ex-
pectation Maximization algorithm that was specifically de-
signed to scale well to large datasets. This is an important
requirement for real world systems. Data has a large volume
as several packets are transmitted each second. Learning is
also performed completely unsupervised. Labeled data is only
used to evaluate the performance of the algorithm but it is not
used for training. We demonstrate that anomaly detection can



be performed using only normal data.
The presented approach is especially useful in the following

situations: 1) Identify anomalous behaviors which may corre-
spond to possible attacks; 2) Understand the expected modes
of communication of the system; 3) Understand the behavior
of different cyber-attacks.

The rest of the paper is organized as follows: Section II
presents the related work; Section III presents the PM-ADS
model for network profiling and anomaly detection; Section IV
presents the experiments performed to validate the approach.

II. RELATED WORK

Cyber-Physical Systems(CPSs) have become core compo-
nents in modern critical infrastructures [6]. This dependency
of critical infrastructures on CPSs has made them vulnerable to
various attacks [6]. Further, attacks on a single component of
CPS can lead to catastrophic cascading failures [7]. Therefore,
it is important to build resilient CPSs with the capability to
detect any abnormal behaviors which lead to system failures.

Anomaly detection is the process of identifying patterns in
data that do not represent the expected behavior of a system
[8]. Many researchers have successfully used machine learning
to detect anomalies in CPSs [8] [6] [9]. In [9], an unsupervised
learning algorithm based on Recurrent Neural Networks was
successfully used for anomaly detection in a water treatment
plant. In [8], an unsupervised learning algorithm has proposed
to learn a signal temporal logic formula (STL) which describes
the normal behavior of the system. In [10], researchers have
evaluated various machine learning models to identify power
system disturbances. They have presented an evaluation which
includes classifiers from various categories such as Proba-
bilistic classification (Nave Bayes), Rule induction (OneR,
NNge, JRipper), Decision tree learning (Random Forests),
Non-probabilistic binary classification (SVM), and Boosting
(AdaBoost). They have found that even simple models such
as OneR and Nave Bayes have high performance in detecting
attacks. Further, they have proposed an ensemble approach
which combines JRipper and Adaboost models to detect power
system disturbances.

One Class Support Vector Machines (OCSVMs) are widely
used for anomaly detection where the models are trained using
normal behavior of the system, and any unseen behavior is
identified as an anomaly or an attacks [7]. OCSVMs are
extensions of Support Vector Machines (SVMs) [11]. They can
learn a decision boundary of a single class [12]. Any behavior
which is different from the learned behavior will be detected
as an outlier. Therefore,

Random Forest models has been widely used network
intrusion detection [13], traffic flow predictions [14] and smart
grid remote sensing [15]. Random Forest is a supervised
machine learning algorithms which can be used to solve both
regression and classification problems [14]. The basic idea of
the Random Forest is to build multiple tree models together,
resulting in an ensemble of decision trees [16]. Generally,
these models show increased overall accuracy and stability
compared to the models which use only a single decision

tree model. Other advantages of these models include less
sensitivity to outliers, less sensitivity to over-fitting, and ability
to handle high dimensional data [14].

III. NETWORK PROFILING AND ANOMALY DETECTION
USING MIXTURE-POISSON DISTRIBUTIONS

An overview of the presented PM-ADS is summarized in
Figure 2. The PM-ADS measures the behavior of a CPS
communication network by analyzing the packet data mea-
sured from the CPS network. The following are the main
components of the PM-ADS:
• A packet sniffer measures the traffic on the network and

obtains the data for training, testing and analysis.
• A time-fixed queue stores the packets from the last ∆t

seconds in order to be analyzed.
• Graph analysis processes the packet data in the queue.

The output is an adjacency matrix that represents the
number of transmitted packets between devices for the
last ∆t seconds.

• A Poison-Mixture model of the communication network
which is used to characterize behaviors (profile the com-
munication) and identify anomalies.

The following sections describe in detail: A) the graph
representation of the communication network, B) the Poisson
mixture model, C) the mini-batch Expectation Maximization
algorithm used to learn the parameters of the Poisson mixture
model, D) the anomaly detection approach.

A. Network Graph

We model the communication network using a directed
graph. Each node corresponds to a device in the network.
The edges represent the communication between the devices.
The communication between devices is characterized using a
set of features. In this way, the network can be characterized
at a given point in time using the corresponding adjacency
matrix of the graph. Each entry of the adjacency matrix x[u, v]
corresponds to the value of feature between device u and v(see
Figure 3).

The adjacency matrices are derived from data obtained
from packet capture data. We use the adjacency matrix to
characterize the behavior of the system at a particular instant
in time. Each node is represented using the IP address of the
device. The edges between nodes represent the packet rate
between devices.

B. Poisson Mixture Model

Having defined a way to numerically characterize the
network, we would like to learn from data a model that
summarizes the behavior of the network. In this paper, given
that the features have an integer domain, we choose Poisson
distributions to model the system. The adjacency matrix X is
modeled using a mixture model:

p (X | θ) =

K∑
k=1

wkp
(
X | λ(k)

)
(1)
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Fig. 2: PM-ADS: Behavior profiling using Mixture-Poisson Distributions
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Fig. 3: Graph diagram. Nodes represent devices in the network
with a unique IP address. Edges represent the communication
between devices.

the mixture is composed of K components, where each com-
ponent models a particular communication behavior (mode).
The matrix X represents the features that characterize the

communication (e.g. packet rate). θ =
{
wk,λ

(k)
}K
k=1

are the
parameters of our model learned from data. Each edge (u, v)
is modeled as a Poisson distribution:

p
(
X | λ(k)

)
=

|V |∏
u=1

|V |∏
v=1

Poi
(
X[u,v] | λ

(k)
[u,v]

)
(2)

where Poi(x|λ) is a Poisson distribution with density function:

Poi (x = n | λ) =
λnexp (−λ)

n!
C. Learning parameters

Given a dataset of samples D =
{
X(i)

}|D|
i=1

, the parameters
θ of the Poisson model described in 1 can be learned by
maximizing the log-likelihood:

θ∗ = arg max
θ

∑
i

ln p
(
X(i) | θ

)
(3)

In order to scale to very large datasets, we want to perform
the maximization in 3 using mini-batch stochastic gradient as-
cend (Algorithm 1). This approach requires the computation of

Algorithm 1 Mini-batch Stochastic Gradient Ascend

Input: Number of iterations max-iter, Dataset D, learning-
rate η

Output: Learned parameters θ

1: for t = 1 to max-iter do
2: X ← Extract mini-batch(D)
3: step-update:

θ[t+1] ← θ[t] +
η

|X|
∂

∂θ

∑
i

ln p
(
X(i) | θ

)
4: end for
5: return Learned parameters θ[max-iter]

the gradients of the log-likelihood ln p
(
X(i) | θ

)
. However,

directly computing the negative likelihood in 3 may lead to
poor numerical performance when computing the gradients,
specially for networks with a large number of nodes. The
reason for the poor numerical stability is the product of
probabilities in Eq. 2.

A more convenient representation is obtained by looking at
the gradients of the log-likelihood w.r.t. the model parameters
θ:

∂

∂θ(k)
[ln p (X | θ)] =

1

p (X | θ)
∂

∂θ(k)

[
wkp

(
X | λ(k)

)]
=p (k |X, θ)

∂

∂θ(k)
[ln p (X, k | θ)]

where:

p (X, k | θ) =wkp
(
X | λ(k)

)
p (k |X, θ) =

p (X, k | θ)
p (X | θ)

=
wkp

(
X | λ(k)

)
∑
k wkp

(
X | λ(k)

)
We can observe that the gradient is proportional to

p (k |X, θ). The term p (k |X, θ) is the conditional probabil-
ity of having X sampled from the mixture component k. This
term serves as a weighting value that determines the amount
that sample X contributes to the update of the parameters for



Algorithm 2 Mini-batch EM

Input: Number of iterations max-iter, Dataset D, learning-
rate η

Output: Learned parameters θ

1: for j = 1 to max-iter do
2: X ← Extract mini-batch(D)
3: Expectation:

π(k,i) = Softmaxk
(

ln p
(
X(i), k | θ

))
4: Maximization: execute a mini-batch step-update

θ[t+1] ← θ[t] +
η

|X|

|X|,K∑
i,k

π(k,i) ∂

∂θ
ln p

(
X(i), k | θ

)
5: end for
6: return Learned parameters θ[max-iter]

component k. We can express the update equations of gradient
ascend as follows:

θ[t+1] = θ[t] +
η

|X|

|X|,K∑
i,k

p
(
k |X, θ[t]

) ∂
∂θ

ln p
(
X(i), k | θ

)
(4)

The update rule in 4 leads to the stochastic mini-batch
Expectation Maximization (EM) algorithm described in Algo-
rithm 2. The presented Mini-batch EM is a modification of the
standard EM algorithm. In the Mini-batch EM, we replace the
expensive maximization step of standard EM with a mini-batch
single-step stochastic parameter update (step-4 in Algorithm
2). This allows us to scale the learning of parameters to large
datasets.

For simplicity and readability, Algorithm 2 uses vanilla
stochastic gradient descent to describe the maximization
update-step. However, in the implementation of the algorithm,
we used instead the Adam optimizer [17] to perform the max-
imization. The Adam optimizer provides faster convergence
rates than vanilla gradient decent by using adaptive gradient
moments in the step-update.

Algorithm 1 and 2 are equivalent, however, Algorithm 2 has
the advantage that allows us to work directly with the log-
likelihood of individual components ln p

(
X(i), k | θ

)
, which

allows us to improve numerical stability and simplify the
implementation.

D. Anomaly detection

Having characterized the network communication using
the Mixture-Poisson distribution, we can use the cumulative
density function (c.d.f.) of the model to detect anomalies. We
define an anomaly as a point that is not covered by any of the
mixture components. To quantify if a sample is covered by a
component k, we check if the c.d.f. value is inside (α, 1−α),
where α ∈ (0, 1):

Switch

Attack
computer

Workstation

RTAC

cyber-sensor
Grid

(RTDS)

Fig. 4: Test-bed diagram.

Ind(X, k) =


1,

if α ≤ cdf
(
X[i,j]|λ

(k)
[i,j]

)
≤ 1− α

for all i, j
0, otherwise

(5)

Anomaly(X) =

{
0, if Ind(X, k) = 1 for any k
1, otherwise

(6)

Eq. 5 checks if a sample X is covered by component k.
Eq. 6 defines an anomaly as a sample that is not covered by
any component.

IV. EXPERIMENTS

Dataset: Figure 4 shows the diagram of the testbed used to
collect the data used in the experiments. The testbed consist
of a simulated SCADA microgrid that communicates with
a set of RTAC controllers and a data historian using DNP3
protocol. An attack computer performs a series of scheduled
cyber-attacks while recording the time stamps when the attacks
are executed. The time-stamps are used to label the data by
segmenting the packets between normal communication and
attack (abnormal) communication. Label data was only used
for evaluation and benchmarking purposes. Training of the
PM-ADS model is completely unsupervised. All devices are
connected using a switch. The PM-ADS cyber-sensor is also
connected to the switch to sniff the communication packets
and collect the data for analysis.

The dataset includes packets following cyber-attacks: 1) IP
scan, 2) Port scan, 3) Replay attack, 4) DOS attack.

Baseline: We compared our approach with standard ma-
chine learning algorithms. For comparative analysis, we ex-
tracted a set of cyber features which are used as input to
different types of machine learning algorithms. The feature
extraction was carried out on TCP packet stream using win-
dowing technique [7]. The TCP packet stream is considered
as a time series. A set of statistical features were extracted
using a set of neighboring packets within a one second time
window. The extracted set of features are presented in Table
II.



TABLE I: Window based TCP packet stream features

Feature Name Feature Description
Packet rate Number of packets within a window

Num src IP Number of different source IP addresses in a
window

Num dst IP Number of different destination IP addresses
in a window

Num src port Number of different source ports in a window

Num dst port Number of different destination ports in a
window

Min data length The minimum data length of packets in a
window

Max data length The maximum data length of packets in a
window

Avg data length The average data length of packets in a window

Min win The minimum window size of packets in a
window

Max win The maximum window size of packets in a
window

Avg win The average window size of packets in a
window

Min time intv The minimum time gap between packets in a
window

Max time intv The maximum time gap between packets in a
window

Avg time intv The average time gap between packets in a
window

Min pkt src The minimum number of packets per single
source IP in a window

Max pkt src The maximum number of packets per single
source IP in a window

Avg pkt src The average number of packets per single
source IP in a window

Min pkt dst The minimum number of packets per single
destination IP in a window

Max pkt dst The maximum number of packets per single
destination IP in a window

Min ttl The minimum time to live value of packets in
a window

Max ttl The maximum time to live value of packets in
a window

Avg ttl The average time to live value of packets in a
window

Num byt Number of bytes transmitted by packets in a
window

Same src dst Number of packets with src IP== dst IP
Same ports Number of packets with src port== dst port
Same src src port Number of packets with src IP== src port
Same src dst port Number of packets with src IP== dst port
Same dst src port Number of packets with dst IP== src port
Same dst dst port Number of packets with dst IP== dst port

Same IP port Number of packets with src IP== dst IP and
src port== dst port

Num urg Number of urgent packets in a window

The extracted features were used as input to a machine
learning model. In this experiment, three machine learning
models were used for comparative analysis: 1) One Class
Support Vector Machines (OCSVM), 2) Decision tree, 3)
Random Forest. Decision trees and Random Forest were used
as a classification method to classify data records into two
categories: normal and attack.

Anomaly detection: In this experiment we evaluated the
performance of the PM-ADS to detect anomalies. For the ex-
periment, an anomaly corresponds to any of the cyber attacks
executed during the experiment. Normal behavior corresponds

to sections where no attack was being executed. We used a
∆t of one second for the queue. For this experiment, we only
used normal data to train the PM-ADS. The objective is to
characterize normal behavior and use the model to identify
abnormal behavior in the communication (attacks).

Table II shows the accuracy, precision, recall and f1 scores
obtained using the presented PM-ADS method and standard
machine learning algorithms. The table shows that PM-ADS
has comparable performance w.r.t. Decision trees and Ran-
dom Forest approaches. OCSVM trades precision in order
to improve recall and f1 score. An important take away
point from these results is that PM-ADS provides comparable
performance to standard machine learning methods, even when
PM-ADS only uses packet rate information. However, the
results suggest that there is room for improving the recall score
by including more features into PM-ADS such as packet size,
source and destination ports, etc.

TABLE II: Anomaly Detection Performance

model accuracy precision recall f1

PM-ADS 0.991 1.000 0.888 0.941
OCSVM 0.988 0.987 0.999 0.993
Decision Tree 0.990 1.000 0.863 0.926
Random Forest 0.990 1.000 0.869 0.930

Behavior profiling: One of the main advantages of the pre-
sented approach is the inherent interpretability of results of the
PM-ADS model. Figure 5 shows the communication behaviors
(modes) learned from all data collected during the experiment.
For this experiment, we used both normal and attack data
to train the PM-ADS in order to profile the communication
and discover the salient communication behaviors (modes).
Training was performed completely unsupervised, labels are
only used to verify what behavior is being represented by the
corresponding Poisson component.

Figure 5 shows that the proposed PM-ADS model is able to
find distinctive communication patterns for normal and attack
scenarios. Results of PM-ADS are easy to visualize. The figure
shows a plot of the expected packet rate (λ(k)) in the form
of and adjacency matrix for each communication mode k.
We can observe that all normal communication falls in mode
11, which is characterized by low rate communication ( 2
packets per second). On the other hand, DOS communication
is characterized by very high packet rates (mode 7). IP scan
and port scan show a more active communication pattern
that involves several devices. The results shown in Figure 5
conform with the expected behavior of normal communication
and attacks. The figure also demonstrates the interpretability
of the PM-ADS model.

V. CONCLUSION

In this paper, we presented the PM-SD model for stochastic
anomaly detection. The model provides a data-driven, unsu-
pervised and interpretable approach for behavior profiling of
communication networks. Experiments were performed using
data measured from a SCADA micro-grid simulation. The
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Fig. 5: Communication modes found using Poisson Mixture Model. The figure shows the expected packet rate in the form of
an adjacency matrix (top). A bar plot (bottom) shows the type of samples that each particular mode represents.

presented approach is able to find salient communication
modes that characterize the system. PM-SD trained with
normal behavior data is able to recognize anomalous behavior
from common cyber-attacks. Future work will be conducted
on expanding the feature set used by the PM-SD model in
order to increase accuracy and recall.
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