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Abstract—A viable solution for increasing fuel efficiency in
vehicles is optimizing driver behavior. In our previous work, we
proposed a data-driven Intelligent Driver System (IDS), which
calculated an optimal driver behavior profile for a fixed route.
During operation, the optimal behavior was prompted to the
drivers to guide their behavior toward improving fuel efficiency.
This system was proposed for fleet vehicles mainly because a
small increase in fuel efficiency of fleet vehicles has a significant
impact on the economy. The system was tested on a portion of
the fleet’s route (12km) and achieved 9-20% of fuel saving. One
limitation of the IDS was that the prompted behavior profile
was the same for all drivers. However, the approach of driving
is significantly different from driver to driver. Therefore, it is
important to capture those differences in the optimal behavior
profile creation and prompting. This paper presents the first
steps of a modified IDS that incorporates different approaches
of drivers in optimal behavior profile creation. This work has
three main components: 1) analyzing the capability of scaling
our previously proposed IDS to the complete route of the
fleet, 2) assessing the capability of identifying different types of
driver behavior from data, and 3) proposing an IDS framework
for integrating different driver behavior in optimizing driver
behavior. Experimental results showed that the existing IDS was
able to achieve 26-37% estimated fuel savings on the complete
route. Conclusions of the paper are: 1)the existing IDS scaled
to longer routes, and 2) It is possible to identify different driver
behavior using data.

Index Terms—Visualization, Fuel Efficiency, Driver Behavior
Classification, Eco-driving, Driver feedback

I. INTRODUCTION

Fossil fuel usage has gained increased focus within the past
few decades due to limited availability and adverse effects
on the environment[1] [2]. It has been identified as one of
the primary atmospheric pollutants, which can lead to climate
changes [3]. Despite the negative effects, most of the world’s
energy is provided by fossil fuels. It is the primary energy
source which accounts for 80% of the global energy needs
[4]. Out of total fossil fuel usage in the US, 71% is used
in the transportation section [1]. The demand for fossil fuel
shows continuous growth resulting in a continuous increase
in its price. Therefore the economic importance of fossil fuel
results in an increased focus on fuel efficiency [5].

It has been found that driver behavior has a high influence
on fuel efficiency. Therefore, our earlier work proposed an
Intelligent Driver System (IDS) and low-cost hardware frame-
work for prompting drivers on a fuel efficient behavior [1].
This worked was focused on a fleet of vehicles because even

a small increase in fuel efficiency of fleet vehicles has a signif-
icant impact on the economy. The IDS used historical driver
behavior data and calculated the optimal (most fuel efficient)
driving behavior for a fixed route of 12km. During driving,
drivers are encouraged to follow the prompted optimal velocity
profile so that driving behavior is controlled to maximize fuel
efficiency.

However, it has been found that driver behavior varies
between drivers as their driving style is different from one
driver to another [6]. Driver style classification is important in
wide range of areas including in human-centric vehicle control
systems [7], [8], [9], intelligent transportation systems [7],
road safety [10] and power management in electric vehicles
[11]. The driver style categorization can be done in several
ways. In [7], researchers have proposed a mechanism to
classify drivers into two categories: aggressive and normal.
In [6], researchers have shown that the safe speed (speed
preferences) of one driver can be different from the safe speed
of another driver. Therefore, they have developed a curve
speed model for driver assistance by classifying driver styles
into three categories: cautious driving, moderate driving, and
aggressive driving.

As discussed above, comfortable driving behavior should
be a primary concern when developing an optimal velocity
profile, especially in highway route. In such environments,
cautious drivers will avoid high speed and hard acceleration
while aggressive drivers will prefer higher speeds with large
acceleration. Moderate drivers will drive in a steady motion at
low accelerations. These three types define the basic expected
spectrum of driving behavior in general. Hence, developing a
one optimal velocity profile for all the types of drivers might
have a negative effect on both fuel efficiency as well as the
safety of drivers. Therefore, it is necessary to identify different
driver patterns and develop different optimal velocities for
different driver categories rather than considering all drivers
as similar capabilities.

In this paper, we perform a feasibility study for iden-
tifying different driver patterns/clusters with respect to the
identified optimal driver behavior. we propose a framework to
incorporate driving style clustering, in order to build optimal
behavior profiles for different driver clusters. As future work,
the proposed driver behavior clustering will be incorporated
into the IDS. Further, the proposed system will provide a
framework to train drivers gradually, towards the most efficient



driver behavior.
This paper has the following contributions:

1) Analyze the scalability of the current IDS by analyzing
the fuel efficiency on a longer route.

2) Assessing the capability of identifying different types of
driver behavior from data.

3) Propose an IDS framework for incorporating driver
behavior clustering which will be implemented in future
works.

This paper is organized as follows; Section II discusses
the related work. Section III presents the proposed future
framework while section IV provides the experimental setup.
Section V discusses the results for scalability analysis and the
proof of concept. Finally, section VI presents the conclusions
and future research directions.

II. RELATED WORK

As discussed in the previous section, increasing fossil fuel
efficiency in the transportation sector has become a major
research area. In literature, there are three main techniques for
improving fuel efficiency in vehicles. They are 1) vehicle tech-
nology improvement, 2) traffic infrastructure improvements,
and 3) driver behavior changes.

The vehicle technology improvements include improving
the physical design of vehicles such as gearbox and engine.
It also includes reduction of vehicle weight, improvements
of engine efficiency and aerodynamics [12], [1], [13], [14].
However, the main focus of this technique is to reduce CO2
emissions[12], [15].

The traffic infrastructure improvement deal with managing
the traffic flow in order to reduce the travel time and vehicle
idle time [1]. Therefore, this technique entails followings: 1)
construction of roundabouts and traffic lights, 2) imposing
speed limits to reduce noise and air pollution, 3) alternate
route selection [1], [12].

The third one is driver behavior changes. Despite vehicle
manufacturing improvements, fuel efficiency can be signifi-
cantly reduced if it is badly driven[12]. One viable solution
for that is Eco-friendly driving [1]. The idea of this is to
change the driver behavior in order to increase fuel efficiency
and to reduce the CO2 emission [1] [16],[17]. This technique
involves decision making processes under three categories.
They are; 1) strategic decisions (vehicle maintenance), 2)
tactical decisions (vehicle loading and route selection) and, 3)
operational behaviors [18]. Operational behavior is related to
less aggressive driving styles, focusing on smooth acceleration
and deceleration profile. Less aggressive driving behaviors
have a positive effect on fuel efficiency [18], [16], [19].
Eco-friendly driving has reduced fuel consumption by 5-
30% [18]. Since driver behavior changes do not require any
infrastructure changes, this makes it easy to implements at low
cost compared to the other two techniques.

Our previous work proposed an Intelligent Driver System
(IDS), which focuses on changing driver behavior to achieve
improved fuel economy [20], [1]. This system used historical
driver performance data with GPS information in order to

build an optimal behavior profile for a fixed route of 12km.
A prompting framework of the IDS helps drives to follow the
calculated optimal velocity profile. The system was tested on
Idaho National Laboratory (INL) bus fleet and was able to
increase fuel economy by 9%-20% on a fixed route of 12km.
Figure 1 shows the implemented IDS on a real bus. Figure
1 (a) shows prompter of the IDS in an actual bus, whereas
Figure 1 (b) shows the GUI of the implemented IDS.

III. PROPOSED ARCHITECTURE

The architecture of the proposed IDS is presented in Figure
2. The fundamental idea behind the proposed architecture
was to learn optimal driving behavior using a collection of
historical performance data of a set of drivers for a fixed
route. Then, different driver styles/clusters will be identified
based on the performance of drivers with respect to the optimal
behavior profile. Then optimal behavior profiles for different
driver clusters will be generated. In future runs, the drivers
will be informed the optimal learned behavior based on his/her
driver cluster, so that they can adjust their behavior towards the
optimal behavior with the goal of increasing the fuel efficiency.
The steps of the overall process are presented below.

A. Historical data collection

Sensors of the vehicle are used to extract the information
about vehicles’ current state. GPS is used to collect the
position of the vehicle at a given time. The vehicle infor-
mation(speed, fuel economy, gear, RPM, instance fuel, cruise
speed, etc) and GPS information (latitude, longitude, and
elevation) are gathered by the data collector to combine them
to provide information about the vehicle at a given instance.

B. Generate the optimal behavior

As presented in our previous work [5], the optimal behavior
profile is calculated using the data collected in step A.

C. Identify different driver styles/clusters

The driver style clustering can be performed in two different

ways,

1) Before calculating optimal behavior from historical data:
In this scenario, the driver clustering can be done using
driver velocity and driver behavior with respect to road
conditions (acceleration, wheel angles, lane departure,
etc.) [7].

2) After calculating the optimal behavior profile: In this
scenario, it is possible to use drivers velocity profile and
behavior wrt road conditions, as well as the deviation
between the driver performance profile and calculated
optimal behavior profiles.

Different clustering mechanism can be used to identify differ-
ent types of drivers. The clustering will be performed by using
unsupervised machine learning techniques [21]. Simple unsu-
pervised clustering algorithms such as K-Means clustering (K
is the number of clusters) [22] [7], Self-Organizing maps [23],
and density-based clustering will be used [24] [25]. Further,
visual data mining techniques [26] will be used to evaluate
the identified driver clusters with the help of human experts.
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Fig. 1. Proposed IDS implemented in INL bus fleet (a) prompter placed in bus cabin (b) GUI of the implemented IDS
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Fig. 2. Proposed Architecture

D. Calculate the optimal behavior profiles for identified
driver styles

As presented in our previous work [5], optimal driver
behavior will be calculated for different driver clusters, which
are identified in the previous step.

E. Driver prompting

As presented in our previous work [20], the calculated opti-
mal behavior is presented to the driver through a prompter (See
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Figure 2, Driver Prompter). The prompter is a small display
device which is located on the periphery of the dashboard of
the vehicle. Based on the current behavior of the driver/driver
style, the optimal behavior profile will be prompted to the
driver. The prompter will show drivers’ current speed and
the speed that they should be driving at. The red line shows
the current speed, whereas the blue pie shows the difference
between the optimal behavior and the current behavior. So, the
driver should accelerate or decelerate in order to reduce the
size of the pie as much as possible to maximize fuel efficiency.

F. Model adaptation

The identified clusters of different drivers and the optimal
behavior profiles should be updated over time to maximize
fuel efficiency. The fundamental idea here is to train drivers
gradually from their comfortable driving style towards a better
driving style. Therefore, the divers will be shifted from one
cluster to another gradually towards the cluster with most
fuel-efficient driver behavior. Further, the historical data set
will be updated with time so that newly calculated behaviors
will always show better fuel economy than the once calculate
before.
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Fig. 5. Fuel consumption of different drivers and the calculated optimal fuel consumption profile (a) Eastbound, (b) Westbound

TABLE I
CALCULATED FUEL-SAVING

Direction Fuel consumption (mpg)

Maximum | Minimum | Average Algorithmic optimal | Fuel-saving %
Westbound | 11.1206 9.87534 10.56836 | 13.3271 26.10
Eastbound 13.8914 9.87534 10.3776 11.6777 37.36

IV. EXPERIMENTAL SETUP

This section discusses the experimental setup, data collec-
tion process, and details about the collected data.

The architecture proposed in our earlier work was used
to collect data for this experiment. The architecture was
implemented on a fleet of vehicles of the Idaho National
Laboratory (INL) (See Figure 1). The fleet of the vehicle
consists of over 90 buses which travel on several routes.
For this experiment, the MCI D-series model D4505 buses
where selected which run on a fixed route. To check the
scalability of the earlier proposed architecture, we selected
44km fixed portion of the US20 West highway in eastern
Idaho. This portion was selected due to the following reasons,
1) Consistent traffic, 2) one of the most used routes of the INL
bus fleet and 3) Varying elevation profile. The starting point
(A) was at lat. 43.3059, long -112.538 and end point (B) was
at lat. 43.3089, long -112.216.

Two data sets were collected for the selected portion of
fixed route: 1) Eastbound from point A to B, 2) Westbound
from point B to A. Eastbound data set consists of a route with
a gradually decreasing elevation profile whereas westbound
uses the same route in the opposite direction (B to A).
Therefore, westbound consists of an elevation profile which
increases gradually. Elevation profile of the route from A to
B (eastbound direction) is given in Figure 3.

For each data set, relevant information such as weather
conditions were monitored. For each direction (Eastbound
and Westbound), around 16 drivers performance data were
recorded. Some of the runs were removed to keep the data
sets uniform. The final data sets for Eastbound and Westbound
were included of 9 drivers per each.

V. RESULT AND DISCUSSION

This section presents the result obtained for this experiment.
First, it discusses the scalability of our previously proposed
work by calculating the optimal fuel economy on a longer
route compared to the 12km route used in previous work.
Then, it assesses the capability of identifying different types
of driver behavior from data.

A. Scalability of our previously proposed model

In this experiment, we check the performance of the system
on a 44km route.

Figure 4 shows the speed profile-in miles per hour (mph)-
for different drivers and the optimal velocity profiles (in red
color). For eastbound (Figure 4.a), it can be seen that the
calculated optimal profile is very consistent throughout the
route. Further, the optimal velocity profile showed a high
velocity throughout the route. It might be possible because
eastbound has a downhill elevation profile. For westbound
(Figure 4.b), the calculated optimal velocity profile exhibits
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large fluctuations. It might be due to the uphill traveling of
the fleet in the westbound route.

Figure 5 shows the fuel consumption in miles per gallon
(mpg) along the route for each driver (different colors) and
the optimal fuel consumption (in red color) which were
calculated using IDS. For both eastbound (Figure 5.a) and
westbound (Figure 5.b), it can be seen that the calculated
optimal fuel consumption profile captures the best behaviors
of corresponding historical driver records. Further, it can be
noticed that the calculated optimal profile showed a little bit
higher fuel economy compared to historical records. It is due
to the smoothing function that is used in the IDS [20].

Table I shows the fuel-savings obtained for eastbound and
westbound in miles per gallon (mpg). The fuel saving was
calculated using the average fuel consumption of all the drivers
in a given direction (eastbound or westbound) and algorithmic
optimal on that route. For eastbound, the system was able
to achieve 37% fuel saving, whereas for westbound, it was
26%. Therefore it can be concluded that the proposed system
is scalable to longer routes. In previous work also, it was
noticed that eastbound had higher fuel efficiency compared
to westbound. This experiment was showed the same pattern.
This might be due to the elevation profile difference of the
route in opposite directions.

B. Capability of identifying different types of driver behavior

In this paper, we performed a feasibility study to check
whether we can visually identify different driver clusters based
on the deviation of the driver from the optimal behavior profile.
We used data visualization techniques together with unsuper-
vised data clustering methods for evaluating the clusters.

The calculated optimal behavior consisted of two profiles:
the optimal velocity profile and the optimal fuel consumption
profile. This experiment used these two profiles to calculate the
difference of mean square error (MSE) between given driver
behavior (velocity and fuel consumption) and the optimal
behavior, for each 1km segments along the route. For example,
for each 1km segment along the road, the mean velocity for
a given driver and the mean velocity of the optimal velocity
profile of the corresponding segment was used to calculate
the MSE. The MSE is calculated as follows where v is the
driver’s mean velocity and v’ is the mean of optimal velocity
for a 1km segment of the road.

A 2
MSE = (u v ) (1)

Then MSE values of 1km segments along the road are
considered as data records for clustering. Therefore, each
driver had set of MSE value for each segment along the
fixed route. In the same way, the MSE of fuel consumption
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was calculated for each driver. These MSE value of different
drivers were used for driver behavior clustering.

This initial study only investigated the feasibility to use two
clustering mechanisms: 1) MSE threshold and, 2) K-Means
clusters. In the first method, a machine learning expert can
visually analyze the behavior of drivers using the MSE value
and define a set of MSE values to cluster drivers. In the second
method, the drivers will be clusters based on their relative
distance of MSE values.

Figure 6 shows the calculated MSE between the velocity of
the drivers and the optimal velocity profile for the eastbound
route. Figure 6.a. shows the MSE for each driver, whereas
Figure 6.b. shows the cluster assigned to each driver using
different colors. Three clusters were identified using k-Mean
clustering algorithm. It can be seen that most of the drivers
belonged to one cluster (purple). Other two clusters had only
one driver record per each. Since MSE values of drivers were
highly overlapped, it was not possible to use MSE threshold
values to divide the drivers into clusters accurately.

Figure 7 shows the calculated MSE the westbound route.
Figure 7.a. shows the MSE for each driver, whereas Figure
7.b. shows the cluster assigned to each driver using different
colors. The K-Means clustering was used to assign drivers
to different clusters. Even though it assigned the drivers into
different clusters, the cluster separation between them was
not clearly visible. Further, it was not possible to use MSE
threshold values to divide the drivers into accurate clusters.
It might be due to the high fluctuations of driver velocity
profiles along the westbound route, which resulted in high
overlapping of MSE values of the drivers. For both eastbound
and westbound, more driver records can result in more precise
cluster separations.

Then drivers were clusters using both the MSE of velocity
and MSE of fuel consumption. Figure 8 represents the clus-
tering result obtained using the K-means clustering algorithm.
Different K values (number of clusters) were tested to obtain
proper cluster separations. Figure 8 (a) shows the results
obtained for eastbound with k=4. It can be seen that there is a
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high dense cluster (red and green) near the bottom left corner,
which can be identified as one cluster. Figure 8 (b) shows the
results obtained for westbound. However, for westbound, it
was difficult to identify any cluster separation.

Finally, a degree one polynomial function was used to
identify any trend between the MSE of the velocity of drivers
and their corresponding fuel consumption. The MSE was
calculated for the whole route. Figure 9 shows the result
obtained for the identified trend. It can be seen that fuel
efficiency decrease when the MSE increases, which was the
expected trend, i.e., when MSE increases the fuel efficiency
should be decreased. However, more driver records are needed
to find a more accurate relationship between them.

VI. CONCLUSIONS AND FUTURE WORK

Driver behavior has a high influence on fuel efficiency.
Therefore, our earlier work proposed an Intelligent Driver Sys-
tem (IDS) to calculate fuel-efficient driver behavior (Optimal
behavior). The basic idea of the proposed IDS was to change
the driver behavior to maximize fuel efficiency. In this work,
we investigated the scalability of the IDS on a longer route of
44km. It was found that the IDS is scalable to longer routes.
On the selected route, it showed a fuel saving of 26-37%.

Different drivers have different driving styles. Therefore,
this work proposed a IDS which calculates different optimal
behaviors for different driver clusters rather than calculating
one optimal driver behavior for all the drivers. The funda-
mental idea of the proposed IDS is to change driver behavior
gradually by shifting them from one driver cluster to another
so that drivers will be shifted towards the most fuel efficient
behavior with time. Initial cluster separation of drivers showed
that it is feasible to cluster the drivers based on the deviation
between drivers behavior and the optimal driver behavior,
which was calculated using IDS. Therefore, it implies the
necessity to generate several optimal behavior profiles for
different driver behavior clusters, rather than calculating one
optimal behavior profile for all drivers. However, it was found
that more data is needed to identify more accurate clusters.



In future work, the driver behavior clustering will be
performed using more driver records. Different clustering
mechanism will be implemented, and the proposed IDS will
be tested in the INL bus fleet. Further, other factors such as
weather conditions and road conditions which influence the
fuel economy will be considered.
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