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Deep Learning and Reconfigurable Platforms in IoT 
Challenges and Opportunities in Algorithms and Hardware 

 
As the Internet of Things (IoT) continues its run as one of the most popular technology buzzwords 

of today, the discussion really turns from how the massive data sets are collected to how value can 

be derived from them, i.e., how to extract knowledge out of such (big) data. IoT devices are used 

in an ever-growing number of application domains (see Figure 1), ranging from sport gadgets 

(Fitbit, Apple Watches) or more serious medical devices (such are pacemakers or biochips) to 

smart homes, cities, and self-driving cars, to predictive maintenance in mission-critical systems 

(e.g., in nuclear power plants or airplanes). Such applications introduce endless possibilities for 

better understanding, learning from, and informedly acting upon (aka situational awareness and 

actionable information in government lingo). While rapid expansion of devices and sensors brings 

terrific opportunities for taking advantage from terabytes of machine data, the mind-boggling tasks 

of understanding growth of data remain, and heavily rely on, artificial intelligence and machine 

learning [1], [2]. 

Where traditional approaches do not scale well, artificial intelligence techniques have evidenced 

great success in applications of machine and cognitive intelligence (such as image classification, 

face recognition, or language translation). While we recognize the widespread usage of various 

well-known machine learning algorithms in IoT (such as fuzzy systems, support vector machines, 

Bayesian networks, reinforcement learning, and others), we focus here on the most recent and 

highly advantageous type of machine learning in IoT: deep learning. 

The success of deep learning and, in particular, deep neural networks, greatly coincides with the 

advent of highly specialized, powerful parallel computing devices, namely Graphics Processing 

Units (GPUs) [4]. Although the overwhelming processing and memory requirements can be met 



with high-performance computing hardware, the resulting sheer size, cost, and power consumption 

would make the goal of “deep neural network-enabled” IoT and embedded devices unattainable. 

In this scenario, Field Programmable System-on-Chip (FPSoC) platforms, which combine in a 

single chip one or more powerful processors and reconfigurable logic (in the form of Field 

Programmable Gate Array –FPGA– fabric), are emerging as a very suitable implementation 

alternative for the next generation of IoT devices. The fine-grained structure of FPGAs has proven 

to provide powerful implementations of machine learning algorithms with less power consumption 

than comparable platforms (in terms of cost or size) [5], making them ideal for machine and 

cognitive intelligence in strict resource-limited applications, like many IoT ones (while GPUs 

remain as the dominant platforms for other IoT scenarios). Moreover, FPSoCs allow processing 

load to be balanced between processors and reconfigurable logic, the most suitable implementation 

(hardware or software) being used for each specific functional building block to be optimized, and 

functionality to be easily reconfigured on-site. In addition, reconfigurable platforms dramatically 

ease system scalability and upgrading. Hence they provide high levels of flexibility, as demanded 

by the IoT market. 

In this regard, the paper identifies hardware implementation challenges and thoroughly analyzes 

the aforementioned suitability of FPSoCs for a broad range of IoT applications involving machine 

learning and artificial intelligence algorithms, which is demonstrated in two case studies, one 

related to deep learning and another related to the more “classical” Evolutionary Computing 

techniques. 

Deep Learning for IoT 

In the era of IoT, the amount of sensing devices that are deployed in every facet of our day-to-day 

life is enormous. In recent years, many IoT applications have risen in various different domains 

such as health, transportation, smart homes, and smart cities [6]. It is predicted by the US National 



Intelligence Council that, by 2025, internet nodes will reside in everyday things such as food 

packages, furniture, and documents [7]. This expansion of IoT devices, together with cloud 

computing has led to a creation of an unprecedented amount of data [8], [9]. With this rapid 

development of IoT, cloud computing, and the explosion of big data, the most fundamental 

challenge is to store and explore these volumes of data and extract useful information for future 

actions [9]. 

The main element of most IoT applications is an intelligent learning methodology that senses and 

understands its environment [6]. Traditionally, many machine learning algorithms were proposed 

to provide intelligence to IoT devices [10]. However, in the recent years, with the popularity of 

deep neural networks / deep learning, using deep neural networks in the domain of IoT has received 

increased attention [6], [11]. Deep learning and IoT were among the top three technology trends 

for 2017 announced at Gartner Symposium/ITxpo [12]. This increased interest of deep learning in 

the IoT domain is due to the fact that traditional machine learning algorithms have failed to address 

the analytic needs of IoT systems [6], which produce data at such a rapid rate and volume that they 

demand artificial intelligence algorithms with modern data analysis approaches. Depending on the 

predominant factor, rate or volume, data analytics for IoT applications can be viewed in two main 

categories: 1) Big data analysis and 2) Data stream analysis, as discussed below.  

When focusing on data volume, IoT is one of the major sources of big data. Analytics of the 

generated massive datasets directly benefit the performance and enhance capabilities of IoT 

systems. Extracting knowledge from such big data is not a straightforward task. It requires 

capabilities that go beyond the traditional inference and learning techniques [13], generally 

expressed with the “6V’s” [14], [15]: 

• Volume, which refers to the ability to ingest, process, and store large data sets (petabytes or even 

exabytes). 



• Velocity, which refers to the speed of data generation and frequency of delivery (sampling). 

• Variety, which refers to the data from different sources and types (structured or unstructured). 

Even the types of data have been growing fast. 

• Variability, which refers to the need of getting meaningful data considering scenarios of extreme 

unpredictability. 

• Veracity, which refers to bias, noise, and abnormality in data (only the relevant, usable data 

within analytic model is to be stored).  

• Value, which refers to the purpose the solution has to address. 

Figure 2 shows the 6V’s of big data and how the advantages of deep learning techniques can be 

used to meet these challenges in big data. More specific applications of deep learning techniques 

in big data in IoT are presented in next section. 

The latest considerations add 3 additional Vs to the mix: Vulnerability (of data), Volatility 

(relevance of data before becoming obsolete), and Visualization (ways of meaningful 

visualization). 

As mentioned, in addition to performing data mining on massive collections of data produced by 

IoT systems, another important aspect is dealing with real-time data streams that require fast 

learning algorithms. IoT applications, such as traffic management systems and supply chain 

logistics of super markets, involve large datasets that have to be analyzed in near real time [16]. 

Mining fast generated data streams require the algorithms to be adaptable to the change of data 

distributions as the environment changes around the devices [17]. This context/concept drift occurs 

due to the changes in factors such as location, time, and activity. In addition to the requirement of 

speed adaptability, the lack of labeled data in IoT data streams adds to the difficulty because it 

makes supervised learning methods inadequate for analysis [17], [18]. Therefore, highly adaptable 



unsupervised and semi supervised deep learning techniques are required for mining the fast-

changing data streams in IoT devices. 

Applications of Deep Learning in IoT 

Deep neural networks have revolutionized a multitude of fields because of its ability for learning 

through multiple layers of abstraction [19], [20]. This enables learning of complex patterns that 

are hidden in complex datasets, a capability ideal for mining massive heterogeneous datasets. 

Different deep neural network algorithms have been used to good effect in a range of areas, very 

difficult to tackle in the past. For instance, long short terms memory algorithms have been shown 

to be extremely useful in speech recognition and natural language processing [21], [22], [23] and 

convolutional neural networks have been used to produce state-of-the-art performance in many 

vision applications such as image classification [24], [25]. Therefore, deep learning is applied 

extensively in a range IoT devices for human interaction. 

One of the most important derivatives of the IoT is the concept of smart cities. Improving cities is 

becoming a global need with the rising and urbanization of the population [26]. The concept of 

“smart cities” has been in the features since the early 2000s. Smart cities claim to contain thousands 

of sensing devices, which generate massive amounts of data that can be harnessed to optimize and 

improve the operations of these cities [27]. Smart cities try to accomplish goals such as reducing 

pollution and energy consumption or optimizing transportation [28]. IoT devices can help collect 

data about how people use cities and machine learning algorithms can be used to understand that 

[26]. Adding further intelligence to the embedded sensing nodes allows local storage needs and 

network congestion to be reduced. One of the most important aspects of smart cities powered by 

IoT is smarter energy management. With the advent of smart meters, there are massive amounts 

of data being collected on energy consumption. Therefore, it enables research on energy 

consumption prediction, which can lead to optimizing energy usage and the way energy is 



generated in smart cities and smart grids. Machine learning algorithms are indispensable in this 

area and deep learning algorithms such as long short terms memory algorithms, Restricted 

Boltzmann machines, and convolutional neural networks have been proposed to perform data 

driven predictions of energy usage at both individual consumer and aggregate level [32]-[34].  

Another important aspect of smart cities is using machine learning and IoT for traffic management. 

Optimized traffic management targets reducing congestion, long queues, delays, and even the 

carbon footprint of cities [33]. To that end, driverless or self-driving cars have become a much-

discussed topic in the recent past with major car companies like Tesla, BMW, or Ford and tech 

giants such as Google and Apple stepping up to the plate of developing truly intelligent 

autonomous cars. Self-driving cars have a plethora of devices continuously sensing its 

environment and a suit of machine learning algorithms for understanding and fusing the various 

data sources such as LIDAR depth maps and images. Deep neural networks have been extensively 

explored in this domain as they have the capability of automatically learning features to pick out 

obvious ones such as lane marking and road edges to other subtle ones that exist on the roads [34]. 

Computer vision is a highly sought-after application in many use cases in the IoT domain. Smart 

cameras, especially in smart security systems, play an important role in smart homes [35] and 

vision applications such as face recognition are very crucial [36]. Machine learning algorithms 

have been used extensively in image processing applications and, in that, convolutional neural 

networks have been deemed the gold standard since the advent of LeNet [37]. Ko et al. presented 

a framework for energy efficient neural networks to be used in IoT edge devices [38]. The authors 

claim that in deploying deep neural networks-based image processing, energy efficiency can be 

the performance bottleneck, and hence present the recent technological advantages for making 

deep neural networks such as convolutional and recurrent neural networks more energy-efficient. 

Another area in which machine learning-driven vision applications is sued in IoT is human activity 



recognition in smart homes. Fang et al. proposed a deep learning-based framework for human 

activity recognition in smart homes especially helping people with diseases [39]. Context 

awareness is another important aspect of IoT, closely tied with mining data streams. Machine 

learning has a very crucial role to play in understanding the environment and the context of the 

device from the data. In recent years, we have seen commercial IoT devices or edge devices 

emerging in the market such as Nest Thermostat [40] and Amazon devices powered by Alexa [41], 

which have the ability of sensing its environments and using machine learning to understand data. 

Context-aware devices or “things” have the ability of understanding the environment and adapting 

their reasoning capabilities [10]. Further, machine learning algorithms are extremely crucial for 

areas as intelligent health trackers for medicine. Examples are intelligent pacemakers or ppg 

systems [42], [43] that can monitor the heartbeat of the patient. Adding intelligence to this devices 

is very important as it permits improved and faster preventive detection of pathologies. Compared 

with the option to send data via internet to remote sensors for analysis or saving data for post 

processing, this option enables a dramatic reduction of data transmission and storage (with the 

respective reduction of energy consumption) and the possibility to work offline (very useful for 

remote or rural areas). 

Safety and Security in IoT 

In addition to enabling and facilitating IoT applications, deep learning plays a crucial role in 

keeping the highly-connected devices safe. Due to their ubiquity in the modern technological 

ecosystem, the IoT becomes a very attractive target for cyber attackers. Therefore, cyber security 

is one of the most important research areas in the field of IoT [44], [45]. It is known that a large 

amount of zero-day attacks are emerging continuously due to the various protocols added to the 

IoT [46]. The multiple level feature learning capabilities of deep learning has been exploited in 

this domain to good effect. Diro et al. presented a deep neural networks-based distributed 



methodology for cyber-attack detection in IoT [46]. They compared their distributed deep model 

with a shallow neural network and a centralized deep model and they concluded that the distributed 

deep model outperforms the others significantly. Another area of cyber security is malware 

detection. Pajouh et al. presented a deep recurrent neural network-based malware detection 

methodology for IoT [47]. The authors implemented three different long short terms memory 

configurations and showed that their algorithm can achieve 98.18% accuracy in malware detection 

for the tested dataset. In all aspects of cyber security, when taking a data-driven approach, anomaly 

detection algorithms are very useful tools. Canedo et al. presented an artificial neural network-

based anomaly detection methodology tailored for IoT cyber security [48]. They recognized that 

the main challenges for anomaly detection in IoT data are quantity and heterogeneity. They showed 

that the artificial neural network-based methodology was able to overcome those challenges in 

detecting anomalies in the data sent from edge devices. 

Hardware Implementation Challenges 

The implementation of machine learning algorithms has been a hot topic in research for several 

years but has recently boomed, mainly thanks to the opportunities created by the advancements in 

chip fabrication technologies, which enabled solving design problems at a cost and with a time-to-

market that were unthinkable just a few years ago. The resolution of Google Challenge by AlexNet 

using 8-layer deep neural network [24] is usually cited as an inflexion point that boosted the 

research on new chips and applications of machine learning algorithms, especially in the field of 

neural networks. This explosion coincides with the deceleration of Moore´s Law1, which now 

makes it economically reasonable to work on optimized software and hardware structures, as 

opposed to the trend of the last 30 years, where waiting for the next generation of devices was 

                                                           

1  Even Gordon Moore himself predicted the end of his Moore’s Law [92]  



more profitable than investing in optimization. All these facts combined make more difficult than 

ever for designers to decide the best possible architecture for their applications. 

The digital processing platforms currently available in the market are summarized in Figure 3, 

where they can be compared in terms of performance and flexibility. Flexibility refers here to ease 

of development, portability, and possibility for adapting to changes in specifications. For high-end 

deep neural network applications, where performance is the most important parameter, General 

Purpose Graphics Processing Units (GPGPUs) are the dominant solution. Their parallel structure, 

the latest efforts by manufacturers to compete for machine learning applications (e.g., adding 

specific instructions for fast neuron inference), and its reduced cost due to the mass production for 

personal computers made them ideal for training and inference of deep neural networks. The latest 

NVIDIA Volta™ GV100 GPU platform, including 21.1 billion transistors within a die size of 815 

mm2, is capable of doing inference 100 times faster than the fastest current CPU in the market 

[49]. This unparalleled brute power force comes at a price: high power consumption, the need for 

custom data types (not necessarily float), irregular parallelism (alternating sequential and parallel 

processing), and divergence (not all cores executing the same code simultaneously). That is why 

some companies are investing on neural network application-specific integrated circuits (ASICs) 

for improved performance at the expense of losing flexibility. Examples are 1st and 2nd generation 

(optimized for inference and both inference and training, respectively) of Google Tensor 

Processing Unit (TPU), slowly “stealing” high-performance computing applications from GPUs. 

While this is the pace for high-performance computing, the lack of flexibility in ASICs and the 

high power consumed by GPUs do not fit in wide areas of the IoT world, which demand power-

efficient, flexible embedded systems. This explains why many IoT devices are currently based on 

microcontrollers (µCs), Digital Signal Processors (DSPs), and multicore CPUs. However, as the 

IoT market grows, both manufacturers and designers face a problem due to the diversification of 



applications and increasing demand for computing power (particularly for machine learning 

algorithms) leading a transformation from “sense making” to “decision making” [50]. Offering a 

wider portfolio of devices to cover the different applications means less market share per device, 

increasing manufacturing costs. On the other hand, offering complex heterogeneous devices that 

can be used in several applications implies higher integration of functionality and a waste of 

silicon, also increasing the overall cost [51]. In this scenario, FPGAs, located in the middle of 

Figure 3, appear as a balanced solution to add flexibility and efficient computing power for 

machine learning algorithms to the next generation of IoT devices. Combining processors and 

FPGAs in a single package results in the FPSoC concept. In the following sections, FPSoC 

architecture is presented along with an analysis of the usefulness of its hardware resources for 

implementing machine learning algorithms in IoT devices. 

FPSoC Architecture 

FPSoCs feature a Hard Processing System (HPS) and FPGA fabric on the same chip. Both parts 

are connected by means of high-throughput bridges, which provide faster communications and 

power savings compared to multichip solutions [53]. The HPS in first-generation FPSoCs featured 

single- or dual-core ARM application processors and some widely used peripherals, such as timers 

and controllers for different types of communication protocols, namely Ethernet, USB, I2C, 

UART, and CAN. Pushed by increasing application requirements, some devices in the newest 

FPSoC families include quad-core ARM processors, GPUs, and real-time processor in the HPS, 

FPSoCs becoming complex heterogeneous computing platforms. Resources in the FPGA fabric 

also evolved from the “basic” structure consisting of standard logic resources and relatively simple 

specialized hardware blocks (fixed point DSP multipliers, memory blocks, and transceivers, to 

name just a few). Current devices include much more complex blocks, e.g., DSP blocks with 

floating point capabilities, video codecs for video compression, Soft-Decision Forward Error 



Recovery (SD-FEC) units to speed-up encoding/decoding in wireless applications, or Analog-to-

Digital Converters (ADCs). Figure 4 shows the generic block diagram of a modern FPSoC device, 

where the location and connection of the aforementioned elements is depicted. All computing 

elements (processors and GPU) have their own cache memory and share common SDRAM 

external memory, usually controlled by a single multiport controller. A main switch interconnects 

masters and slaves in the HPS. The FPGA fabric can be accessed as any other memory-mapped 

peripheral from the HPS through the HPS-to-FPGA bridges. On the other hand, there are several 

options to access the HPS from the FPGA fabric: FPGA-to-HPS bridges to access HPS peripherals, 

the Accelerator Coherency Port (ACP) to coherently access processor cache, and FPGA-to-

SDRAM bridges to access main memory in a non-coherent way. 

Not all FPSoCs include all blocks in Figure 4. Table I shows a summary of characteristics of the 

most relevant currently available FPSoC families. Intel FPGA and Xilinx offer powerful devices 

with application processors and large FPGA fabrics, focused on higher end applications, such as 

5G communications, artificial intelligence, data centers, or video processing. Microsemi and 

Quicklogic offer simpler devices with real-time processors, focusing on data acquisition, 

wearables and smartphones. 

Despite the additional components that manufacturers provide in some devices targeting specific 

applications, the most important in an FPSoC are still the HPS processors and the FPGA fabric. 

To successfully deploy an application taking the most possible advantage of these devices, 

processors and FPGA should smoothly cooperate with each other executing the parts of the 

functionality that best fit their respective architectures, sharing data between them when needed. 

A designer typically starts with a software implementation in HPS and moves to the FPGA those 

parts of the code that need acceleration. Communication between HPS and FPGA is not a trivial 

task, and depends on several factors, such as data size, operating system (OS), or FPGA operating 



frequency, among others. It is very important to choose the best possible mechanism for HPS-

FPGA data exchange, otherwise it can impair the acceleration achieved by moving portions of the 

algorithms to hardware. In [57]-[59], different analyses of the influence of these factors in the 

transfer rate are carried out. In [56], the results of the analysis are elaborated into design guidelines 

to maximize the performance of FPSoC implementations. 

Table I. Characteristics of modern FPSoC families. 

Company Family Transistor size 

Application 

Processor 

Real Time 

Processor 
FPGA Other 

Type 
Max f 

(GHz) 
Type 

Max f 

(MHz) 
Max Size 

Max f 

(MHz) 
 

Intel FPGA 

Cyclone V SoC 28 nm 

Single/Dual 

32-bit 

ARM 

Cortex-A9 

0.925 - - 301 K LEs 200  

Arria V SoC 28 nm 

Single/Dual 

32-bit 

ARM 

Cortex-A9 

1.05 - - 462 K LEs 300  

Arria 10 SoC 20 nm 

Dual 32-bit 

ARM 

Cortex-A9 

1.5 - - 
1.15 M 

Les 
500 

Floating point DSP 

blocks in FPGA 

Stratix 10 SoC 14nm tri-gate 

Quad 64-bit 

ARM 

Cortex-A53 

1.5 - - 5.5 M LEs 1000 
Floating point DSP 

blocks in FPGA 

Xilinx 

Zynq-7000 Artix 28 nm 

Single/Dual 

32-bit 

ARM 

Cortex-A9 

0.866 - - 85 K LCs - ADC 

Zynq-7000 

Kintex 
28 nm 

Dual 32-bit 

ARM 

Cortex-A9 

1 - - 444 K LCs - ADC 

Ultrascale+ 

Kintex 
20 nm 

Dual/Quad 

64-bit 

ARM 

Cortex-A53 

1.5 

Dual 

Cortex-

R5 

600 
1143 K 

LCs 
- 

Option to GPU, 

Video codec, ADC, 

DAC, SD-FEC 

Microsemi 

SmartFusion 130nm - - 

Single 

Cortex-

M3 

100 6 K LEs 350 
ADC, non-volatile 

FPGA 

SmartFusion 2 130nm - - 

Single 

Cortex-

M3 

166 150 K LEs 350 
ADC, non-volatile 

FPGA 

QuickLogic S3 - - - 

Single 

Cortex 

M4-F 

80 - - 

DSP-processor, 

Power management 

unit 

 

FPGA design is typically based on Hardware Description Languages (HDLs), which require from 

designers good knowledge of digital hardware. Fortunately, nowadays it is also possible to 



automatically compile code for both the FPGA and the HPS from high-level languages, namely 

C/C++ (using high level synthesis tools, either commercial or open-source like Legup [57]), 

OpenCL, Matlab, and Labview. This gives designers with limited or no experience in digital design 

access to the excellent characteristics of FPSoCs. Code generated by these tools is not as optimized 

as that resulting from HDL workflows, but they allow design time to be dramatically reduced [58]. 

FPSoCs and IoT 

FPSoC characteristics make them very suitable for many IoT applications. The availability of HPS 

peripherals for the most popular communication protocols enables interoperability among a broad 

range of devices [59]. For example, the HPS can simultaneously connect with sensors using I2C 

and with other devices via Ethernet or Wi-Fi. On the other hand, the FPGA fabric adds great 

flexibility, enabling the implementation of communication protocols not included in HPS, as well 

as specific functionalities that achieve higher performance in hardware than in software, such as 

PWM, capture and compare, or frequency measurement units. 

Connectivity of IoT devices raises serious security and privacy concerns. At hardware level, one 

possible way to address them is with ARM’s TrustZone Technology [60], which defines some 

peripheral slaves as secure, so only trusted masters can access them. For instance, a secure interrupt 

controller may be used to create a non-interruptible task that monitors the system and a secure 

keyboard may ensure secure password entries. This concept has also been extended to software, 

as shown in Figure 5. A trusted firmware layer controls context switching of the processor from 

trusted OS and apps to regular OS and apps, which may run malicious software completely isolated 

from trusted software and secure hardware. 

To protect intellectual property, current FPSoCs also allow the FPGA configuration bitstream as 

well as the boot image for the HPS to be encrypted [61]. In addition to the solutions provided by 

manufactures, extra functionalities can be implemented to prevent hacker attacks. These include 



physically unclonable functions, useful for unique network identification, traceability and access 

control [62]. 

FPSoCs enable the design of embedded systems with very small size, low power consumption, 

and performance sometimes even equal or higher than desktop platforms [64]. Regarding energy, 

FPSoCs largely outperform computer systems in terms of operations per second and watt [65]. 

FPSoCs are also more power-efficient than GPU-based SoC designs [66], particularly for neural 

network implementations [67], [68]. However, poor usage of the available FPGA resources may 

result in some cases in CPUs and GPUs outperforming them [69]. With this concern in mind, 

FPSoCs are the best option for implementing machine learning in battery-powered systems with 

strict size limitations, like drones [70] or wireless sensor networks [71].  

Regarding economic and marketing issues, FPSoCs are inexpensive since they are mass-produced 

components. Time to market is short and, thanks to the new high level synthesis tools (like OpenCL 

and C/C++ compilers), similar to that of pure software solutions. Because of its reconfigurable 

nature, functionality can be upgraded without the need for changing the hardware platform, 

improving post-sale support compared to non-configurable devices like ASICs. 

FPSoCs and Machine Learning 

FPGAs exhibit some unique features for efficiently implementing portions of machine learning 

algorithms in hardware: 

• Parallelism. Most machine learning algorithms include parallelizable portions of the code that 

can take advantage of this property of the hardware. For example, each neuron in a neural 

network layer can be computed in parallel. In evolutionary computing, fit functions can also be 

concurrently executed for the whole population of genes/particles.  

• Pipelining. Although this technique is also used in processors and GPUs to fetch and execute 

instructions, much more advantage of it can be taken in FPGAs, where the output of an 



operation can feed directly the input of the next one, avoiding the extra clock cycles required 

to compute the same operations in the Arithmetic/Floating Point Units of processors and GPUs.  

• Scalability and upgrading. It is usual for machine learning algorithms to change structure or 

size (e.g., adding layers or inputs to a neural network) to improve performance from knowledge 

gained during test or normal operation. In a hardware/software coprocessing implementation, 

this may mean to port more (or new) parts of the algorithm to hardware. The same may happen 

in the context of IoT when new functionality, whether related to the target machine learning 

algorithm or not (such as a web server or an encryption algorithm), needs to be added to the 

system. FPGAs abundance of standard logic resources and specialized hardware blocks, 

together with their reconfiguration capabilities, facilitates system scalability and upgrading. 

Current FPGAs include tens to hundreds of DSP blocks usually equipped with fixed-point 

multipliers and adders. Other operations, e.g., floating point, are implemented by a combination 

of these blocks and standard FPGA logic elements (LEs). FPGAs are very powerful for fixed point 

operations [72], but achieve less performance in number of floating point operations per second 

than GPUs for most machine learning implementations [73]. However, in some cases the 

configurable FPGA architecture compensates this drawback and achieves faster execution times 

[74]. In an effort to make FPSoCs more competitive, newer devices from Intel FPGA (Arria 10 

and Stratix 10 families) include DSP blocks with single floating point capabilities in the FPGA 

fabric. Table II summarizes the size (LE and DSP block usage) and performance (latency and 

maximum operating frequency, fMAX) of floating point operators in Arria V and Arria 10 FPGAs 

for some usual floating point operations in machine learning algorithms. It can be seen that double 

precision operations require more than twice the resources and have almost twice the latency of 

single precision ones. It can also be noticed that addition, subtraction, and multiplication make low 

usage of resources, whereas other operators are less efficiently implemented. Using floating point 



DSP blocks results in improvements in terms of either significant reduction of logic resource usage 

or increase of maximum operating frequency. The exception is the exponential operation, because 

it does not suit well the fixed structure of floating point DSP blocks. 

In low-level design with HDLs it is easy to estimate the performance of a given algorithm 

implementation in a given device from the information regarding available hardware resources and 

latency of the different operations. This is not the case when using high level synthesis tools, where 

the compiler can make an inefficient use of hardware resources. To achieve acceptable 

performance when using these tools it is a must to consider all the available options to help the 

tool efficiently fit the design in the FPGA fabric [76]. 

Table II. Resource usage and latency for usual floating point operations in Arria FPSoCs [75]. 

Operation 

Floating 

Point 

Precision 

Arria V 

(fixed point DSP blocks) 

Arria 10 

(floating point DSP blocks) 

Latency 

(clock 

cycles) 

LEs 
DSP 

blocks 

fMAX 

(MHz) 

Latency 

(clock 

cycles) 

Les 
DSP 

blocks 

fMAX 

(MHz) 

Addition/ 

Subtraction 

Single 9 1193 0 250 5 1208 0 319 

Double 12 2903 0 252 7 2765 0 290 

Multiplication 
Single 5 390 1 281 3 123 1 289 

Double 7 848 4 186 5 780 4 289 

Division 
Single 18 1140 4 249 16 985 4 347 

Double 35 3523 15 185 30 3020 15 258 

Exponential 

Base e 

Single 14 1795 2 217 26 745 6 365 

Double 28 5335 10 185 28 5390 10 260 

Sine 
Single 12 1463 3 240 11 1463 3 280 

Double 29 4370 14 185 29 4795 14 260 

The aforementioned hardware features are complemented in FPSoCs with those provided by the 

application processors in HPS. Those range from the real-time processors with fixed-point 

arithmetic capabilities available in simpler devices, to DSP-like processors for speeding up signal 

processing tasks, or to dedicated floating point units or single instruction multiple data 

coprocessors for vector arithmetic in more advanced devices. 



Case Study I: Implementation of Deep Neural Networks in FPSoC 

Neural network algorithms and, in particular, deep neural networks are executed in two phases: 

training (where network weights are adapted to achieve the desired functionality) and inference 

(deployment operation of the network). Training is highly computationally-demanding, so it is 

typically implemented by processing batches of data (several patterns at the same time) offline, 

for which GPUs are very suitable. The inference phase is suitable for FPGA implementation, 

because it typically has to be implemented over single patterns in real time and, as it can be 

concluded from Figure 6, the neurons in one layer can be executed in parallel. Moreover, the 

operations to be performed by each neuron can be very efficiently implemented using DSP blocks. 

These operations are: 

����� =  � 	
 ���� − 1� ∗ ���
���

���
� (1) 

where ax(y) is the output of neuron x in layer y, wix is the weight between neuron i in layer y-1 and 

neuron x in layer y, and � is the so-called activation function of the neuron. 

The classical neuron activation functions are ���������� =  �
����   and !�"ℎ��� =  � ��� 

� ��� . 

These operations involve divisions and exponentials so, according to Table II, its FPGA 

implementation is not particularly efficient. Because of that, some works addressed their efficient 

hardware implementation using linear approximations. The use of Taylor approximations and 

reuse of the multipliers and adders for the linear part of the neuron is proposed in [77], reducing 

the additional hardware needed for the activation function to almost none. The solution in [78] 

incurs just 0.03% error with regard to an implementation using true exponential and division cores. 

On the other hand, the activation function $%&'��� = max �0, �) has recently been shown to 

provide better classification results and shorter training times than the former ones for deep neural 

networks [79], simplifying their implementation in all platforms. 



Although most implementations use floating point operations, recent works have shown that fixed 

point approximations provide equal performance in some cases [80]. Moreover, for some 

applications it is possible to aggressively scale down (what is called quantization) the number of 

bits in fixed point representations. For instance, in [81] it is reported that with only 5-bit integer 

resolution for the weighting coefficients, performance degradation is negligible compared with the 

original 32-bit floating point resolution. Other operations that can be used to reduce FPGA logic 

resource usage are network pruning (removing non-important connections) [81], network 

clustering (fusing neurons) [82], and retraining (adding a penalty term in the training cost function 

to maximize not only the network fitting to inputs and outputs but also the bit depth needed for the 

network weights) [83]. These techniques, together with the use of simpler activation functions like 

ReLu, will surely boost the number of implementations in FPGA-based devices in the near future. 

FPSoC platforms have already been used to improve pure FPGA implementation. In [84]  a Zynq-

7000 is used to implement an image classifier based on a deep convolutional neural network. The 

network layers (convolutional, pooling, and fully connected layers) are executed in the FPGA, 

whereas the HPS is responsible for synchronization (controlling DMA in the FPGA) and the final 

steps of the classification process. A set of configurable processing elements (PEs) performs all 

network operations (see Figure 7). This implementation is compared against others using an Intel 

Xeon CPU @2.9GHz, an Nvidia TK1 mobile GPU with 192 CUDA cores, and an Nvidia K40 

GPU with 2880 Cuda cores, respectively. Results show that the FPSoC is 1.4 times faster than the 

CPU, with 14 times less power consumption; 2 times faster than the mobile GPU, with the same 

power consumption; and 13 times slower than the GPU, but consuming 26 times less power. This 

shows that FPSoCs achieve excellent performance-power consumption tradeoffs. 

In [85], a Zynq-7000 is used to implement a Deep-Q network (Figure 8) that learns how to play a 

board game called Trax. Starting from a pure C/C++ software implementation and using high level 



synthesis, the most time-consuming parts of the algorithm, in this case matrix multiplication of the 

convolutional layers, were moved to hardware. Each layer has its own matrix multiplication core 

that uses a double precision floating point multiply-accumulate (MAC) module to perform 

operations and two FPGA-SDRAM ports to share data with the processor in the HPS. One port is 

used to read operands from the processor and the other to write results back. The processor 

executes the rest of the algorithm. Results show a 26x acceleration with respect to the pure software 

implementation. Design time was very short, since hardware was directly compiled from C/C++ 

code using high level synthesis and only the most time-consuming parts of the algorithm were 

migrated to hardware. This example shows that high level synthesis tools may allow impressive 

performance improvements to be achieved by migrating software implementations to hardware 

ones with little programming effort. 

Artificial neural network implementation in FPGA-based devices is becoming so popular that a 

neural network compiler, which generates HDL code from high level specifications, has been 

recently created [86]. Designers have only to select the structure, activation function, and other 

parameters of the artificial neural network and the compiler automatically generates the HDL code 

applying the most suitable optimization options in each case. This reduces the design time 

compared to using high level synthesis, where a deep analysis of the network and the FPGA is 

needed to optimize the implementation. 

Case Study II: Implementation of Evolutionary Computing in FPSoC 

FPSoCs are suitable implementation platforms not only for deep learning algorithms such as deep 

neural networks, but also for other machine learning algorithms (such as Evolutionary Computing 

ones) used in a wide range of IoT applications. 

Evolutionary computing algorithms are used for complex optimization problems. In them, a 

population of individuals (e.g., “particles” or “genes”) is spread through the solution space and a 



fit function is evaluated for them, the goal being minimize or maximize it. Depending on the values 

of the fit function for the different individuals in the current and past iterations, these move towards 

a possible solution. After some iterations the algorithm should converge to the global solution. 

Several families of such algorithms exist, which are characterized by the search policy of the 

individuals: ant colony optimization (which emulates ant colony food search), particle swarm 

optimization (which emulates the movement of a flock of birds where the distance between 

individuals is important), or genetic algorithms (where particles experience gene evolution 

through, e.g., mutation and crossover), to name just the most popular ones. 

Although the fit function can be evaluated in parallel for each individual, evolutionary computing 

algorithms are not always as suitable for FPGA implementation as artificial neural networks, 

because their arithmetic operations are completely dependent on the application and the algorithm 

used. The application defines the fit function and, depending on the operations involved, it will be 

more or less appropriate for FPGA implementation. Generally speaking, the more pipelineable and 

parallelizable the fit function is the better. Also, according to Table II fit functions involving 

multiplications and additions are more suitable for FPGA implementation than those using 

exponentials and divisions. The operations involved in particle movement in the aforementioned 

evolutionary computing algorithms are: 

• Ant colony: addition, multiplication, division, exponential, square root, and random number 

generation [87]. Hence, these algorithms are not particularly suitable for FPGA implementation. 

• Particle swarm optimization: multiplication, addition, and random number generation [88], 

which can be efficiently implemented in FPGA. 

• Genetic algorithms: random number generation and movement or modifications of 

chromosomes [89]. Processing of chromosomes perfectly fits in FPGA hardware, to the extent 

that it can be concurrently executed for all individuals in a single clock cycle. 



Until recently, when considering the use of configurable platforms for implementing Evolutionary 

Computing algorithms, both the algorithm itself (particle movement) and the evaluation of the fit 

function were typically executed in hardware [88], [90]. In some cases where simple fit functions 

can be used, a soft processor (i.e., a processor implemented using standard FPGA logic resources) 

may be in charge of evaluating the fit function in software, as reported for instance in [91]. 

However, in real-life problems it is very usual that fit function evaluation takes most of execution 

time and soft processors are not fast enough to justify a software implementation, therefore most 

designers opted for pure hardware implementations. 

The situation is different nowadays with the availability of powerful FPSoC devices, whose 

embedded hard processors work much faster than soft ones and have in many cases floating point 

capabilities. In this scenario, the most efficient solution is to implement the evaluation of the fit 

function in hardware and execute the algorithm in software. 

In [64], a particle swarm optimization algorithm is proposed for evaluating the state of health of 

solar panels located in remote areas, where human intervention is difficult. In a pure software 

implementation, the evaluation of the fit function takes 83% of the execution time. Using a 

Cyclone V SoC device the evaluation of the fit function is moved to hardware. In a first approach, 

the processor waits in idle state for the FPGA to finish this evaluation. Even though in this 

particular case the fit function is neither internally parallelizable nor pipelineable, it can be 

concurrently computed for 12 particles, resulting in 3.4x acceleration with regard to the pure 

software implementation. An improved solution takes advantage of idle processor time for it to 

generate the random numbers to be used in subsequent iterations of the algorithm, resulting in 4.8x 

acceleration. The achieved performance is comparable to that obtained with a desktop computer, 

but with much lower size, cost, and power consumption, as shown in Figure 9(a). The whole 

monitoring system fits in a small electric box [Figure 9(b)] and can be located under each panel. 



Closing discussion 

The ubiquitous deployment of machine learning and artificial intelligence across IoT devices has 

introduced various intelligence and cognitive capabilities. One may conclude that these 

capabilities have led to the success of a wide and ever growing number of applications such as 

object/face/speech recognition, wearable devices and biochips, diagnosis software, or intelligent 

security and preventive maintenance. 

Developments in other areas, such as humanoid robots, self-driving cars, or smart buildings and 

cities will likely revolutionize the way we live in the very near future. This new realities come 

with significant advantages, but also with many challenges related with the  acquisition, 

processing, storage, exchange, sharing, and interpretation of the continuously-growing 

overwhelming amount of data generated by the IoT. 

Up to now, complex applications involving deep neural networks have mainly used the brute force 

of GPUs for both training and inference. In the last 2 years, some companies have produced ASICs 

with better performance and lower power consumption than GPUs. These solutions are suitable 

for high-performance computing applications, but neither the low flexibility of ASICs nor the 

high-power consumption of GPUs are suitable for many IoT applications, which demand energy-

efficient, flexible embedded systems capable of coping with the increasing diversification of IoT. 

In contrast, FPSoC architectures, which include processors and FPGA fabric in the same chip, are 

a balanced solution to implement machine learning applications for IoT devices. The latest 

advancements in FPGA hardware allow a wide range of machine learning algorithms to be 

efficiently implemented. FPGAs are very suitable to perform deep neural network inference 

because of the parallel arrangement of neurons in layers and the type of mathematical functions 

they have to compute. This will be even more so in the future because of the trend to use simpler 

neuron activation functions (like ReLu) that, in addition to improve training, fit better in FPGA 



resources. Moreover, the use of quantization techniques and custom data types (which is difficult 

to achieve, if possible at all, in devices with fixed architectures like ASICs and GPUs) can 

significantly reduce complexity and improve performance. In our opinion, the trends for neural 

network implementation in IoT devices in the following years can be summarized as follows: 

• Training will rely on heavy-duty cloud-based GPUs. ASICs like the new Google´s TPU (optimized 

for both inference and training, with impressive performance) will have a piece of the pie here, but with 

the limitation posed by their lack of flexibility. 

• The simplest IoT devices will use CPUs and ASICs for inference, to reduce cost and power consumption, 

respectively. Larger devices will use FPGAs/FPSoCs for inference because of their balanced flexibility 

and computer power. For heavy-duty inference, the same considerations as for training apply. 

FPSoCs are an excellent alternative for Evolutionary Computing, because they allow the algorithm 

itself to be executed in software while the objective function can be computed in parallel in 

hardware for all individuals. However, their efficiency in this context greatly depends on whether 

or not the specific operations involved in the computation of the objective function fit available 

hardware resources. It can be concluded that, thanks to the availability of hard processors with 

floating point units, FPSoCs are very suitable for implementing evolutionary computing 

algorithms. In the case of particle swarm, it has been discussed how the same performance as a 

desktop computer can be achieved with FPSoCs with a fraction of the size, cost, and power 

consumption. 

In our opinion, the implementation in FPSoCs of IoT devices with machine learning capabilities 

will be boosted by the availability of increasingly efficient high level synthesis tools based on 

widely known and used languages, such as OpenCL, C/C++, or Matlab, enabling software 

designers to take advantage of the excellent characteristics of FPSoC devices. 
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Figure 1: IoT devices (adapted from [3]). 

  



 

Figure 2: Big data 6 V's and connection with deep learning. 

  



 
Figure 3: Performance vs Flexibility of digital processing platforms (adapted from [52]). 

  



 

Figure 4: Block diagram of a modern FPSoC. 

  



 
Figure 5: ARM Trustzone Security (adapted from [63]). 

  



 
Figure 6: Graphical representation of a single neuron and an artificial neural network. 

  



 
Figure 7: Implementation of a deep convolutional neural network on Zynq-7000. 

  



 
Figure 8: Implementation of a Deep-Q network on Zynq-7000. 

  



 
Figure 9: a) Performance comparison of particle swarm optimization algorithm for different Cyclone V SoC 

implementations and a desktop computer, b) The system based on a Cyclone V SoC board. 
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