
Parallalizable Deep Self-Organizing Maps for Image
Classification

Chathurika S. Wickramasinghe, Kasun Amarasinghe, Milos Manic

Virginia Commonwealth University, Richmond, Virginia
brahmanacsw@vcu.edu, amarasinghek@vcu.edu, misko@ieee.org

Abstract— Self-organizing Maps (SOMs) are neural network
architectures which are used to learn from unlabeled data. Despite
being proven to be useful in many areas, SOMs have limited
capability of performing high level feature abstraction due to its
shallow structure. As a solution, deep self-organizing maps
(DSOM), have been proposed. DSOMs enable multiple levels of
abstraction in unsupervised learning with a hierarchical deep
structure. However, training of DSOMs is computationally
expensive, limiting its usability. This paper presents a DSOM
architecture that is easily parallelizable and hence more
computationally efficient (PD-SOM). The presented architecture
has three main advantages: 1) Unsupervised learning based image
classification, 2) High-level feature abstraction and 3) Less
computationally expensive training while maintaining high
accuracy levels. The PD-SOM architecture was implemented on
the benchmark MNIST hand written character dataset. To test the
robustness and the generalization capability of the presented PD-
SOM architecture, testing was done with: 1) small training sets
and 2) varying degrees of noise. It was shown that the presented
architecture consistently outperformed the previously proposed
DSOM while showing ~18% decrease in training time for the
MNIST dataset.

Keywords—Self Organizing Map (SOM); Deep Self Organizing
Map (DSOM); MNIST; Image classification; Deep Learning

I. INTRODUCTION
Self-organizing Maps (SOM) are unsupervised learning

architectures introduced by T.Kohonen [1]. SOMs are based on
the winner-take-all algorithm and possess the capability of
creating spatially organized representations of input patterns [2]
[3] [4] [5]. Furthermore, SOMs have the capability of
compressing the information while preserving the most
important relationships of primary data items, which can be
considered as a process of abstraction.

SOMs have been proven to be suitable for visualization of
high dimensional data and in the exploratory phase of data
mining [6] [7]. Therefore, SOMs have been successfully used
in a multitude of areas including speech recognition, robotics,
process control and telecommunication [1] [2] [3] [4] [6] [7].
Further, it has been shown that SOMs have a better capability
of revealing the overlapping structure in clusters when
compared to other traditional cluster analysis techniques such
as partitive clustering and K-means [8].

Even though SOMs have been proven to extremely useful
in visual classification tasks, SOMs have a limited capability of
high-level feature abstraction due to its shallow structure [9].
SOMs have other limitations such as fixed network size and not

guaranteeing a minimal solution [9]. Further, it has been shown
that SOMs are incapable of clearly representing the hierarchical
relationships that exist in input data [9]. Therefore, traditional
SOMs lack the capability of identifying highly important
features that exist in data [10] [9] [11].

In order to find solutions to these limitations, research on
different architectures of SOMs have been conducted. As a
solution for the static structure, [9] and [12] proposed a growing
hierarchical SOM (GHSOM) architecture. GHSOM is a neural
network model composed of multiple layers where each layer
consists of several independently growing SOMs. In [13], the
authors proposed a Multilayer Self Organizing Map
architecture (HSOM), another hierarchal SOM architecture
developed to address the problem of static map size. In this
model, each layer depends on the outputs of its previous layer.
In a more recent attempt, Deep Self-Organizing Maps
(DSOMs) were proposed as a SOM architecture with
hierarchical feature abstraction ability [14]. This model
consisted of multiple layers of self-organizing map layers and
sampling layers. The authors attempted at incorporating the
concepts in Deep Learning with the concept of SOM to create
SOMs with high-level feature abstraction capability.

In this paper, we present an extension of this work. The
implementation of DSOM presented in [14] was able to achieve
improved classification accuracies over supervised version of
traditional SOM. However, the presented DSOM is
computationally expensive and it has the same problem of static
map size as in traditional SOMs. To our best knowledge, the
work presented in [14], is the only research work carried out on
DSOM and there is no further work on improving the
capabilities and computational time on DSOMs.

Therefore, this paper presents a easily parallelizable Deep
Self Organizing Maps architecture (PD-SOM) with the main
intention of improving the computational time of DSOMS while
retaining performance. The presented PD-SOM has three main
advantages: 1) Unsupervised learning based image
classification, 2) High-level feature abstraction and 3) Less
computationally expensive training while maintaining high
accuracy levels. In addition to the main advantages, PD-SOM
partially overcomes the static map size problem that exist in
traditional SOMs and DSOMs. The presented PD-SOM
architecture was tested on the MNIST hand written character
recognition dataset. It has to be noted that the goal was not to
improve the state-of-the art classification accuracy for the
MNIST dataset. Convolution neural networks (CNNs) and
Recurrent Neural Networks based architectures have achieved
the best classification accuracies for the MNIST dataset [15]

[16] [17]. However, one limitation of those algorithms is that
they require labeled data for training the classifiers [18]. The
presented PDSOM architecture employs unsupervised learning.
Therefore, it has to be noted that the goal of this work is to
achieve highest possible accuracy while training with unlabeled
data in a computationally efficient manner, not to improve the
state-of-the art classification accuracy for the MNIST dataset.

The rest of the paper is organized as follows. Section II
provides a detailed review to the DSOMs. Section III describes
the proposed parallelizable PD-SOM architecture. Experimental
setup and result discuss in section IV. Section V discusses the
conclusions proposed 2D DSOM architecture.

II. DEEP SOM
This section briefly introduces Deep Self Organizing Maps.

Deep Self Organizing Maps (DSOMs) were first proposed
by Liu et al [22]. DSOMs can be seen as a combination of
concepts: traditional supervised SOMs and Convolution Neural
Network (CNNs) [14]. In Convolution Neural Networks
(CNNs), each unit in a layer receives inputs from a set of units
located in a small neighborhood in its previous layer [19], [20].
CNN implements the idea of the local receptive field, such that
it can extract elementary visual features such as edges, end
points and corners. These extracted features are combined by
subsequent layers in order to detect higher order features. The
idea of DSOMs is similar to CNN where a SOM in a higher level
layer is able to learn more abstract information than the SOM in
its previous layer. The last layer of a DSOM contains one map
which stores the information needed for classification. Figure 1
shows a three layer DSOM architecture which has been used for
handwritten character recognition by Liu et al [22]. DSOM has
shown significant accuracy improvements compared to the
traditional supervised SOM.

DSOM provides a high level of feature abstraction relative
to traditional SOM. In regular SOM, it maps entire observation
space into a single 2D grid of neurons whereas in DSOM, the
input image is processed in patches.

The DSOM architecture consists of self-organizing map
layers and sampling layers, arranged in a deep hierarchical
structure. A self-organizing layer is made up of multiple SOMs,
with each SOM focuses only on one local region (patch) of the
input pattern (see Figure 2). Patch size is defined as the local
region of input pattern where a particular SOM map performs
its learning. Stride defines how many pixels the two sub-regions
are apart from each other. Figure 2 illustrates how winning
neuron indexes of all the maps are organized into another 2D
grid in next layer, which is called sampling layer. It acts as the
input pattern to the second SOM layer. These self-organizing
layers and sampling layers can be concatenated one after the
other, which will allow the deep hierarchical structure (Figure
3). Such that, local information will be gathered, forming more
global information in higher layers.

Input pattern can be represented as X where X={x1,…xN}
where N represent the number of the input patterns. The training
of the DSOM is carried out with the following steps.

Step 1: Weight initialization: Randomly initialize all the
weights in the network.

Step 2: SOM Layer: Select a random input pattern(X) from
the training dataset. As in Figure 2, assuming the size of input
or output of sampling layer is M x M, the self-organizing layer
or the SOM layer uses multiple maps {C1,1, C1,2, … , CNmaps*Nmaps}
to model the input where. Each map focuses on a K x K sub
region (patch) from input pattern/sampling layer output. Let’s
assume the stride as s. Number of maps can be calculated as

 1+





=

−

S

KM
N map ceil (1)

where the ceil(*) calculates the smallest integer upper bound
and M represents the number of pixels on one side.

As mentioned, each patch is trained using a separate SOM with
T number of neurons. So the number of SOM maps will be
equal to (Nmap x Nmap). Each map contains T nodes/ neurons.
Assuming each patch from position {p,q} can be modelled by

Figure 1: Linear DSOM used for Handwritten Character Recognition by Liu et al [14]

a map with set of neuron weights denoted as {𝑤𝑤1,𝑝𝑝,𝑞𝑞
𝑙𝑙 ,…, 𝑤𝑤𝑇𝑇,𝑝𝑝,𝑞𝑞

𝑙𝑙 }.
Here l indicates index of the layer. Similar to a traditional SOM,
the patch xp,q extracted from the input first updates the map by
finding the best matching unit/winning neuron (BMU) j* as
follows:

 ||||minarg ,,,
2*

wxj l
qpjqpj

−=
 (2)

Once the BMU is found, weights in the neighbourhood of
neuron j* can be updated as follows:

 () () () ()()tqxpjjttt w
l

qpj

i

qpjw ,,,, ,*,,1 −+=+ αη (3)

 *N jj∈

where, Nj* defines the neighbourhood region, and n(t) is the
learning rate at epoch t. The learning rate can be changed
through the epochs as follows:

 0.01+ t/epoch)-0.49(1=(t)η (4)

In order to calculate the neighbourhood, the following equation
can be used [25].

)
2

|| - ||
 exp(-=) *jj,(t,

t
rr
2

j *j

δ
α (5)

Step 3: Sampling Layer: Once the BMUs are calculates for all
the patches, sampling layer combines information of maps from
the preceding SOM layer. The BMU for each patch is extracted

and placed in a 2D grid (sampling layer) at the patch index. (See
Figure 3).

Step 4: Repeat Step 2-3: The sampling is a unique
representation of the input image and it becomes the input for
the next SOM layer. This process is repeated until the last layer.

Step 5: Repeat 2-4: These steps are repeated until the
maximum number of iterations (epochs) has been reached or
until specified convergence criteria are met.

As same as in SOMs, structure of the map can be defined by
neighbourhood relationships between adjacent neurons. During
the training weight vector in the map in the neighbourhood of
the BMU are updated such that they will move closer to the
input vector. Once the SOM is trained, in the final trained SOM,
each neuron is assigned a class. The assignment is carried out
with respect to neuron hits.

III. PD-SOM FOR IMAGE CLASIFICATION
This section elaborates the presented PD-SOM architecture.

The main objective of the presented PD-SOM is to achieve
reduced computation times while improving accuracy and
generalization capability. The main distinction of PD-SOM
from the earlier presented DSOM architecture is the use of
multiple parallel SOMs of different sizes in the SOM layer
whereas DSOM uses only one SOM in the SOM layer.

When designing a SOM, selection of proper map size is
very important to avoid adverse effects such as overfitting to
the training data [21] [22]. It has been shown that if map size is
too small, it might not explain important differences that should
be detected [23]. If map size is too large, there is a possibility
of overfitting to the training data [24]. Furthermore, different
classes have different number of features that defines them.
Therefore, a single map size may not be adequate to capture the
distinguishing features for all classes. For example, in the
MNIST dataset, each character has different features that
distinguish it from other characters such as, number of
segments, left-right density ratio, bottom-up density ratio [25].
It is apparent that the number of features associated with one
letter is differ from another and selecting a single map size that
can represent all classes very well can be extremely difficult.
Therefore, a method of combining features extracted from maps
of different sizes can potentially represent features in all
classes.

As mentioned, a map which is too large can result in over-
fitting to the training data set and if the map is too small, it may
result in under-fitting. However, a smaller map can learn low
granular (high-level) features and a large map can learn highly
granular (low-level) features. Therefore, the use of two
different sized maps together in parallel and the combination of
their information into a single 2D map in the sampling layer,
results in generalized information than using one single map. It
provides a balance between learning too much information
(overfitting) or too less information (under-fitting) to the
proposed PD-SOM.

Figure 2: Sampling layer creation in DSOM

The linear DSOM proposed in [14] does not solve the static
map size problem in traditional SOMs since only a single sized
map is used in a single layer. Therefore, in linear DSOM, a
patch of the image is learned only using a single map size
limiting the learning capability of the SOM. Conversely, the
presented PD-SOM partially alleviates the static nature by
using different sized maps in the same layer. Therefore, PD-
SOM has more flexibility in learning features of different
resolutions in the same layer. For instance, if a small map size
and a large map size is used in parallel, the smaller map can
learn the high-level features and the larger map can learn the
low level-features. In the case of small map missing a certain
feature, there’s a probability where the larger map can catch it.
Therefore, the PD-SOM architecture has a better probability of
capturing more features that represent a certain class without
overfitting to training data over the previously proposed linear
DSOM.

Figure 3 illustrates the linear DSOM architecture that was
presented in [14]. Figure 4 and Figure 5 illustrate two types of
the proposed PD-SOM architecture. Training of the PD-SOM
can be carried out in the following steps.

Step 1: Weight initialization: Randomly initialize all the
weights in the network.

Step 2: SOM Layer: Step 2 from the previous section is used
in parallel on the parallel SOM layers

Step 3: Sampling Layer: In this step, the outputs from the
Parallel SOMs are combined to create the sampling layer. A
separate sampling layer is created for each of the parallel SOMs

using the same method described in the previous section. Then
the parallel sampling layers are combined together to make a
single sampling layer. This is carried out using a simple
summation process. I.e. the 2D matrices are added together to
create a single 2D matrix, which is the combined sampling layer.
Each of the parallel sampling layers are unique representations
of the input image patch and the summation of unique
representations creates another unique representation.

Step 4: Repeat Step 2-3: The combined sampling layer
becomes the input for the next SOM layer. This process is
repeated until the last layer.

Step 5: Repeat 2-4: These steps are repeated until the maximum
number of iterations (epochs) has been reached or until specified
convergence criteria are met.

Figure 5 illustrates another possible architecture of the PD-
SOM. It illustrates a possible extension where the model can be
made deeper by adding another layer of parallel SOMs.
Therefore, the model can be made deeper by mixing the two
ideas of linear DSOM and PD-SOM.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
This section discusses the experimental setup and the results

of the experiments.

All the DSOM and PD-SOM architectures were carried out
using MNIST: the benchmark hand written character
recognition dataset [26]. Training was performed as
unsupervised i.e. input vector contained only image descriptors

Figure 3: Linear DSOM architecture

Figure 4: Proposed PD-SOM architecture (Type 1)

Figure 5: PD-SOM architecture - possible extension (Type 2)

without class information. After the training was performed,
cluster identification was performed based on neuron hits.

The training dataset contained 3000 images whereas testing
dataset contained 10000 images. A smaller training set was used
to reduce the training time and to evaluate the generalization
capability of the DSOM architectures. In the MNIST dataset,
each image is the size of 28*28 pixels. For the proposed
architectures, the performance were evaluated using different
map sizes in SOM layers as well as by introducing different
noise levels into validation set.

Basic hyper-parameters such as patch size, stride, and kernel
sizes were selected based on the work by Liu et al [14]. In order
to compare the two architectures, patch size and stride was kept
as constant values. In this study, only square maps with the size
of one side ranging from 12 to 28 were used, as they have been
shown the best accuracies [14]. The number of epochs during
the training was set to 5 in order to reduce the experiment time.

A. Linear DSOM architecutre proposed by Liu et al.
The linear DSOM architecture was implemented with the

parameters set identical to [14]. Table 1 presents the architecture
details of the linear DSOM. As mentioned the map sizes ranged
from 12x12 to 28x28. For brevity, only results for the best four
models are presented (See Table 2). Different map sizes were
tested to observe the effect of the map size on classification
accuracy. It was observed that if the number of neurons in the
map is low, then the mean accuracy was low because the small
map learned an insufficient set of features. It has to be noted that
only the map sizes for the first layer were changed, and the map
sizes for the second and third layers were kept constant. Liu et
al. observed that accuracy increases with the map size from 6x6
to 15x15 and noticed that map sizes beyond that point didn’t
result in a significant improvement in accuracy and only resulted
in heavier computation times [14]. Therefore, the second layer
map size was selected as 15x15. Similarly, the third layer size
was set to 8x8.

In order to test the robustness of the algorithm to noise,
testing was carried out with different noise levels introduced to
test data. As expected, results show that when noise level was
increased, the testing accuracy dropped in all models and it was
noticed that there was no specific map size which performed
significantly better than the rest.

B. Presented PDSOM architecture
The presented PD-SOM architecture was implemented with

two layers depth and width (Figure 4). In this version of the
implementation, two SOMs were used in parallel in the SOM
layer and two layers were used in terms of depth. Table III shows
architecture details of the two layered PD-SOM. When selecting
the map sizes for the parallel SOM layer, two different test cases
were considered. 1) Same sized SOMs in parallel; 2) Different
sized SOMs in parallel. In the second case, one SOM was set to

have a constant map size and the other one was changed to better
identify the changes in performance relative to different map
sizes.

In Test Case 1, it was observed that using two same sized
SOMs in parallel, did not improve the classification accuracy
when compared to the linear DSOM. Further, it was noticed that
it sometimes had an adverse effect on classification accuracy.
This could be the result of learning of redundant features in the
same sized maps. Further, use of same sized maps can result in
the two maps learning contrasting features in the same
granularity which prevents creating a unique feature map for a
class.

In Test Case 2, four models were tested with a range of
different map sizes. Table IV presents the results obtained for
the four best models. As mentioned, one map of the parallel
SOMs was kept constant and the second map was varied. It was
noticed that all models performed consistently until the noise
level was 20% and noticed an accuracy drop when the noise
level was increased to 40%. Further, it was noticed that all the
models were able to achieve similar accuracies which were
slightly better than the more computationally expensive linear
DSOM. PD-SOM with two different maps sizes partially solves
the static map size problem encountered by the traditional SOM
and linear DSOM, since different sized maps can learn features
of different granularities.

Table V presents the overall mean accuracies obtained for
four best models of DSOM and PD-SOM. It was observed that
even though training accuracies are almost similar for both
DSOM and PD-SOM, testing accuracy and performance on
noisy data is better in PD-SOM relative to DSOM. According to
the mean accuracies in Table 5, the PD-SOM shows 2%
accuracy improvement for testing and 3% accuracy
improvement for noisy data sets. In addition to the
improvements in accuracy, PD–SOM showed around 18%
reduction in computation time relative to the three layered
DSOM architecture. Therefore, the experiment provides
evidence to the fact that the PD-SOM can achieve better
accuracies with reduced training times. Further, it should be
noted that this was tested on a relatively small training dataset
(3000 images). For a larger dataset, this has the potential of
saving a considerable amount of time.

V. CONCLUSIONS
This paper presented a novel architecture for a parallelized

version of a Deep Self-Organizing Map (PD-SOM). This work
was an extended analysis and an improvement of the work
proposed by Liu et al [14]. The presented PD-SOM provides
three main advantages: 1) Unsupervised learning based image
classification, 2) High-level feature abstraction for SOM and 3)
Less computationally expensive training while maintaining high
accuracy levels. The presented PD-SOM was implemented and

TABLE 1: THE ARCHITECTURE OF THE LINEAR DSOM
Layer Nmap MapSize Patch(k) Stride

Layer 1 100 - 10*10 2

Layer 2 25 15*15 6*6 1
Layer 3 1 8*8 5*5 1

TABLE 2: THE ARCHITECTURE OF THE PORPOSED PD-SOM

Layer Nmap MapSize Patch(k) Stride

Layer 1 100 - 10*10 2

Layer 2 1 8*8 5*5 1

tested on the benchmark MNIST handwritten character dataset.
The performance of PD-SOM was compared to the linear
DSOM in [14] in terms of computation time and classification
accuracy. Further, to test the algorithm’s robustness to noise,
PD-SOM and linear DSOM were tested on varying degrees of
noise. Experimental results showed that the PD-SOM reduced
the computation time by 18% while improving the classification
accuracy. Further, PD-SOM performed well on noisy data
making it a viable candidate architecture for further research.
From the experimental results it can be concluded that the PD-
SOM with different map sizes provides more flexible and robust
learning while reducing computation time compared to the
linear DSOM. As future work, the presented PD-SOM
architecture will be tested on more datasets including CASIA
(Chinese handwritten character dataset) and will be extended in
depth and width to observe the effects in computation time and
accuracy.

VI. REFERENCES

[1] T. Kohonen, "The self-organizing map," Neurocomputing, vol. 21, no.
1-3, pp. 1-6, 1998.

[2] T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol.
78, no. 9, pp. 1464-1480, 1990.

[3] T. Kohonen, "Self-Organization of Very Large Document Collection :
State of Art," Springer, vol. 1, pp. 63-74.

[4] T. Kohonen, S. Kaski, K. Lagus, J. Salo jarvi, H. Jukka, V. Paatero and
A. Saarela, "Self organization of a massive document collection," IEEE
Transactions on Neural Networks, vol. 11, no. 3, 2000.

[5] X. Lin, D. Soergel and G. Marchionini, "A self-organizing semantic map
for information retrieval," Proceeding:SIGIR '91 Proceedings of the
14th annual international ACM SIGIR conference SIGIR '91
Proceedings of the 14th annual international ACM SIGIR conference ,
pp. 262-269, 1991.

[6] J. Vesanto and E. Alhoniemi, "CLustering of the Self organizing map,"
IEEE transactions on Neural networks, vol. 11, no. 3, pp. 586-600,
2000.

[7] T. Kohenen, E. Oja, O. Simula, A. Visa and J. Kangas, "Engineering
Application Of Self Organizing Map," Proceedings Of IEEE, vol. 84,
no. 10, pp. 11772-11781, 1996.

[8] C. Budayan, I. Dikmen and M. T. Birgonul, "Comparing the
performance of traditional cluster analysis, self-organizing maps and
fuzzy C-means method for strategic grouping," Expert Systems with
Applications, vol. 36, no. 9, pp. 11772-11781, 2009.

[9] A. Rauber, D. Merkl and M. Dittenbach, "The growing hierarchical self-
organizing map: exploratory analysis of high-dimensional data," IEEE
Transactions on Neural Networks, vol. 13, no. 6, pp. 1331-1341, 2002.

[10] M. Attik, L. Bougrain and F. Alexandre, "Self-organizing Map
Initialization," Artificial Neural Networks: Biological Inspirations
(ICANN), pp. 357-362, 2005.

[11] M. Dittenbach, A. Rauber and D. Merkl, "Uncovering hierarchical
structure in data using the growing hierarchical self-organizing map,"
Neurocomputing, vol. 48, no. 1-4, pp. 199-216, 2002.

[12] D. Alahakoon, S. Halgamuge and B. Srinivasan, "Dynamic self-
organizing maps with controlled growth for knowledge discovery,"
IEEE Transactions on Neural Networks , vol. 11, no. 3, pp. 601 - 614,
2000.

[13] J. Lampinen and E. Oja, "Clustering properties of hierarchical self-
organizing maps," Journal of Mathematical Imaging and Vision, vol. 2,
no. 2-3, p. 261–272, 1992.

TABLE 3: RESULTS OBTAINED FOR LINEAR DSOM ALGORITHM

Model Layer 1
MapSize Train Accuracy Test Accuracy

Noise level

2 5 10 20 40

1 18*18 85.68 81.876 82.032 81.9876 81.878 81.056 73.09

2 20*20 84.68 79.396 77.83 77.89 77.76 77.248 69.104

3 22*22 85.52 81.44 78.568 78.532 78.346 77.776 69.714

4 24*24 85.88 79.158 83.235 83.05 83.15 81.61 71.85

TABLE 4: RESULTS OBTAINED FOR THE PD-SOM

Model
Layer1 Train

Accuracy
Test

Accuracy

Noise level

SOM1 SOM2 2 5 10 20 40

1 20*20 14*14 86.04 82.234 81.82 81.624 81.676 81.382 73.874

2 20*20 16*16 85.24 81.966 81.555 81.2 81.065 80.8875 74.22

3 22*22 14*14 85.72 82.88 82.874 82.9 82.73 80.93 74.362

4 22*22 16*16 84.72 81.34 81.32 81.23 80.81 80.72 73.25

TABLE 5: RESULTS COMPARISON BETWEEN THE PD-SOM AND LINEAR DSOM

Architecture Train
Accuracy

Test
Accuracy

Noise level
Computation

Time
2 5 10 20 40

DSOM (3 layered) 85.44 80.4675 80.41625 80.3649 80.2835 79.4225 70.9395 3747.4s

PD-SOM (2 layered) 85.43 82.105 81.89225 81.7385 81.5703 80.9798 73.9265 3076.6s

[14] N. Liu, J. Wang and Y. Gong, "Deep Self-Organizing Map for Visual
Classification," International Joint Conference on Neural Networks
(IJCNN), 2016.

[15] M. Defferrard, X. Bresson and P. Vandergheynst, "Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering,"
Advances in Neural Information Processing Systems 29 (NIPS 2016),
2016.

[16] M. Liang and X. Hu, "Recurrent Convolutional Neural Network for
Object Recognition," The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3367-3375, 2015.

[17] A. Graves, Supervised sequence labelling with recurrent neural
networks, Springer, 2012.

[18] Y. LeCun1, Y. Bengio and . G. Hinton, Deep learning, Nature, 2015.
[19] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based

learning applied to document recognition," Proceedings of the IEEE,
vol. 86, no. 11, 1998.

[20] M. Zeiler and R. Fergus, "Visualizing and Understanding Convolution
Networks," European Conference on Computer Vision, ECCV 2014:
Computer Vision – ECCV 2014, pp. 818-833, 2014.

[21] C. Sungzoon and C. Keonhoe , "Evolution of neural network training set
through addition of virtual samples," in Evolutionary Computation,
Proceedings of IEEE International Conference, 1996.

[22] . D. Hunter, H. Yu, P. Michael S. , J. Kolbusz and W. Bogdan M. ,
"Selection of Proper Neural Network Sizes and Architectures—A
Comparative Study," IEEE Transactions on Industrial Informatics, vol.
8, no. 2, pp. 228 - 240, 2012.

[23] Y.-S. Park, R. Céréghino, A. Compin and S. Lek, "Applications of
artificial neural networks for patterning and predicting aquatic insect
species richness in running waters," Ecological Modelling, vol. 160, no.
3, pp. 265-280, 2003.

[24] L. Steve , G. C. Lee and A. C. Tsoi, "What Size Neural Network Gives
Optimal Generalization? Convergence Properties of Backpropagation,"
Technical Report, 1996.

[25] L. Heutte, T. Paquet, J. V. Morea, Y. Lecourtier and C. Olivier, "A
structural/statistical feature based vector for handwritten character
recognition," Pattern Recognition Letters, vol. 19, no. 7, pp. 629-641,
1998.

[26] Y. Lecun and C. Cortes, Handwritten digit database (MNIST), 2010.
[27] X. Jin, B. W.Wah, X. Chen and Y. Wang, "Significance and Challenges

of Big Data Research," Big Data Research, vol. 2, no. 2, pp. 59-64,
2015.

[28] K. Jarrett, K. Kavukcuoglu, M. Ranzato and Y. LeCun, "What is the
Best Multi-Stage Architecture for Object Recognition".

[29] A. Coates, H. Lee and A. Ng, "An Analysis of Single-Layer Networks
in Unsupervised Feature Learning," in Fourteenth International
Conference on Artificial Intelligence and Statistics, 2011.

	I. Introduction
	II. Deep SOM
	III. PD-SOM for Image CLasification
	IV. Experimental Results and Discussion
	A. Linear DSOM architecutre proposed by Liu et al.
	B. Presented PDSOM architecture

	V. Conclusions
	VI. References

