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Abstract— Self-organizing Maps (SOMs) are neural network 
architectures which are used to learn from unlabeled data. Despite 
being proven to be useful in many areas, SOMs have limited 
capability of performing high level feature abstraction due to its 
shallow structure. As a solution, deep self-organizing maps 
(DSOM), have been proposed. DSOMs enable multiple levels of 
abstraction in unsupervised learning with a hierarchical deep 
structure. However, training of DSOMs is computationally 
expensive, limiting its usability. This paper presents a DSOM 
architecture that is easily parallelizable and hence more 
computationally efficient (PD-SOM). The presented architecture 
has three main advantages: 1) Unsupervised learning based image 
classification, 2) High-level feature abstraction and 3) Less 
computationally expensive training while maintaining high 
accuracy levels. The PD-SOM architecture was implemented on 
the benchmark MNIST hand written character dataset. To test the 
robustness and the generalization capability of the presented PD-
SOM architecture, testing was done with: 1) small training sets 
and 2) varying degrees of noise. It was shown that the presented 
architecture consistently outperformed the previously proposed 
DSOM while showing ~18% decrease in training time for the 
MNIST dataset.  

Keywords—Self Organizing Map (SOM); Deep Self Organizing 
Map (DSOM); MNIST; Image classification; Deep Learning 

I. INTRODUCTION 
Self-organizing Maps (SOM) are unsupervised learning 

architectures introduced by T.Kohonen [1]. SOMs are based on 
the winner-take-all algorithm and possess the capability of 
creating spatially organized representations of input patterns [2] 
[3] [4] [5]. Furthermore, SOMs have the capability of 
compressing the information while preserving the most 
important relationships of primary data items, which can be 
considered as a process of abstraction.  

SOMs have been proven to be suitable for visualization of 
high dimensional data and in the exploratory phase of data 
mining [6] [7]. Therefore, SOMs have been successfully used 
in a multitude of areas including speech recognition, robotics, 
process control and telecommunication [1] [2] [3] [4] [6] [7]. 
Further, it has been shown that SOMs have a better capability 
of revealing the overlapping structure in clusters when 
compared to other traditional cluster analysis techniques such 
as partitive clustering and K-means [8]. 

Even though SOMs have been proven to extremely useful 
in visual classification tasks, SOMs have a limited capability of 
high-level feature abstraction due to its shallow structure [9]. 
SOMs have other limitations such as fixed network size and not 

guaranteeing a minimal solution [9]. Further, it has been shown 
that SOMs are incapable of clearly representing the hierarchical 
relationships that exist in input data [9]. Therefore, traditional 
SOMs lack the capability of identifying highly important 
features that exist in data [10] [9] [11].  

In order to find solutions to these limitations, research on 
different architectures of SOMs have been conducted. As a 
solution for the static structure, [9] and [12] proposed a growing 
hierarchical SOM (GHSOM) architecture. GHSOM is a neural 
network model composed of multiple layers where each layer 
consists of several independently growing SOMs. In [13], the 
authors proposed a Multilayer Self Organizing Map 
architecture (HSOM), another hierarchal SOM architecture 
developed to address the problem of static map size. In this 
model, each layer depends on the outputs of its previous layer. 
In a more recent attempt, Deep Self-Organizing Maps 
(DSOMs) were proposed as a SOM architecture with 
hierarchical feature abstraction ability [14]. This model 
consisted of multiple layers of self-organizing map layers and 
sampling layers. The authors attempted at incorporating the 
concepts in Deep Learning with the concept of SOM to create 
SOMs with high-level feature abstraction capability.  

In this paper, we present an extension of this work. The 
implementation of DSOM presented in [14] was able to achieve 
improved classification accuracies over supervised version of 
traditional SOM.  However, the presented DSOM is 
computationally expensive and it has the same problem of static 
map size as in traditional SOMs. To our best knowledge, the 
work presented in [14], is the only research work carried out on 
DSOM and there is no further work on improving the 
capabilities and computational time on DSOMs.  

Therefore, this paper presents a easily parallelizable Deep 
Self Organizing Maps architecture (PD-SOM) with the main 
intention of improving the computational time of DSOMS while 
retaining performance. The presented PD-SOM has three main 
advantages: 1) Unsupervised learning based image 
classification, 2) High-level feature abstraction and 3) Less 
computationally expensive training while maintaining high 
accuracy levels.  In addition to the main advantages, PD-SOM 
partially overcomes the static map size problem that exist in 
traditional SOMs and DSOMs. The presented PD-SOM 
architecture was tested on the MNIST hand written character 
recognition dataset. It has to be noted that the goal was not to 
improve the state-of-the art classification accuracy for the 
MNIST dataset. Convolution neural networks (CNNs) and  
Recurrent Neural Networks based architectures have achieved 
the best classification accuracies for the MNIST dataset [15] 



[16] [17]. However, one limitation of those algorithms is that 
they require labeled data for training the classifiers [18]. The 
presented PDSOM architecture employs unsupervised learning. 
Therefore, it has to be noted that the goal of this work is to 
achieve highest possible accuracy while training with unlabeled 
data in a computationally efficient manner, not to improve the 
state-of-the art classification accuracy for the MNIST dataset. 

The rest of the paper is organized as follows. Section II 
provides a detailed review to the DSOMs. Section III describes 
the proposed parallelizable PD-SOM architecture. Experimental 
setup and result discuss in section IV. Section V discusses the 
conclusions proposed 2D DSOM architecture. 

II. DEEP SOM 
This section briefly introduces Deep Self Organizing Maps. 

Deep Self Organizing Maps (DSOMs) were first proposed 
by Liu et al [22]. DSOMs can be seen as a combination of 
concepts: traditional supervised SOMs and Convolution Neural 
Network (CNNs) [14]. In Convolution Neural Networks 
(CNNs), each unit in a layer receives inputs from a set of units 
located in a small neighborhood in its previous layer [19], [20]. 
CNN implements the idea of the local receptive field, such that 
it can extract elementary visual features such as edges, end 
points and corners. These extracted features are combined by 
subsequent layers in order to detect higher order features. The 
idea of DSOMs is similar to CNN where a SOM in a higher level 
layer is able to learn more abstract information than the SOM in 
its previous layer. The last layer of a DSOM contains one map 
which stores the information needed for classification. Figure 1 
shows a three layer DSOM architecture which has been used for 
handwritten character recognition by Liu et al [22]. DSOM has 
shown significant accuracy improvements compared to the 
traditional supervised SOM.  

DSOM provides a high level of feature abstraction relative 
to traditional SOM. In regular SOM, it maps entire observation 
space into a single 2D grid of neurons whereas in DSOM, the 
input image is processed in patches.  

The DSOM architecture consists of self-organizing map 
layers and sampling layers, arranged in a deep hierarchical 
structure. A self-organizing layer is made up of multiple SOMs, 
with each SOM focuses only on one local region (patch) of the 
input pattern (see Figure 2). Patch size is defined as the local 
region of input pattern where a particular SOM map performs 
its learning. Stride defines how many pixels the two sub-regions 
are apart from each other. Figure 2 illustrates how winning 
neuron indexes of all the maps are organized into another 2D 
grid in next layer, which is called sampling layer. It acts as the 
input pattern to the second SOM layer. These self-organizing 
layers and sampling layers can be concatenated one after the 
other, which will allow the deep hierarchical structure (Figure 
3). Such that, local information will be gathered, forming more 
global information in higher layers. 

Input pattern can be represented as X where X={x1,…xN} 
where N represent the number of the input patterns. The training 
of the DSOM is carried out with the following steps.  

Step 1: Weight initialization: Randomly initialize all the 
weights in the network. 

Step 2: SOM Layer: Select a random input pattern(X) from 
the training dataset. As in Figure 2, assuming the size of input 
or output of sampling layer is M x M, the self-organizing layer 
or the SOM layer uses multiple maps {C1,1, C1,2, … , CNmaps*Nmaps} 
to model the input where. Each map focuses on a K x K sub 
region (patch) from input pattern/sampling layer output. Let’s 
assume the stride as s. Number of maps can be calculated as 

 1+





=

−

S

KM
N map ceil   (1) 

where the ceil(*) calculates the smallest integer upper bound 
and M represents the number of pixels on one side. 

As mentioned, each patch is trained using a separate SOM with 
T number of neurons. So the number of SOM maps will be 
equal to (Nmap  x Nmap). Each map contains T nodes/ neurons. 
Assuming each patch from position {p,q} can be modelled by 

 
Figure 1: Linear DSOM used for Handwritten Character Recognition by Liu et al [14] 

 
 



a map with set of neuron weights denoted as {𝑤𝑤1,𝑝𝑝,𝑞𝑞
𝑙𝑙  ,…, 𝑤𝑤𝑇𝑇,𝑝𝑝,𝑞𝑞

𝑙𝑙 }. 
Here l indicates index of the layer. Similar to a traditional SOM, 
the patch xp,q extracted from the input first updates the map by 
finding the best matching unit/winning neuron (BMU) j* as 
follows:  
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Once the BMU is found, weights in the neighbourhood of 
neuron j* can be updated as follows:  
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where, Nj* defines the neighbourhood region, and n(t) is the 
learning rate at epoch t. The learning rate can be changed 
through the epochs as follows: 

 0.01+ t/epoch)-0.49(1=(t)η   (4) 

In order to calculate the neighbourhood, the following equation 
can be used [25].  
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Step 3: Sampling Layer: Once the BMUs are calculates for all 
the patches, sampling layer combines information of maps from 
the preceding SOM layer. The BMU for each patch is extracted 

and placed in a 2D grid (sampling layer) at the patch index. (See 
Figure 3). 

Step 4: Repeat Step 2-3: The sampling is a unique 
representation of the input image and it becomes the input for 
the next SOM layer. This process is repeated until the last layer. 

Step 5: Repeat 2-4: These steps are repeated until the 
maximum number of iterations (epochs) has been reached or 
until specified convergence criteria are met. 

As same as in SOMs, structure of the map can be defined by 
neighbourhood relationships between adjacent neurons. During 
the training weight vector in the map in the neighbourhood of 
the BMU are updated such that they will move closer to the 
input vector. Once the SOM is trained, in the final trained SOM, 
each neuron is assigned a class. The assignment is carried out 
with respect to neuron hits. 

III. PD-SOM FOR IMAGE CLASIFICATION 
This section elaborates the presented PD-SOM architecture. 

The main objective of the presented PD-SOM is to achieve 
reduced computation times while improving accuracy and 
generalization capability. The main distinction of PD-SOM 
from the earlier presented DSOM architecture is the use of 
multiple parallel SOMs of different sizes in the SOM layer 
whereas DSOM uses only one SOM in the SOM layer.  

When designing a SOM, selection of proper map size is 
very important to avoid adverse effects such as overfitting to 
the training data [21] [22]. It has been shown that if map size is 
too small, it might not explain important differences that should 
be detected [23]. If map size is too large, there is a possibility 
of overfitting to the training data [24]. Furthermore, different 
classes have different number of features that defines them. 
Therefore, a single map size may not be adequate to capture the 
distinguishing features for all classes. For example, in the 
MNIST dataset, each character has different features that 
distinguish it from other characters such as, number of 
segments, left-right density ratio, bottom-up density ratio [25]. 
It is apparent that the number of features associated with one 
letter is differ from another and selecting a single map size that 
can represent all classes very well can be extremely difficult. 
Therefore, a method of combining features extracted from maps 
of different sizes can potentially represent features in all 
classes.  

As mentioned, a map which is too large can result in over-
fitting to the training data set and if the map is too small, it may 
result in under-fitting. However, a smaller map can learn low 
granular (high-level) features and a large map can learn highly 
granular (low-level) features. Therefore, the use of two 
different sized maps together in parallel and the combination of 
their information into a single 2D map in the sampling layer, 
results in generalized information than using one single map. It 
provides a balance between learning too much information 
(overfitting) or too less information (under-fitting) to the 
proposed PD-SOM. 

 
Figure 2: Sampling layer creation in DSOM 

 
 



The linear DSOM proposed in [14] does not solve the static 
map size problem in traditional SOMs since only a single sized 
map is used in a single layer. Therefore, in linear DSOM, a 
patch of the image is learned only using a single map size 
limiting the learning capability of the SOM. Conversely, the 
presented PD-SOM partially alleviates the static nature by 
using different sized maps in the same layer. Therefore, PD-
SOM has more flexibility in learning features of different 
resolutions in the same layer. For instance, if a small map size 
and a large map size is used in parallel, the smaller map can 
learn the high-level features and the larger map can learn the 
low level-features. In the case of small map missing a certain 
feature, there’s a probability where the larger map can catch it. 
Therefore, the PD-SOM architecture has a better probability of 
capturing more features that represent a certain class without 
overfitting to training data over the previously proposed linear 
DSOM.  

Figure 3 illustrates the linear DSOM architecture that was 
presented in [14]. Figure 4 and Figure 5 illustrate two types of 
the proposed PD-SOM architecture. Training of the PD-SOM 
can be carried out in the following steps. 

Step 1: Weight initialization: Randomly initialize all the 
weights in the network. 

Step 2: SOM Layer: Step 2 from the previous section is used 
in parallel on the parallel SOM layers 

Step 3: Sampling Layer: In this step, the outputs from the 
Parallel SOMs are combined to create the sampling layer. A 
separate sampling layer is created for each of the parallel SOMs 

using the same method described in the previous section. Then 
the parallel sampling layers are combined together to make a 
single sampling layer. This is carried out using a simple 
summation process. I.e. the 2D matrices are added together to 
create a single 2D matrix, which is the combined sampling layer. 
Each of the parallel sampling layers are unique representations 
of the input image patch and the summation of unique 
representations creates another unique representation.  

Step 4: Repeat Step 2-3: The combined sampling layer 
becomes the input for the next SOM layer. This process is 
repeated until the last layer. 

Step 5: Repeat 2-4: These steps are repeated until the maximum 
number of iterations (epochs) has been reached or until specified 
convergence criteria are met. 

Figure 5 illustrates another possible architecture of the PD-
SOM. It illustrates a possible extension where the model can be 
made deeper by adding another layer of parallel SOMs. 
Therefore, the model can be made deeper by mixing the two 
ideas of linear DSOM and PD-SOM.  

IV. EXPERIMENTAL RESULTS AND DISCUSSION  
This section discusses the experimental setup and the results 

of the experiments. 

All the DSOM and PD-SOM architectures were carried out 
using MNIST: the benchmark hand written character 
recognition dataset [26]. Training was performed as 
unsupervised i.e. input vector contained only image descriptors 

 
Figure 3: Linear DSOM architecture 

 
Figure 4: Proposed PD-SOM architecture (Type 1) 

 
Figure 5: PD-SOM architecture - possible extension (Type 2) 

 
 



without class information. After the training was performed, 
cluster identification was performed based on neuron hits. 

The training dataset contained 3000 images whereas testing 
dataset contained 10000 images. A smaller training set was used 
to reduce the training time and to evaluate the generalization 
capability of the DSOM architectures. In the MNIST dataset, 
each image is the size of 28*28 pixels. For the proposed 
architectures, the performance were evaluated using different 
map sizes in SOM layers as well as by introducing different 
noise levels into validation set.  

Basic hyper-parameters such as patch size, stride, and kernel 
sizes were selected based on the work by Liu et al [14]. In order 
to compare the two architectures, patch size and stride was kept 
as constant values. In this study, only square maps with the size 
of one side ranging from 12 to 28 were used, as they have been 
shown the best accuracies [14]. The number of epochs during 
the training was set to 5 in order to reduce the experiment time.  

A. Linear DSOM architecutre proposed by Liu et al. 
The linear DSOM architecture was implemented with the 

parameters set identical to [14]. Table 1 presents the architecture 
details of the linear DSOM. As mentioned the map sizes ranged 
from 12x12 to 28x28. For brevity, only results for the best four 
models are presented (See Table 2). Different map sizes were 
tested to observe the effect of the map size on classification 
accuracy. It was observed that if the number of neurons in the 
map is low, then the mean accuracy was low because the small 
map learned an insufficient set of features. It has to be noted that 
only the map sizes for the first layer were changed, and the map 
sizes for the second and third layers were kept constant. Liu et 
al. observed that accuracy increases with the map size from 6x6 
to 15x15 and noticed that map sizes beyond that point didn’t 
result in a significant improvement in accuracy and only resulted 
in heavier computation times [14]. Therefore, the second layer 
map size was selected as 15x15. Similarly, the third layer size 
was set to 8x8.  

In order to test the robustness of the algorithm to noise, 
testing was carried out with different noise levels introduced to 
test data. As expected, results show that when noise level was 
increased, the testing accuracy dropped in all models and it was 
noticed that there was no specific map size which performed 
significantly better than the rest. 

B. Presented PDSOM architecture 
The presented PD-SOM architecture was implemented with 

two layers depth and width (Figure 4). In this version of the 
implementation, two SOMs were used in parallel in the SOM 
layer and two layers were used in terms of depth. Table III shows 
architecture details of the two layered PD-SOM. When selecting 
the map sizes for the parallel SOM layer, two different test cases 
were considered. 1) Same sized SOMs in parallel; 2) Different 
sized SOMs in parallel. In the second case, one SOM was set to 

have a constant map size and the other one was changed to better 
identify the changes in performance relative to different map 
sizes.  

In Test Case 1, it was observed that using two same sized 
SOMs in parallel, did not improve the classification accuracy 
when compared to the linear DSOM. Further, it was noticed that 
it sometimes had an adverse effect on classification accuracy. 
This could be the result of learning of redundant features in the 
same sized maps. Further, use of same sized maps can result in 
the two maps learning contrasting features in the same 
granularity which prevents creating a unique feature map for a 
class.  

In Test Case 2, four models were tested with a range of 
different map sizes. Table IV presents the results obtained for 
the four best models. As mentioned, one map of the parallel 
SOMs was kept constant and the second map was varied. It was 
noticed that all models performed consistently until the noise 
level was 20% and noticed an accuracy drop when the noise 
level was increased to 40%. Further, it was noticed that all the 
models were able to achieve similar accuracies which were 
slightly better than the more computationally expensive linear 
DSOM. PD-SOM with two different maps sizes partially solves 
the static map size problem encountered by the traditional SOM 
and linear DSOM, since different sized maps can learn features 
of different granularities.  

Table V presents the overall mean accuracies obtained for 
four best models of DSOM and PD-SOM. It was observed that 
even though training accuracies are almost similar for both 
DSOM and PD-SOM, testing accuracy and performance on 
noisy data is better in PD-SOM relative to DSOM. According to 
the mean accuracies in Table 5, the  PD-SOM shows 2% 
accuracy improvement for testing and 3% accuracy 
improvement for noisy data sets. In addition to the 
improvements in accuracy, PD–SOM showed around 18% 
reduction in computation time relative to the three layered 
DSOM architecture. Therefore, the experiment provides 
evidence to the fact that the PD-SOM can achieve better 
accuracies with reduced training times. Further, it should be 
noted that this was tested on a relatively small training dataset 
(3000 images). For a larger dataset, this has the potential of 
saving a considerable amount of time. 

V. CONCLUSIONS  
This paper presented a novel architecture for a parallelized 

version of a Deep Self-Organizing Map (PD-SOM). This work 
was an extended analysis and an improvement of the work 
proposed by Liu et al [14]. The presented PD-SOM provides 
three main advantages: 1) Unsupervised learning based image 
classification, 2) High-level feature abstraction for SOM and 3) 
Less computationally expensive training while maintaining high 
accuracy levels. The presented PD-SOM was implemented and 

TABLE 1: THE ARCHITECTURE OF THE LINEAR DSOM 
Layer Nmap MapSize Patch(k) Stride 

Layer 1 100 - 10*10 2 

Layer 2 25 15*15 6*6 1 
Layer 3 1 8*8 5*5 1 

 

TABLE 2: THE ARCHITECTURE OF THE PORPOSED PD-SOM 

Layer Nmap MapSize Patch(k) Stride 

Layer 1 100 - 10*10 2 

Layer 2 1 8*8 5*5 1 
 



tested on the benchmark MNIST handwritten character dataset. 
The performance of PD-SOM was compared to the linear 
DSOM in [14] in terms of computation time and classification 
accuracy. Further, to test the algorithm’s robustness to noise, 
PD-SOM and linear DSOM were tested on varying degrees of 
noise. Experimental results showed that the PD-SOM reduced 
the computation time by 18% while improving the classification 
accuracy. Further, PD-SOM performed well on noisy data 
making it a viable candidate architecture for further research. 
From the experimental results it can be concluded that the PD-
SOM with different map sizes provides more flexible and robust 
learning while reducing computation time compared to the 
linear DSOM. As future work, the presented PD-SOM 
architecture will be tested on more datasets including CASIA 
(Chinese handwritten character dataset) and will be extended in 
depth and width to observe the effects in computation time and 
accuracy.  
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