
Survey of Progress in Deep Neural Networks for
Resource-Constrained Applications

Morgan Stuart, Milos Manic
Department of Computer Science

Virginia Commonwealth University
Richmond, Virginia

stuartms@vcu.edu, mmanic@ieee.org

Abstract—Artificial neural networks and deep learning
methodologies have had growing interest across industry do-
mains, including IoT and mobile systems. However, in low-
power applications, resource limitations and operating environ-
ment restrictions make implementations difficult. This survey
examines efforts that target the data and compute challenges
of implementing energy efficient, low cost, and accurate neural
network models. Approaches come in many forms, with solutions
ranging from software optimization to hardware reorganization.
We examine three avenues of approach - binary neural networks,
application specific circuit designs, and neuromorphic computing.
For each methodology, we summarize progress, use-cases, and
inherent challenges.

I. INTRODUCTION

Deep learning [1] has brought promising advances in artifi-
cal neural networks, renewing considerable interest in the field.
Models built with deep learning techniques have demonstrated
state-of-the art performance in classification of images [2]
[3], videos [4] [5], and text [6] [7]. Other areas of work
include generative models [8], reinforcement algorithms [9],
and neural turing machines [10].

Growth in deep learning has coincided with heightened
interest in mobile and the Internet-of-Things (IoT) [11]. These
and other resource restricted domains have been pursuing
intelligent algorithms and controls for several decades [12]
[13]. It follows that efforts in robotics [14] and control systems
[15], low-power consumer devices [16], and sensor networks
[17] stand to benefit from deep learning models being applied
to their applications.

However, resource limited applications generally demand
low-power and low-latency operation to be viable. Instead,
current state of the art deep learning models can require
billions of floating-point operations to perform inference on a
single batch of inputs. Training procedures in deep learning are
more burdensome and can require many server-class machines,
often equipped with Graphics Processing Units (GPU), in
order to train within days or weeks [18] [19] [20]. While
modern GPUs offer high throughput for the operations needed
by neural networks, GPUs consume considerable power and
generally have higher response latency.

In order to bring deep learning to more domains, efforts
have sought to decouple the specialized operations of neural
network systems from their high-cost host systems. This
survey examines three gradations of these efforts: application

(A) Mobile Devices (B) Automation & Robotics (C) IoT & Sensors

Fig. 1. Example applications for deep learning models in low power and
restrictive environments. (A) AI-assisted functionality in mobile systems. (B)
Improved task automation for industrial systems and robotics. (C) Intelligent
IoT and wireless sensor networks (WSN) reporting on their local environment.

specific integrated circuits (ASIC), binarized neural networks,
and neuromorphic architectures. These approaches vary in
whether they target software, hardware, or both, but each serve
to greatly reduce the cost of utilizing neural network models
in resource-constrained environments. Looking forward, near-
future computer organizations are likely to experiment with
hybrid approaches, combining biologically inspired organiza-
tions with more structured and familiar digital designs. As
efforts zero-in on these new computing paradigms, intelligent
devices and systems will become a mainstay in everyday life.

The remainder of this work is organized as follows. Section
II will provide a refresher on deep neural learning models.
Sections IV, III, and V summarize the major motivations,
considerations, and approaches within each method. Then
in Section VI, these techniques are compared and discussed
within the problem context.

II. OVERVIEW OF NEURAL NETWORKS

This section outlines fundamental neural network and deep
learning methodologies used today by researchers and practi-
tioners. In later sections, these core concepts will arise again
in the consideration of low-cost techniques.

Artificial neural networks arose from efforts to mimic
biological neural systems: each artificial neuron is said to
be connected to many other neurons via synapses, with each
neuron firing (producing output) based on the inputs received
from other neurons. Efforts in deep learning still utilizes
these ideas, but has further abstracted the artificial neural
network model type into layers of non-linear transformations.

Hidden Layer
Convolutional

LayerOutput LayerInput Layer
Pooling Layer Dense Layer

sequence
(A) (B) (C)

Flatten

Volumes of Neurons

Hidden Layer Output LayerInput Layer

Fig. 2. Popular artificial neural network architectures: (A) Feedforward dense networks, (B) Convolutional Neural Networks, (C) Recurrent Neural Networks

Each layer accomplishes its transformation through units, a
generalization of the artificial neuron.

A. Model Organization

Artificial neural network models can be separated into
several categories, but for this work we consider the three
most dominant organizations. These are illustrated in Figure
2 as feedforward, convolutional, and recurrent architectures.

A feedforward neural network is a type of artificial neural
network that cascades values through layers of units. If values
are transferred backwards through layers or across samples, the
network is considered a recurrent neural network. Illustrations
of feedforward and recurrent networks are provided in Figure
2a and 2c, respectively. [21] [22]

A convolutional neural network is a distinct organization
of units, such that the layers implement n-dimensional filters.
These convolutional layers are in contrast to dense layers that
fully connect all units between layers. Given the properties
of digital filtering, convolutional neural networks work well
with highly correlated data and require fewer parameters
than a fully-connected counter-part. When trained on image
classification tasks, the resulting filters illustrate a hierarchy
of 2-dimensional convolutional filters. Hidden layers deeper
in the model, closer to the output, build more abstract filters
capable of matching complex relationships. [23] [21]

B. Formulations

Neural networks can be defined as a method of approximat-
ing some function through a training procedure. In generalized
terms, a network with parameters θ, input features x, and target
variable y is described by the mapping

y = f(x; θ)

A traditional artificial neuron performs a weighted sum of
its inputs and passes this value through an activation function.
Formulation of a neuron receiving i features is given by:

Z =
∑
i

xi × wi =WWWTXXX (1)

y = φ(Z) (2)

Fig. 3. Activation functions for neural networks. After weights and other
operations are applied to a units inputs, the results are passed through the
unit’s activation function. Nonlinearity and differentiability are important
characteristics of activation functions. However, more complex activation
require more compute power, potentially limiting applications.

Where XXX is a vector of input features, WWW is a vector
of weights or parameters, and φ is the neuron’s activation
function. This style of neuron is still at the center of most
deep architectures’ units, but these units often integrate other
regularization or transformation operations.

Without a non-linear activation function, a neural network
becomes a linear model, reducing model capacity [21]. A wide
range of activation functions have been used historically, see
Figure 3 for a sample of the more prominent nonlinearities
used for activation. In biological systems, neurons spike over
time. Within this context, artificial activation functions in
Figure 3 represent the average response of the neuron over
time with respect to a sample. The choice of activation
function can significantly impact both model accuracy and
training performance. Deep learning has pioneered the use
of a rectified-linear activation (ReLu), which helps to prevent
saturation while also being fast to compute. [24] [21]

Training procedures attempt to optimize the network’s pa-
rameters for the mapping x → y with a low error. Training
is typically performed through a cost function and gradient
descent. The cost function represents the error in the network’s
output relative to the actual output. Minimas in the cost surface

are pursued by calculating the error gradient and adjusting
parameters to descend the cost surface. A key challenge
with gradient descent applied to complex models like neu-
ral networks is determining the error gradient. Error back-
propagation [25] is still widely used as a method to unroll the
contribution of the error onto each neuron’s parameters.

This section outlined the basics of current deep learning
techniques in artificial neural networks. These methods are
almost exclusively applied on standard desktop or server class
systems, which may not be well-suited for many low-cost
environments. The remainder of this paper will explore how
the basic biological model of neural networks, made powerful
with these techniques, are entering lower cost domains.

III. APPLICATION SPECIFIC INTEGRATED CIRCUITS

The generalization power of deep neural networks has re-
newed efforts in application specific integrated circuit (ASIC)
designs for neural networks, since a single neural network
chip can potentially support many separate applications. ASIC-
based neural computing approaches reorganize traditional
functional units in order to more directly target the needs of
deep learning models. Implementations are typically realized
as separate devices for use by a larger host machine.

A. Progress in ASICs

ASIC implementations are especially interesting since
they’ve been evaluated in production commercial environ-
ments running deep learning algorithms. Designed and de-
ployed in only 15 months, Google’s tensor processing unit
[26] achieves 14x-16x and 17x-34x improvement in perfor-
mance/watt in comparison to GPU and CPU versions, respec-
tively. Microsoft’s Catapult project [27] previously leveraged
the flexability of FPGAs in their datacenter to achieve 2x
performance improvement in their search ranking system.
Recent publications demonstrate the organization’s push for
FPGA-accelerated deep learning in hyperscale datacenters [28]
[29].

Summary of ASICs:
• Large-scale systems already in production [26][27]
• High complexity and development effort
• High performance-per-watt

B. Considerations & Techniques

Deep learning’s success at building generalized models has
encouraged highly specialized designs, intended to target the
specific needs of neural network execution. Still, high flexi-
bility is desirable, both from a cost and end-user perspective.

1) Systolic Arrays: The overhead of general-purpose pro-
cessors and memory systems have limited utility in efficiently
executing neural network models. For this reason, efforts
have instead focused on specialized organizations that are
more readily amenable to the characteristics of neural network
models.

Illustrated in Figure 4, systolic arrays enable architectures
better suited for neural systems through use of tightly cou-
pled sequences of homogeneous processing elements (PE)

Systolic Array

Memory
Subsystem

PE PEPE PE

PE PE

PE PEPE PE

PE PE

. . .

Fig. 4. Organization and scaling of a 2D systolic array system. Processing
Elements (PE) perform simple operations before passing results to adjacent
PEs. The organization reduces the need for memory access and improves the
systems throughput.

pipelined together. Each element performs a limited set of
instructions, such as multiplication and addition. The goal of
a PE is to operate as part of a sequence of PEs. The sequence
operates synchronously, pumping results, partial results, and
inputs through the architecture. This pneumatic action is what
earned these systems the name systolic, likening them to the
rhythmic action of the biological heart [30].

The hierarchical nature of neural networks makes systolic
arrays a fitting design choice for ASIC implementations
[31][32][33]. Neural computing with systolic arrays generally
focus on inference applications rather than training. The guid-
ing principle being that offline training suffices in the majority
of cases, and can be performed on larger and more flexible
machines. By offloading the training phase, the hardware
design can be simplified, reducing costs for the system by
focusing only on inference [33].

2) Dynamic Architectures using FPGAs: Exploring new
hardware architectures for neural systems can be time con-
suming. Furthermore, while many deep learning models have
demonstrated impressive reusuability, some platforms and
applications may still need to support a variety of different
models, each with differing hardware requirements.

Field programmable gate arrays (FPGA) allow for software-
defined hardware architectures, providing a route for com-
promise between the flexability of general-purpose processors
and the performance of ASIC hardware implementations. The
primary advantage being the ability to rapidly iterate on
organizational schemes that better target neural computing.

In addition to rapid iteration of designs, FPGAs can also
enable on-the-fly model reorganization in order to better suit
the problem at hand. This can be extended to a system
that automatically rearranges itself, adapting to a changing
environment or problem. However, this is still hampered by
long synthesis times, which can take minutes or even hours to
complete depending on the system’s complexity [34] [35].

While FPGA-based neural networks have undergone
decades of sporadic research, only recently have implementa-
tions shown valuable improvements in performance/watt. Mi-
crosoft’s acceleration of deep learning using FPGAs achieved
134 images/second classification speed at only 25 watts. Com-

paratively, GPU implementations can accomplish well over
500 images/second, but with over 200 watts of required power.
The continual advancement of FPGA technology will see this
performance improve even further [28] [35].

IV. BINARIZED NEURAL NETWORKS FOR EMBEDDED
SYSTEMS

The high cost of floating point operations encouraged
parameter sparsity and reduced precision arithmetic in deep
learning. More extreme approaches build neural systems that
operate entirely on binary operations, such as XOR, shifts,
and bit counting. Networks implemented in this way greatly
reduce memory footprint and computational cost, enabling
low-powered implementations.

A. Progress in Binary Neural Networks

Efforts towards binary neural networks in relation to deep
learning methodologies are relatively recent. Techniques focus
on using traditional training methodologies on large scale
machines, with restrictions imposed such that the resulting
model can be represented and executed as a binary network
atop low-power systems.

BinaryConnect [36] presents deep learning models that
propgate data through binary weights, but still require real-
valued inputs and temporaries. The authors followup work
expanded this effort with BinaryNets [37] by binarizing the
network’s activations. Additional efforts have since sought
to binarize both weights and inputs by using bitwise ap-
proximations of convolutional arithmetic [38]. These efforts
have shown promise, achieving varying levels of comparable
accuracy to their 32-bit precision counter-parts, but no low-
cost/embedded implementation efforts have been widely pub-
lished at this time.

Summary of binary neural networks:
• Reduce floating point dependency for embedded systems
• Improves performance and capacity for large machines
• No published experimentation on embedded hardware

B. Considerations & Techniques

Reducing the precision of parameters and training opera-
tions has the potential to negatively impact accuracy. Further
precision reduction to binary networks requires reconsideration
of core operations such as a model’s activation function.

1) Reduced Precision Models: Precise floating-point oper-
ations are expensive and are often avoided when implementing
algorithms for low-power systems. Large scale systems can
also improve performance by reducing the precision of their
arithmetic arithmetic, if the application allows for the error.

Neural network algorithms heavily rely on precision arith-
metic in both training and inference phases of execution.
However, experiments have demonstrated that low precision
multipliers, such as half precision float, are sufficient for train-
ing deep networks for image classification [39][40]. In some
cases, reduced precision and binary networks have been shown
to help regularize a neural model, improving generalizeability
[36]. Binary networks can be considered an extreme version

of reduced precision, but specialized bit-wise operations make
them distinct.

2) Forward-Pass Activation Binarization: A primary con-
sideration when approaching binarization is how to translate
a real-valued activation function into a binary space. Most
popular activation functions such as sigmoid, tanh, or ReLu are
designed for real valued inputs and outputs - binary activation
must use different techniques to determine their output.

Creating a binary network requires binarization of the
activation outputs by restricting outputs to +1 and -1. A hard
threshold or sign function can serve this purpose. Furthermore,
a stochastic methodology can instead map real value inputs to
a probability σ, which is then used to draw a random value
with probability p = σ(x). The authors in [37] found success
with the sign function due to its simple implementation and
reduced overhead.

3) Optimization Binarization: Error backpropagation can’t
readily translate to the discontinuous gradient of a discrete
activation implicit in a binary activation function. In order
determine appropriate weighting schemes, the model most be
made to work with error backpropagation or another training
scheme must be used.

Approaches generally opt to compute the gradients of a
binary activation using a straight-through estimator, which
equates the gradient to the units discrete output. Then param-
eter gradients are accumulated into real valued temporaries
during backpropagation, resulting in binary version of the
network for forward pass inference [41][36][37]. Other work
demonstrated that binary networks were feasible and could be
reached by replacing error backpropagation with expectation
backpropagation, a techinque using variational Bayes methods
[42].

V. NEUROMORPHIC COMPUTING ARCHITECTURES

Neuromorphic systems are guided by the capacity and
efficiency of biological neuronal systems, and are therefore
closely aligned with deep learning systems implemented atop
traditional hardware architectures. Neuromorphic designs can
be seen as simulations of biological brains, but the recent
successes in deep learning has further motivated the pursuit
of practical applications for these designs.

A. Progress in Neuromorphic Computing

Neuromorphic computing architectures are more closely
aligned with biological brains, with models distributed across
a large fabric of primitive neurons intercommunicating via
synapses [43]. New architectures are required since large scale
implementations of this concept are difficult with traditional
computing hardware and digital representations.

While there are several avenues to pursue, spiking neural
networks (SNNs) [44] have seen considerable focus as a
key approach [45][46][47][48]. Methodologies have begun to
focus on memristor-based designs [49] [50], but all focus
on remaining biologically inspired [51]. Simulation results
have shown promise with speedups approaching 200x that of
a conventional CPU [49]. Other real-world implementations

have demonstrated various approahces that offer low power
consumption while maintaining accuracy [52] [53] [47] [54]
[55] [56]. Online training procedures remain challenging, with
many hardware learning rules considered over the years [57]
[45] [52]. Offline training is typically used, but a mapping
between the neuromorphic architecture and the software neural
net must exist for this approach.

Summary of neuromorphic computing:

• Low-power and accurate using event-driven architectures
• Few real-world implementations in operation today
• High complexity and effort with current technology

B. Considerations & Techniques

In pursuit of biologically inspired computing architectures,
researchers largely focus on asynchronous communications be-
tween neurons. The asynchronous nature removes the need for
a digital clock signal. This simplifies in some ways the time-
dependent information transfer through pulse trains. These
principles are difficult to implement with traditional digital
circuitry, leading to exploration of new dynamic circuitry.

1) Spiking Neurons: Biological brains spike changes in
potential over time, creating a series of pulses that efficiently
transfers information between endpoints [58] [59]. In contrast,
digital systems use binary encoded values, represented as a
collection of log2(X) bits. This scheme makes implementing
many neurological ideas difficult or error-prone. Therefore,
artificial spiking neurons are pursued in place of traditional
complementary metal-oxide-semiconductor (CMOS) digital
designs in many neuromorphic approaches.

Spiking neurons leverage univariate encoding to simplify
operations. Rather than represent information as a parallel
sequence of bits, as in traditional architectures, spiking neu-
rons instead imbue information in the frequency of pulses
emitted. With careful consideration to stimuli response and
input values, spiking neurons such as Leaky Integrate and
Fire (LIF) model can be use to implement complex signal
operations such as integration [60]. In using a frequency
domain representation of data, spiking neuron systems can
more readily receive and operate on input data from sensors
and other real-world inputs, since these are often time varying
and pulse-oriented themselves [61].

2) Memristors and Crossbar Circuits: The latest passive
electrical component, the memristor [62] [63], has aided both
in explaining biologically intelligent systems [64], and in
implementing them [65][66][71][72]. A memristor refers to
a two terminal component with a time-varying resistance. The
memristor’s resistance value only adjusts if the charge flowing
over it changes. Furthermore, the direction of charge flow can
be used to increase or decrease resistance. The resistance of
the memristor can be measured and used as stored memory,
which is maintained once the element is no longer powered. In
this way, the memristor can be considered a memory element,
holding a single value.

Existing CMOS devices have limitations in footprint size
and leakage - smaller devices tend to waste more of the energy

they consume. The crossbar circuit has been formulated as pos-
sible replacement, but limitations in the switching speed at it’s
interconnects delayed practical implementations. The advent
of memristors, with their small footprint and fast switching
speeds has made worthwhile crossbar designs a reality [67]
[68]. These traits have made crossbar circuits using hybrid
CMOS/memristors circuits [69][70] an important organization
for neuromorphic computing efforts [71][72]. Architectures
can create distinct training phases and inference phases by
exploiting the responsive voltage ranges of the memristor -
neutral voltages are used for inference while larger pulses
adjust the memristor’s stored weight [73].

3) Training Procedures: Neuromorphic systems are still
pursuing online, or on-chip, training procedures in order to en-
able self-reliant, low-power, and intelligent systems. However,
the discrete spiking nature of neuromoprhic systems makes
backpropagation challenging since it requires a differentiable
model in order to calculate error contributions.

Recent work addresses this challenge by restricting the
training procedure of a real-valued deep neural network in soft-
ware, such that the resulting model is more readily mapped to
neuromorphic SNNs. Primary challenges include representing
negative weights without adding inhibitory neurons, represent-
ing layer biases, and implementing spatial pooling operations
without additional layers. Approaches include adopting ReLu
activations to avoid negative values, zeroing biases, and sub-
stituting spatial linear subsampling in place of pooling [46].
Still, converting networks trained in this way showed some
performance loss, but this can be ragained through weight-
normalization techniques [45].

VI. DISCUSSION

Deep learning methodologies are poised to tackle new
challenges outside the datacenter, but first, new levels of
energy and compute efficiency must be reached. In pursuit of
this, neural network techniques are being adapted both through
software and hardware reconsiderations. Software-based im-
plementations are altering their idealized methods to better suit
the underlying compute infrastructure, and hardware designs
are being rethought to better support existing algorithms or to
realize larger scale and complexity.

Enabling complex models in low-cost environments stands
to bring a wide range of benefits. Foremost is offline autonomy
for mobile and IoT devices. Today, solutions would likely
require remote connectivity back to a datacenter or base
station in order to receive model outputs from larger machines.
Decoupling these devices reduces network load and latency for
the application. This is especially important as these devices
are often directly interacting with their environment or an end-
user - the type of application where rapid response is key.

Low-power versions of these complex models will also
encourage experimentation in domains such as compression
and data transformations. For instance, a sensor may use a
neuromorphic chip to classify incoming samples. When an
interesting or otherwise important sample is discovered, the
neuromorphic chip can be reconfigured to encode the sample

to a lower dimensionality. The compressed sample can then
be transmitted directly from the neuromorphic chip using the
serial pulses of the popular SNN models.

As neural networks continue to develop, they are confronted
with the various performance barriers of modern general-
purpose computers. Neural network models seem especially
challenging since they demand both large amounts of fast
memory (both in parameters and input data) as well as
complementary compute architectures. These challenges are
not new in the field of computer engineering. The road
to understanding how to scale machines is paved by the
considerations of Amdahl [75], Gustafason [76], and more
recent memory bound models [77] [78]. It seems then that
massively parallel processing can be highly scalable, but is
ultimately determined by algorithm’s degree of parallelism
and its memory access requirements. Neural networks will
continue to be challenged by these properties as researchers
and practitioners push for larger scale and complexity.

Each of the approaches discussed still rely heavily on
traditional machines and tools to train a model. After training
is complete, the model could be adapted to it’s final platform,
whether it be an ASIC, embedded system, or SSN hardware.
This illustrates both how early these techniques are, and also
how these methods are focused on the real-world, inference-
heavy applications. Put another way, it appears that model
execution is currently a higher priority than model training.
This is intuitive, since a well-trained model undergoes training
once, and can then be used many times for inference.

As software and hardware domains converge to more per-
vasive neural computing, industries are likely to entertain a
series of partial and hybrid measures towards its realization.
Techniques such as binary networks will serve to allow orga-
nizations to leverage existing embedded and sensory networks
to create topologies of intelligent devices. Similar to the rapid
adoption of GPUs to offload burdensome graphics process-
ing from the CPU, future enterprise and home computer
systems may come with discrete neural network processing
units, enabling fast and local artifical intelligence. Specialized
hardware seems likely to emerge first in large scale compute
providers already oriented around provinding interfaces to
artificial intelligence applications [28] [26], but heightened
demands may bring this processing closer to the user. Privacy
advocates may further demand this transition.

Neuromorphic computing faces an additional challenge -
that of composing programs that utilizing a complex fabric of
neuron-like processors. Already, work in this area has begun
to revolve around hybrid archtectures, creating memristor-
CMOS neuromorphic circuits to better enable exploration and
practical use [74]. It’s reasonable to expect this approach to
further yield a hybrid hierarchy. A digital neural processing
core can pass outputs to larger neuromorphic fabric to extract
deeper features and perform more abstract inferences. A fitting
analogy being the current memory and computing performance
hierarchy pervasive in today’s general-purpose compute sys-
tems.

VII. CONCLUSION

The success of deep learning methodologies has encouraged
their entrance into a multitude of problem domains - web
services, automotive systems, manufacturing, and personal
devices are all seeing benefits from these advances. However,
high demands for compute and memory pose a challenge
to practitioners. In turn, efforts are growing to reduce costs
and to decouple these techniques from the large platforms
that bore them. ASIC designs, binary neural networks, and
neuromorphic organizations all serve to approach this issue.
Practitioners in need of solutions now will continue to uti-
lize standard large machine techniques, but as more efficient
methods mature, hybrid architectures will likely emerge. This
progression will only serve to further proliferate these algo-
rithms and their adoption into mainstream computing.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[4] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with
convolutional neural networks. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[5] Karen Simonyan and Andrew Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances in neural
information processing systems, pages 568–576, 2014.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin.
A neural probabilistic language model. Journal of machine learning
research, 3(Feb):1137–1155, 2003.

[7] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[10] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.
arXiv preprint arXiv:1410.5401, 2014.

[11] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements,
and future directions. Future generation computer systems, 29(7):1645–
1660, 2013.

[12] FW Lewis, Suresh Jagannathan, and A Yesildirak. Neural network
control of robot manipulators and non-linear systems. CRC Press, 1998.

[13] Panos J Antsaklis. Neural networks for control systems. IEEE
Transactions on Neural Networks, 1(2):242–244, 1990.

[14] K. Isa and M. R. Arshad. Neural networks control of hybrid-driven
underwater glider. In 2012 Oceans - Yeosu, pages 1–7, May 2012.

[15] N. L. Lu Wang, S. Li, and K. Li. Neural network based model predictive
control performance monitoring-data-driven approach. In 2013 9th Asian
Control Conference (ASCC), pages 1–6, June 2013.

[16] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and
Yixin Chen. Compressing neural networks with the hashing trick. In
International Conference on Machine Learning, pages 2285–2294, 2015.

[17] L. M. Borges, F. J. Velez, and A. S. Lebres. Survey on the char-
acterization and classification of wireless sensor network applications.
IEEE Communications Surveys Tutorials, 16(4):1860–1890, Fourthquar-
ter 2014.

[18] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V. Le, Mark Z. Mao, MarcAurelio Ranzato, Andrew Senior, Paul
Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed deep
networks. In NIPS, 2012.

[19] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro,
and Ng Andrew. Deep learning with cots hpc systems. In Proceedings
of the 30th international conference on machine learning, pages 1337–
1345, 2013.

[20] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared
Casper, Bryan C. Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Tony Han, Awni Y. Hannun, Billy Jun, Patrick LeGresley,
Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger,
Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta,
Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun
Zhan, and Zhenyao Zhu. Deep speech 2: End-to-end speech recognition
in english and mandarin. CoRR, abs/1512.02595, 2015.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[22] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and
Fuad E Alsaadi. A survey of deep neural network architectures and their
applications. Neurocomputing, 234:11–26, 2017.

[23] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional
networks and applications in vision. In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, pages 253–256.
IEEE, 2010.

[24] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Aistats, volume 9, pages
249–256, 2010.

[25] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. Cognitive modeling,
5(3):1, 1988.

[26] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. arXiv preprint arXiv:1704.04760, 2017.

[27] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable fabric for
accelerating large-scale datacenter services. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 13–
24. IEEE, 2014.

[28] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers,
Karin Strauss, and Eric S Chung. Accelerating deep convolutional neural
networks using specialized hardware. Microsoft Research Whitepaper,
2(11), 2015.

[29] Eric Chung. Deep learning in the enhanced cloud. In Proceedings of
the 2017 ACM on International Symposium on Physical Design, ISPD
’17, pages 5–5, New York, NY, USA, 2017. ACM.

[30] HT Kung and Charles E Leiserson. Systolic arrays (for vlsi). In
Sparse Matrix Proceedings 1978, volume 1, pages 256–282. Society
for Industrial and Applied Mathematics, 1979.

[31] Jaehyeong Sim, Jun-Seok Park, Minhye Kim, Dongmyung Bae, Yeong-
jae Choi, and Lee-Sup Kim. 14.6 a 1.42 tops/w deep convolutional
neural network recognition processor for intelligent ioe systems. In
Solid-State Circuits Conference (ISSCC), 2016 IEEE International,
pages 264–265. IEEE, 2016.

[32] Yeongjae Choi, Dongmyung Bae, Jaehyeong Sim, Seungkyu Choi,
Minhye Kim, and Lee-Sup Kim. Energy-efficient design of processing
element for convolutional neural network. IEEE Transactions on Circuits
and Systems II: Express Briefs, 2017.

[33] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao:
Shifting vision processing closer to the sensor. In ACM SIGARCH
Computer Architecture News, volume 43, pages 92–104. ACM, 2015.

[34] Clément Farabet, Yann LeCun, Koray Kavukcuoglu, Eugenio Culur-
ciello, Berin Martini, Polina Akselrod, and Selcuk Talay. Large-scale
fpga-based convolutional networks. Scaling up Machine Learning:
Parallel and Distributed Approaches, pages 399–419, 2011.

[35] Griffin Lacey, Graham W Taylor, and Shawki Areibi. Deep learning on
fpgas: Past, present, and future. arXiv preprint arXiv:1602.04283, 2016.

[36] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. CoRR, abs/1511.00363, 2015.

[37] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep
neural networks with weights and activations constrained to +1 or -1.
CoRR, abs/1602.02830, 2016.

[38] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

[39] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Low
precision arithmetic for deep learning. CoRR, abs/1412.7024, 2014.

[40] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In ICML,
pages 1737–1746, 2015.

[41] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating
or propagating gradients through stochastic neurons for conditional
computation. arXiv preprint arXiv:1308.3432, 2013.

[42] Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backprop-
agation: Parameter-free training of multilayer neural networks with
continuous or discrete weights. In Advances in Neural Information
Processing Systems, pages 963–971, 2014.

[43] Don Monroe. Neuromorphic computing gets ready for the (really) big
time. Commun. ACM, 57(6):13–15, June 2014.

[44] Wolfgang Maass and Henry Markram. On the computational power of
circuits of spiking neurons. Journal of computer and system sciences,
69(4):593–616, 2004.

[45] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii
Liu, and Michael Pfeiffer. Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing. In Neural Networks
(IJCNN), 2015 International Joint Conference on, pages 1–8. IEEE,
2015.

[46] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep
convolutional neural networks for energy-efficient object recognition.
International Journal of Computer Vision, 113(1):54–66, 2015.

[47] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S
Cassidy, Jun Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam,
Chen Guo, Yutaka Nakamura, et al. A million spiking-neuron integrated
circuit with a scalable communication network and interface. Science,
345(6197):668–673, 2014.

[48] Giacomo Indiveri. Neuromorphic bistable vlsi synapses with spike-
timing-dependent plasticity. In NIPS, volume 15, pages 1091–1098,
2002.

[49] Carlos Zamarreño-Ramos, Luis A Camuñas-Mesa, Jose A Pérez-
Carrasco, Timothée Masquelier, Teresa Serrano-Gotarredona, and
Bernabé Linares-Barranco. On spike-timing-dependent-plasticity, mem-
ristive devices, and building a self-learning visual cortex. Frontiers in
neuroscience, 5, 2011.

[50] Andy Thomas. Memristor-based neural networks. Journal of Physics
D: Applied Physics, 46(9):093001, 2013.

[51] Shih-Chii Liu and Tobi Delbruck. Neuromorphic sensory systems.
Current opinion in neurobiology, 20(3):288–295, 2010.

[52] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur,
and Dharmendra S Modha. Backpropagation for energy-efficient neu-
romorphic computing. In Advances in Neural Information Processing
Systems, pages 1117–1125, 2015.

[53] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choud-
hary, Anand R Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-
Icaza, John V Arthur, Paul A Merolla, and Kwabena Boahen. Neu-
rogrid: A mixed-analog-digital multichip system for large-scale neural
simulations. Proceedings of the IEEE, 102(5):699–716, 2014.

[54] Daniel Neil and Shih-Chii Liu. Minitaur, an event-driven fpga-based
spiking network accelerator. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 22(12):2621–2628, 2014.

[55] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco
Galluppi, Cameron Patterson, David R Lester, Andrew D Brown, and
Steve B Furber. Spinnaker: A 1-w 18-core system-on-chip for massively-
parallel neural network simulation. IEEE Journal of Solid-State Circuits,
48(8):1943–1953, 2013.

[56] Thomas Pfeil, Andreas Grübl, Sebastian Jeltsch, Eric Müller, Paul
Müller, Mihai A Petrovici, Michael Schmuker, Daniel Brüderle, Jo-
hannes Schemmel, and Karlheinz Meier. Six networks on a universal
neuromorphic computing substrate. Frontiers in neuroscience, 7, 2013.

[57] Perry Moerland and Emile Fiesler. Neural network adaptations to
hardware implementations. Technical report, IDIAP, 1997.

[58] Rodolfo R Llinás. Central nervous system function. 1988.

[59] Bruce Hutcheon and Yosef Yarom. Resonance, oscillation and the
intrinsic frequency preferences of neurons. Trends in neurosciences,
23(5):216–222, 2000.

[60] Bryan P Tripp and Chris Eliasmith. Population models of temporal
differentiation. Neural computation, 22(3):621–659, 2010.

[61] Bilel Belhadj, Antoine Joubert, Zheng Li, Rodolphe Héliot, and Olivier
Temam. Continuous real-world inputs can open up alternative accelera-
tor designs. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 1–12, New York, NY, USA,
2013. ACM.

[62] L. Chua. Memristor-the missing circuit element. IEEE Transactions on
Circuit Theory, 18(5):507–519, September 1971.

[63] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley
Williams. The missing memristor found. nature, 453(7191):80–83, 2008.

[64] Frank Zhigang Wang, Leon O Chua, Xiao Yang, Na Helian, Ronald
Tetzlaff, Torsten Schmidt, Caroline Li, Jose Manuel Garcia Carrasco,
Wanlong Chen, and Dominique Chu. Adaptive neuromorphic architec-
ture (ana). Neural Networks, 45:111–116, 2013.

[65] Djaafar Chabi, Weisheng Zhao, Damien Querlioz, and Jacques-Olivier
Klein. On-chip universal supervised learning methods for neuro-
inspired block of memristive nanodevices. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 11(4):34, 2015.

[66] Ahmad Muqeem Sheri, Hyunsang Hwang, Moongu Jeon, and Byung-
geun Lee. Neuromorphic character recognition system with two pcmo
memristors as a synapse. IEEE Transactions on Industrial Electronics,
61(6):2933–2941, 2014.

[67] Dmitri B Strukov and Konstantin K Likharev. Cmol fpga: a re-
configurable architecture for hybrid digital circuits with two-terminal
nanodevices. Nanotechnology, 16(6):888, 2005.

[68] A. Bhola and G. Kanitkar. Memristors and crossbar latches. In
Proceedings of the International Conference and Workshop on Emerging
Trends in Technology, ICWET ’10, pages 915–918, New York, NY,
USA, 2010. ACM.

[69] Konstantin K Likharev. Hybrid cmos/nanoelectronic circuits: Opportu-
nities and challenges. Journal of Nanoelectronics and Optoelectronics,
3(3):203–230, 2008.

[70] Dmitri B Strukov and R Stanley Williams. Four-dimensional address
topology for circuits with stacked multilayer crossbar arrays. Proceed-
ings of the National Academy of Sciences, 106(48):20155–20158, 2009.

[71] Konstantin K Likharev. Crossnets: Neuromorphic hybrid
cmos/nanoelectronic networks. Science of Advanced Materials,
3(3):322–331, 2011.

[72] Mirko Prezioso, Farnood Merrikh-Bayat, BD Hoskins, GC Adam, Kon-
stantin K Likharev, and Dmitri B Strukov. Training and operation of
an integrated neuromorphic network based on metal-oxide memristors.
Nature, 521(7550):61–64, 2015.

[73] Djaafar Chabi, Damien Querlioz, Weisheng Zhao, and Jacques-Olivier
Klein. Robust learning approach for neuro-inspired nanoscale crossbar
architecture. J. Emerg. Technol. Comput. Syst., 10(1):5:1–5:20, January
2014.

[74] Giacomo Indiveri, Bernabé Linares-Barranco, Robert Legenstein,
George Deligeorgis, and Themistoklis Prodromakis. Integration of
nanoscale memristor synapses in neuromorphic computing architectures.
Nanotechnology, 24(38):384010, 2013.

[75] Gene M Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, spring joint computer conference, pages 483–485. ACM, 1967.

[76] John L Gustafson. Reevaluating amdahl’s law. Communications of the
ACM, 31(5):532–533, 1988.

[77] Xian-He Sun and Lionel M Ni. Scalable problems and memory-bounded
speedup. Journal of parallel and distributed computing, 19(1):27–37,
1993.

[78] Xian-He Sun and Yong Chen. Reevaluating amdahls law in the multicore
era. Journal of Parallel and Distributed Computing, 70(2):183–188,
2010.

