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Abstract— Control systems monitor and command other 

devices, systems, and software within an infrastructure. Typically, 

control systems employ human-in-the-loop control for critical 

decision making and response.  These end-users require easy 

access to accurate, actionable and relevant data to ensure quick 

and effective decision making. This work presents a framework 

for creating dynamic visual interfaces for improved situational 

awareness. The proposed framework determines the relevance of 

available information pieces and then applies the derived 

relevance scores to a visualization so that the most relevant and 

important information are emphasized to the end-users. In the 

presented work, a priori expert knowledge is encoded in the 

system through the use of Fuzzy Logic (FL) and the resulting FL 

inference system assigns scores to information pieces based on 

system state information and user defined relevance. These scores 

can then be used to organize and display the relevant data given 

the current situation and end-user roles. The proposed FL based 

scoring system was implemented on a real world control system 

dataset and we demonstrate how the information visualization is 

dynamically adapted to improve situational awareness. Further, 

we discuss potential methods the relevance scores can be 

incorporated into real world visualizations to increase the 

situational awareness in control systems. 

Keywords—Fuzzy Logic, Control Systems, Dynamic 

Visualization 

I. INTRODUCTION 

Control systems integrate heterogeneous information from 
potentially large networks of physical devices and 
computational algorithms to measure, model, and control a 
system, or plant [1]. Typical control systems, such as critical 
infrastructure and cyber-physical systems, employ feedback 
loops that allow the system to dynamically adapt based on the 
various available inputs [2], [3]. Additionally, control systems 
often incorporate human-in-the-loop elements for critical-
decision making and response during emergency situations. 
These controllers, or end-users, require data representations 
that are not only frequently updated and accurate, but also 
relevant [4]. However, the presentation of relevant information 
is not a trivial task. Since the relevance of information can be 
highly situational, the information needed to gain adequate 
system awareness for a specific user may only be a small subset 
of the entire system [5]. Due to the potentially large amounts of 
information available from the system, static information 
visualization can result in suboptimal situational awareness, 
which can lead to catastrophic failures. 

Fuzzy logic is a well-documented and proven methodology 
for tasks involving weighted values [6]. The fuzzy weighted 

values can be used for various ranking and scoring tasks. In 
control systems, prior works have used fuzzy logic scoring and 
ranking systems for decision making in micro grids [7], 
controllers [8], anomaly detection [9], network weighting [10], 
[11], and detector scoring [12]. Fuzzy logic ranking and scoring 
systems have also been implemented for robot control [13], 
cancer treatment predictions [14], quality of experience 
modelling [15], fuzzy preference relations [16], and 
summarization methods [17].  

This work presents a dynamic visual interface framework for 
improving the situational awareness in control systems. The 
framework involves two aspects: 1) Dynamic scoring of 
information pieces with respect to situational relevance and 2) 
Organizing and displaying the information such that the 
information relevance is apparent. A fuzzy logic inference 
system is presented for the scoring system, and several methods 
for data visualization that incorporate the resulting scores are 
explored. 

Fuzzy logic inference was chosen because of its ability to 
embed imprecise expert knowledge in the form of “fuzzy rules”. 
Thus, the scoring system can be created based on the descriptive 
“fuzzy” rules [18], [8]. The expert knowledge can include 
qualitative observations (when x is low, y is high) and system 
wide state information [13]. In addition to embedding the 
knowledge, end-user defined needs can be included as well in 
order to tailor the relevance scores to specific sub-systems with 
smaller scopes. Using a fuzzy rule set also has an advantage over 
other black-box modeling methods in that the rules are human 
understandable. This improves the interpretability of the system, 
which increases trustworthiness, reduce confusion, and makes 
tweaking the model an easier task. These rules can be modified 
based on the type of system and individual user roles, adding a 
level of generalization to the inference system. 

The rest of the paper is organized as follows. Section II 
provides a brief introduction in fuzzy logic systems (FLS), 
Section III elaborates the presented FLS based dynamic 
visualization framework, Section IV discusses the experimental 
setup and the results obtained and finally Section V concludes 
the paper. 

II. FUZZY LOGIC SYSTEMS 

This section provides a brief overview of fuzzy logic systems 
and the inference procedure. 

Fuzzy Logic Systems (FLS) are a well-documented method 
for control and data mining. Fuzzy logic is based on fuzzy set 
theory where an element can “partially” belong to multiple sets 



with respect to a degree of membership as opposed to crisp set 
theory where an element belonging to a set is binary. The main 
advantage of FLS is its capability of incorporating human 
knowledge in terms of linguistic fuzzy rules. Further, FLS have 
the capability to handle imprecision, ambiguity and uncertainty.  

In general, a FLS is comprised of four major components:1) 
Input fuzzification, 2) fuzzy rule base, 3) fuzzy inference engine 
and 4) output defuzzification. There are mainly two types of 
FLS: 1) Mamdani, 2) Takagi-Sugeno (TS). In this work, a TS 
type fuzzy system is implemented. As mentioned the FLS 
maintains a fuzzy rule base populated with fuzzy linguistic rules. 
A TS type fuzzy rule can be written as follows: 

Rule 𝑅𝑘: 𝐈𝐅 𝑥1 𝑖𝑠 𝐴1
𝑘 𝑨𝑵𝑫 𝑥2 𝑖𝑠 𝐴2

𝑘 …𝑨𝑵𝑫 𝑥𝑛 𝑖𝑠 𝐴𝑛
𝑘   

𝑻𝑯𝑬𝑵 𝑦𝑘 = 𝑓𝑘(𝑥1, 𝑥2, … , 𝑥𝑛) 

Here, Ai
k denote the ith input fuzzy set for the kth fuzzy rule 

and n is the dimensionality of the input vector x⃗ . In TS type 
fuzzy systems, the output of a rule is a function. By using this 
type, output fuzzy sets do not need to be formulated through a 
priori knowledge. Once the rule base is defined in the given 
form, the degree of relevance for a rule is calculated using the 
minimum t-norm operation as follows: 

𝜇𝑅𝑘
(𝑥 ) =  min

𝑖=1,…,𝑛
{𝜇𝐴1

𝑘(𝑥𝑖)} 

Here, 𝜇𝑅𝑘
(𝑥 ) is the degree of firing of the kth fuzzy rule and 

𝜇𝐴1
𝑘(𝑥𝑖) is the degree of membership of 𝑥𝑖  to fuzzy set 𝐴1

𝑘.  

The output is calculated for each rule using the output 
function multiplied by the degree of relevance. The combined 
output is calculated as the weighted average across all rules in 
the rule base. For a rule base with R rules, the final output can 
be calculated as follows: 

𝑦 =  
∑ 𝜇𝑅𝑘

(𝑥 )𝑓𝑘(𝑥1, 𝑥2, … , 𝑥𝑛)
𝑅
𝑘=1

∑ 𝜇𝑅𝑘
(𝑥 )𝑅

𝑘=1

 

III. FUZZY LOGIC BASED DYNAMIC VISUALIZATION 

This section discusses the presented fuzzy logic based 
dynamic visualization framework and different methods it can 
be used in real world control systems. 

The first part of the proposed framework is the fuzzy logic 
scoring system. The system assigns a score to each available 
piece of information based on the information’s relevance to the 
current state of the system. The scores are generated by 
implementing a fuzzy rule base that is created from accumulated 
expert knowledge of the control system. This expert knowledge 
can include qualitative understanding gained through 
observation, sensor data, and computational models such as state 
estimations, anomaly detection, and cyber-attack detection, 
anomaly detection. The fuzzy scoring system may also 
incorporate rules based on individual user knowledge and role 
requirements. Ultimately, the relevance scores should represent 
the specific needs of the end-user, and embedding user specific 
rules into the fuzzy system would allow for fine tuning in the 
scoring process. Once the fuzzy rule base is defined, system state 
information is input into the fuzzy system and the scores are 
calculated. 

The derived relevance scores can then be applied to a 
visualization scheme to generate an optimized user interface. 
Three visualization techniques have been considered that could 
take advantage of the ranked information pieces. The first is a 
dynamic cyber-physical display directory that finds the optimal 
areas for each of the inputs based on their scores [19] [20]. The 
Cyber-Physical Directory uses linear programming optimization 
to scale information with a higher score to be larger than those 
with smaller scores while also maximizing the amount of the 
display area used. The physical directory design gathered user 
defined metrics (i.e. movie preferences) from smartphones in its 
vicinity and used the collected scores to present 
recommendations, using only the area to indicate which objects 
were more likely to be relevant to the user. (Figure 1) Since this 
design already requires a scoring system to function, using the 

 
Fig. 1: Cyber physical Directory [9] 

 
Fig. 2: Basic NLD Design [10] 



fuzzy scoring system as the backend would generate a visual 
hierarchy of system information and allow the end-users to 
quickly and easily see which pieces of system information are 
the most important. 

Another promising visualization method is Node Link 
Diagrams (NLD). [21] NLD layouts use a classic graphical 
representation that is intuitive, customizable, and can represent 
the entirety of the data flow across the system. These diagrams 
represent various entities as nodes in a tree structure with links 
showing relationships between entities. (Figure 2) Nodes are 
represented in the NLD by circles of various sizes and colors to 
quickly and intuitively identify information about the entities 
encapsulated in the node. Links are represented by 
unidirectional lines to show the directional flow of information. 
Links can also vary in density to show strong each connection 
is, with lighter links showing weaker relationships and darker 
links showing stronger relationships.  

Since control systems can be very large in size, NLD 
visualizations can become convoluted and web-like reducing the 
overall intuitiveness of the design. To counter this, a balloon 
layout can be used. Balloon layouts allow nodes to represent 
subsystems of connected entities that are represented by another 
NLD within the node. (Figure 3) This helps keep the design 
simple and intuitive while also visually representing hierarchical 
dependencies within the control system. Due to the highly 
customizable design, relevance scores can be integrated to create 
dynamic NLDs to aid in the situational awareness of a system. 
The relevance score for each entity can be represented by 
showing only relevant nodes, modifying each node’s area, 
changing the colors of the nodes, and altering the strength of the 
links. All of these elements can help provide a complete picture 
of the system scope an end-user is responsible for without 
unnecessary visual clutter, as well as guide them to the 
information they need to fulfill their role. 

Many control systems use algorithms to identify threats and 
propose countermeasures to aid end-users in the decision 
making process. However, the various solutions are often 
presented with equal priority which may result in suboptimal 
risk mitigation. The Analytic Hierarchy Process (AHP) has been 

shown to provide a solution to this problem by ranking potential 
countermeasures by effectiveness based on multiple predefined 
criteria. [22] The fuzzy scoring system could be used to 
dynamically rank and create the sets of criteria that need to be 
met. Scoring based on the current system state could ensure that 
the areas that are most affected during an emergency situation 
are solely addressed by removing excess noise from non-
affected criteria during the AHP calculations. The fuzzy 
inference system could also use the predefined criteria as expert 
knowledge to help define the rule base. This would increase the 
specificity of the fuzzy system and could add another layer of 
information provided to the end-user. By displaying how 
relevant the solutions are for each of the criteria, end-users 
would gain increased situational awareness during critical risk 
management scenarios.  

IV. EXPERIMENTAL SETUP AND RESULTS 

This section details the implementation and results for the 
fuzzy logic based information ranking system on a real world 
dataset.  

The data used in this paper was collected by Idaho National 
Laboratory (INL) in Idaho Falls, Idaho using the Biofuels 
National User Facility Preprocessing Process Demonstration 

 
Fig 3: Hierarchical Balloon NLD Design [10] 

 
Fig 4: Fuzzy membership functions used for Bale Moisture Content 

 

 
Fig 5: Fuzzy membership functions used for output relevance scores 



Unit (PDU). The dataset contains attributes that describe the 
mechanical size reduction (comminution) process used during 
the biomass feedstock preprocessing phase for biofuel 
production. The PDU uses two sequential grinders in the 
comminution process (G1 and G2). Each grinder has 
interchangeable grinding screens of various sizes to reduce the 
biomass feedstock bales to predefined particle sizes. [23] 

To ensure performance (i.e. throughput) and reliability (i.e. 
uptime), operators can change the infeed rate of the bales into 
the system and the screen sizes on the grinders. The selection of 
these parameters is mainly affected by the moisture content of 
the feedstock being fed into the PDU. The operators have access 
to real-time monitoring tools to allow them to gauge the health 
of the PDU. These tools can be difficult to navigate since there 
is a high volume of attributes the user interface is fed with. 
However, the relevance of the information is dependent of the 
control configuration. Therefore, to find the most relevant 
information the operator is required to navigate through an array 
of non-relevant information. This can result in time wasted 
searching for relevant and actionable information during which 
the system could fail. A potential solution would be to display 
all the data on a single screen, but due to the amount of 
information available this would result in a visually cluttered 
presentation that forces the operators to either memorize where 
each piece of information is located or scan the screen until they 
find what they need. Therefore, we present an information 

scoring system that can be used to sort the information based on 
their relevance. This is a first step towards dynamic user 
interfaces for control where the information content shown will 

TABLE I: FUZZY RULE BASE FOR G1 DATA RELEVANCE 

Screen Size 

 

 

 

 

BMC 

3 Inch 6 Inch 

Very Low Low Relevance Very Low Relevance 

Low Medium Relevance Low Relevance 

Medium Medium Relevance Low Relevance 

High High Relevance Medium Relevance 

Very High Very High Relevance Medium Relevance 

 
TABLE II: FUZZY RULE BASE FOR G2 DATA RELEVANCE 

Screen Size 

 

 

 

BMC 

.25 Inch 1 Inch 

Very Low Medium Relevance Very Low Relevance 

Low Medium Relevance Low Relevance 

Medium High Relevance Medium Relevance 

High High Relevance High Relevance 

Very High Very High Relevance High Relevance 

 
TABLE III: RELEVANCE SCORE OUTPUTS

*
 FOR PDU DATA 

 G1 G2 

Screen Size 

 

 

BMC 

3 Inch 6 Inch 0.25 Inch 1 Inch 

7.3% 0.59 - - 0.43 

9.1% 0.61 - 0.64 - 

10.5% 0.62 - 0.65 - 

11.2% - 0.49 - 0.51 

17.4% - 0.50 - 0.60 

20.6% 0.65 - - 0.64 

23.1% - 0.54 - 0.66 

28.5% 0.75 - - 0.73 

29.0% - 0.61 - 0.74 

37.2% 0.90 - - 0.73 

*Scores range from 0 to 1, where 0 is no relevance and 1 is the 

maximum relevance 

 

 

 
Fig 6: G1 Relevance Score vs BMC 

 

 
Fig 7: G2 Relevance score vs BMC 



adapt to the situation giving the most relevant information to the 
operator immediately. 

For better understandability and simplicity, the presented 
implementation demonstrates ranking of two of the information 
pieces available from the PDU system. The fuzzy scoring 
system outputs scores for each of the grinders with a higher 
score correlating to a higher relevance to the operator. Two 
inputs were used to generate the scores: the Bale Moisture 
Content (BMC) and the screen size on the grinder. Five 
Gaussian membership functions were used to represent very 
low, low, medium, high and very high bale moisture content 
(Figure 4). Similarly five Gaussian membership functions were 
used for the output relevance scores as well (Figure 5). Since the 
screen sizes are scalar values, they are represented with binary 
values rather than membership degrees. The fuzzy rule bases for 
the two grinders, shown in Table I and Table II, were derived 
using expert knowledge for how important an operator would 
consider the information from each grinder based on the given 
fuzzy inputs. The final output score is a value between 0 and 1, 
with 0 representing no relevance and 1 representing maximum 
relevance. 

The fuzzy rule bases were created with the input of the 
control engineers who handle the PDU. Therefore, given 
different control scenarios, the relevance/importance of the 
information was ranked in linguistic terms embedding the 

knowledge of the experts. For instance, when the moisture 
content is high, most of the grinding process is carried out using 
the stage one grinder. Therefore, the operator needs to be closely 
monitoring stage 1 grinder and hence the rank of the stage 1 
grinder information is set to “High”. Similarly, the rule base 
captures the expert knowledge for the different scenarios 
identified. In future work, it should be noted that these rules can 
be created using data driven methods as well. Thus, the rule base 
can be expanded automatically to complement the expert 
knowledge. 

First, the degree of membership for the bale moisture content 
is found for each of the membership functions. Then for each 
rule, the membership degree is multiplied by the corresponding 
binary value for the screen size and a scalar value that represents 
the desired low, medium, or high score. For the presented 
implementation, values of 0.2, 0.4, 0.5, 0.6 and 0.8 were chosen 
to represent very low, low, medium, high, and very high 
information relevance respectively. The relevance score for each 
of the grinders is calculated by taking the average of all the 
singleton values output from the fuzzy rule base. A sample of 
scores output by the fuzzy scoring system on the PDU dataset is 
shown in Table III.  

Figure 6 and figure 7 show the outputs of the fuzzy scoring 
system over a continuous set of bale moisture content inputs. 
Notably, the relevance scores correspond to the expert rules 

 
Fig 8: G1 Relevance Score vs BMC using G1 Operator Rule Base 

 

 
Fig 9: G1 Relevance score vs BMC using G2 Operator Rule Base 

 
Fig 10: G2 Relevance Score vs BMC using G1 Operator Rule Base 

 

 
Fig 11: G2 Relevance score vs BMC using G2 Operator Rule Base 



described in Table I and Table II. It can be seen that the 
relevance of the grinders varies depending on the screen size and 
the bale moisture content. Further, it can be seen that the 
relevance scores reflect the expert knowledge embedded in the 
system. For instance, when the bale moisture content is high, the 
operator should be paying attention to stage 1 grinder since it 
does most of the work. It can be seen that the G1 score is high 
and G2 score is low. Thus, when translated to a dynamic 
visualization, the operator will see more emphasis paid on G1 

than G2. 

Additionally, user-role specific rules are introduced to 
further increase the user specificity of the system. If there are 
operators assigned to each grinder, then an operator for G1 might 
not need to see information from G2, or only see it under specific 
circumstances. Figure 8 and figure 9 show the outputs using a 
modified rule base for an operator assigned to G1. Since 
information from G1 would be more relevant to the G1 operator, 
the outputs for the G1 rule base are raised one level. Similarly, 
the outputs for the G2 rule base are lowered one level as the 
information would be less relevant to the G1 operator. The 
reverse is also shown in figure 10 and figure 11 for a G2 operator, 
where the G1 rule base is lowered and the G2 rule base is raised. 
It can be seen that this simple rule change can have a large 
impact on the final scores output by the system. 

Examples for possible data visualization designs for use in a 
dynamic user interface are shown in figure 12 and figure 13. The 
layouts show simple representations of high and low relevance 
of current information for the two grinders. Another design is 
shown in figure 14. The design implements a NLD layout. The 
scores are used to change to color and size of the grinder nodes. 
Large red nodes mean that the represented entity is of high 

relevance, while smaller blue nodes represent less relevant 
entities. The gradient bar between the G1 and G2 nodes indicates 
that the output of G1 affects the functionality of G2. Directional 
arrows are used to show the directional flow of the pipeline. 
Thus, the operator can quickly identify which components need 
close monitoring in that situation.  

V. CONCLUSIONS  

This paper presented a two-fold framework for enhancing 
situational awareness in control systems by dynamically 
optimizing visualizations. The first part of the framework 
defined information relevance by implementing a fuzzy logic 
inference system. The relevance was determined through a set 
fuzzy rules embedded into the system using predefined expert 
knowledge. The fuzzy scoring system was shown to 
successfully reflect the embedded expert knowledge to assign 
relevance scores to the available information. The second part 
of the framework involves applying the derived relevance scores 
to a visualization method to increase the system awareness of 
the user by removing visual clutter and emphasizing information 
that is more relevant to the user for decision making given the 
current state of the system. Several visualization methods that 
could take advantage of the proposed framework were 
discussed. As future work, a more robust fuzzy methodology for 
scoring will be implemented to further enhance the generality 
and usefulness of the system. The proposed scoring system will 
be applied to a visualization scheme with applications towards 
increasing situational awareness in control systems. 

 

 
Fig 14: User Interface Examples with NLD Diagrams 

 
Fig 12: User Interface Example for High G1 Relevance 

 
Fig 13: User Interface Example for High G2 Relevance 
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