
Simultaneous Generation-Classification Using LSTM

Daniel L. Marino, Kasun Amarasinghe, Milos Manic

Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

marinodl@vcu.edu, amarasinghek@vcu.edu, misko@ieee.org

Abstract— The idea that a concept is properly learned by an

agent when the agent is able to generate examples and non-

examples of the concept, has motivated research on generative

models. Generative models are trained with the aim of improving

performance of tasks such as classification. In this paper, a Long

Short Term Memory (LSTM) architecture for simultaneous

generation-classification is presented. The architecture is designed

with the purpose of serving as a model which can generate

sequence samples, while simultaneously classifying a given

sequence. The presented generation-classification methodology

was implemented on a sentiment analysis task. However, it can be

applied to any sequence modelling or classification task. The

experimental results suggest that this approach can be

particularly useful as a regularization methodology which acts

similarly to pre-training through Restricted Boltzmann Machines

or auto-encoders.

Keywords—Deep Learning; Deep Neural Networks; Long-

Short-Term memory; LSTM, sentiment analysis.

I. INTRODUCTION

The idea that a concept is properly learned by an agent only
when the agent is able to reproduce examples of it, is a
mechanism that humans often use to evaluate their
understanding of a particular concept. Further, it is used as a tool
for improving their comprehension of the subject. As a concrete
example, Frayer Models [1], [2] are often used as learning
strategies in schools to evaluate the comprehension of a subject
by asking the student to provide examples and non-examples of
a specific concept.

Example and non-example generation is naturally an
interesting task that researchers on machine learning want to
replicate in machines. Therefore, it has gained increased
attention. Especially, after the introduction of the contrastive-
divergence algorithm [3], [4] for training Restricted Boltzmann
Machines (RBM). RBMs are usually trained in an unsupervised
way with the aim of providing a probabilistic model that has a
high probability of generating samples similar to the ones used
for training the model.

Research on Deep Learning [5] has fueled the interest on the
development of efficient generative probabilistic models of data
that provide accurate probabilistic inferences and fast simulation
sampling of fantasy data (generated data) from the inferred
model [6].

Generative models have proven to be an effective tool for
improving the performance of deep neural networks
architectures [7], [8], [9]. Unsupervised pre-training through
RBM and auto-encoders provided the first tools for successfully

training of deep architectures [7] and have been shown to act as
regularizers [8] . Those methods also have been successful on
for obtaining useful reusable features using unsupervised
representation learning [9], which can be used to improve
classification tasks.

Furthermore, generating data from models provide a way of
understanding how the model is behaving, and is an indication
of what it has learned. Therefore, it provides a way to prove the
model and visualize its internal structure [10]. It also is a tool for
debugging the training process, allowing to identify why or why
not is the model performing well.

In this paper, an architecture for sequence generation and
classification is presented. The objectives of the developed
model are; 1) generating sequences for a given class and 2) given
a sequence, predicting the class to which it belongs.

Long Short Term Memory (LSTM) is a type of recurrent
neural network that has become a benchmark model for
sequence modeling, and have been extensively used by the
Natural Language Processing community [11], [12], [13]. In
addition, LSTMs have been successfully used for applications
that include but not limited to energy load forecasting [14],
visual attention models [15], handwriting generation [11],
automatic caption generation from images [16], translation [12]
and language modeling [11]. Their success is attributed to its
capability of modeling long-range structures; thanks to the fact
that they were designed specifically to alleviate the vanishing
gradient problem [17].

Given the success of LSTM networks as sequence models,
the presented generation-classification architecture is composed
of a set of LSTM models. Each model is trained for generating
sequences belonging to a specific class. For classifying a given
sequence, losses that correspond to the error committed by each
network are used to predict the class of the sequence

The presented LSTM based generation-classification
architecture was implemented and tested on a sentiment analysis
task. Previous LSTM models for sentiment analysis have also
used a joint training between the language model and the
classifier [13]. However, the main difference of the presented
architecture is that it aims to obtain a separate model for each
concept (each class) found in the dataset. The models are jointly
trained to generate samples corresponding to its respective class
and to identify to which class a given sample belongs.
Furthermore, the study also explores the benefits that
simultaneous generation-classification training methodology
has on the classification performance.

978-1-5090-4240-1/16/$31.00 ©2016 IEEE

The presented architecture was tested on two datasets for
sentiment analysis. The most interesting result found in the
experiments was that, when the architecture is trained to jointly
minimize classification error and generation loss, it achieves
better performance on testing dataset rather than when the same
architecture is trained only to minimize classification error. This
suggests that simultaneous generation-classification training
acts as a regularizer, providing models with better
generalization.

The rest of the paper is organized as follows. Section II
provides a brief introduction of LSTM networks. Section III
presents the proposed generation-classification architecture.
Section IV shows the loss and specifics for the training of the
architecture. Section V presents the results on the two datasets
used for sentiment analysis. Section VI presents a discussion on
the results and the pros/con of the architecture is presented.
Section VII concludes the paper.

II. LSTM MODEL

This section provides an overview of the used LSTM model.
The same LSTM model used in [11] is employed in this paper.
The model for the cells is shown in Fig. 1.a. Eq. (1.a) through
(1.f) express a single LSTM cell’s operation

𝑖𝑔 = σ(𝑖[𝑡]𝑊𝑥𝑖 + ℎ[𝑡−1]𝑊ℎ𝑖 + 𝑥[𝑡−1]𝑊𝑐𝑖 + 𝑏𝑖) (1.a)

𝑓𝑔 = σ(𝑖[𝑡]𝑊𝑥𝑓 + ℎ[𝑡−1]𝑊ℎ𝑓 + 𝑥[𝑡−1]𝑊𝑐𝑓 + 𝑏𝑓) (1.b)

𝑧 = tanh(𝑖[𝑡]𝑊𝑥𝑐 + ℎ[𝑡−1]𝑊ℎ𝑐 + 𝑏𝑐) (1.c)

𝑥[𝑡] = 𝑓𝑔 ∘ 𝑥[𝑡−1] + 𝑖𝑔 ∘ 𝑧 (1.d)

𝑜𝑔 = σ(𝑖[𝑡]𝑊𝑥𝑜 + ℎ[𝑡−1]𝑊ℎ𝑜 + 𝑥[𝑡]𝑊𝑐𝑜 + 𝑏𝑜) (1.e)

ℎ[𝑡] = 𝑜𝑔 ∘ tanh(𝑥) (1.f)

where ∘ denotes the element-wise product. 𝑖𝑔 corresponds to the

input gate, 𝑓𝑔 to the forget gate and 𝑜𝑔 to the output gate. 𝑥[𝑡] is
the value of the memory state at time step 𝑡, ℎ[𝑡] the output of

the cell and 𝑧 is the update signal. 𝜎 is the sigmoid function.
𝑊𝑐𝑖 ,𝑊𝑐𝑓 , and 𝑊𝑐𝑜 are diagonal matrices. For simplicity, all

vectors are represented as row vectors.

Fig. 1.b shows the LSTM multilayer architecture used in
[11], with 𝐿 = 2 layers. This architecture is usually used in

sequence modeling, where given a sequence of 𝑇 consecutive

samples 𝑢[1:𝑇] = {𝑢[1], 𝑢[2], … , 𝑢[𝑇]}, we would like to predict

the value of 𝑢 in the next time step (𝑢[𝑇+1]). For this purpose,

the architecture on Fig .1.b uses a softmax function to map the

activation value of the hidden layers {ℎ[𝑡]
𝑙 |𝑙 = 1,… , 𝐿}, to a

discrete probability distribution 𝑦[𝑡]:

𝑦[𝑡] = Ψ([ℎ[𝑡]
1 … ℎ[𝑡]

𝐿]𝑊𝑦 + 𝑏𝑦) (2)

where Ψ is the softmax function. 𝑦[𝑇] is therefore a model of the

probability distribution of 𝑢[𝑇+1] given 𝑢[1:𝑇]:

𝑦[𝑇] = 𝑃(𝑢[𝑇+1]|𝑢[1:𝑇]) (3)

For discrete inputs, usually 𝑢[𝑡] is encoded as a one-hot

encoding, which is represented by �̂�[𝑡].

 (a) (b)

Fig. 1. (a) LSTM cell, (b) multilayer LSTM architecture

Fig. 2. Sequence generation using LSTM network

III. LSTM BASED SIMULTANEOUS GENERATION-

CLASSIFICATION MODEL

This section elaborates the presented LSTM based
simultaneous generation-classification model.

Assume we have a set of sequences 𝑢, each belonging to a
class 𝑐 ∈ 𝐶 , where 𝐶 is the set of possible classes (E.g. 𝐶 =
{positive, negative}). An architecture that aims to achieve
simultaneous generation-classification of those sequences,
should provide a model from where sequences for each class can
be generated. I.e. it should provide a model for

𝑃(𝑢[𝑇+1]|𝑢[1:𝑇], 𝑐) . At the same time, given a sequence, 𝑢[1:𝑇],
the model should be able to predict the class which the sequence

belongs to. I.e. it should estimate 𝑃(𝐶|𝑢[1:𝑇]).

The architecture depicted in Fig .1.b gives us a model for
generating sequences [11]. One simple approach for generating
a sequence 𝑢[1:𝑇] is to initialize the state 𝑥[0] and outputs of the

hidden layers to zero (or a random value). The first value of the
sequence 𝑢[1] is randomly initialized. Then, the calculation of

𝑦[1] is performed by following Eq.1 . 𝑢[2] is sampled (generated)

from 𝑦[1] and used for obtaining 𝑦[2] from where 𝑢[3] can be

sampled. Recursively using the outputs of the network as inputs
for the next time steps, a sequence of arbitrary length can be
generated. This procedure is illustrated in Fig. 2, where the
dashed lines are used to represent the sampling of 𝑢[𝑡] from

𝑦[𝑡−1].

Given that the architecture of Fig .1.b can be used to generate
sequences, we can have a set of networks, 𝑁𝑒𝑡 = {𝑁𝑐|𝑐 ∈ 𝐶},
where each one of the network 𝑁𝑐 serves as a sequence model
for each class 𝑐.

Having the set of networks 𝑁𝑒𝑡 , the class of a given
sequence 𝑢[1:𝑇] can be predicted by evaluating which 𝑁𝑐 better

predicts the given sequence. This is the idea behind the
presented generation-classification architecture.

Eq. 4 gives the metric used in this paper to evaluate how well
a network 𝑁𝑐 predicts the sequence 𝑢[1:𝑇].

𝐸𝑐(𝑢[1:𝑇]) =
1

𝑇
∑𝐻(𝑁𝑐 . 𝑦[𝑡], �̂�[𝑡+1])

𝑇

𝑡=1

 (4)

where 𝑁𝑐 . 𝑦[𝑡] represents the distribution 𝑃(𝑢[𝑡+1]|𝑢[1:𝑇])
obtained using the network 𝑁𝑐. �̂�[𝑡+1] is the one-hot encoding of

𝑢[𝑡+1] , and 𝐻(𝑁𝑐. 𝑦[𝑡], �̂�[𝑡+1]) is the cross-entropy between

𝑃(𝑢[𝑡+1]|𝑢[1:𝑇]) and �̂�[𝑡+1].

A model for 𝑃(𝐶|𝑢[1:𝑇]) can be constructed by evaluating

𝐸𝑐(𝑢[1:𝑇]) for all classes 𝑐 ∈ 𝐶 , using Eq. 4, and then

introducing the values of 𝐸𝑐 into a softmax. This operation is
expressed in Eq. 5

𝑃(𝐶|𝑢[1:𝑇]) = Ψ([𝐸1 … 𝐸|𝐶|]𝑊𝑐 + 𝑏𝑐) (5)

Fig. 3. Simultaneous generation-classification architecture

where 𝐸𝑘 represents Eq. 4 evaluated for network 𝑁𝑘 , which
corresponds to class 𝑘 and |𝐶| is the number of classes.

Fig. 3. illustrates the proposed generation-classification
architecture for a two class setting 𝐶 = {0,1} , where 0
represents the “negative” class and 1 the “positive” class.
Basically we have a network 𝑁1 that is trained to generate
positive sequences and a network 𝑁0 which generates negative
samples. It is important to note that, for the two-class setting, the
softmax of Eq. 5 is replaced by a sigmoid function.

IV. TRAINING OF THE SIMULTANEOUS GENERATION-

CLASSIFICATION MODEL

This section details the training methodology used for the
simultaneous generation-classification model.

For training the generation-classification architecture, a
multi-objective optimization problem which aims to jointly
minimize the classification error together with the perplexity of
the model, is formulated.

The architecture is trained on a set of pairs (𝑢[1:𝑇], 𝑐), where

𝑢[1:𝑇] is a given sequence and 𝑐 is the class to which 𝑢[1:𝑇]
belongs. The classification loss is defined as:

𝐿𝑐(𝑢[1:𝑇], 𝑐) = 𝐻(𝑃(𝐶|𝑢[1:𝑇]), �̂�) (6)

where �̂� is a one-hot encoding of class 𝑐.

For sequence generation, each one of the networks 𝑁𝑐 ∈
𝑁𝑒𝑡 is desired to have a low prediction error (according to Eq.
4) over sequences 𝑢[1:𝑇] that belong to their corresponding class

c. Therefore, the following is the loss to reduce perplexity:

𝐿𝑝(𝑢1:𝑇 , 𝑐) = 𝐸𝑐(𝑢[1:𝑇]) (7)

We also would like to have high prediction errors when a
network 𝑁𝑐 is evaluated under a sequence 𝑢[1:𝑇] that does not

belong to its corresponding class. For this purpose, Eq. 4 is
evaluated on a decreasing positive function that asymptotically

converges to zero. In this case, we choseexp (−𝐸𝑘(𝑢[1:𝑇])).

The following is the loss that aims to maximize the prediction
error for sequences that do not belong to the respective class of
the network 𝑁𝑐 ∈ 𝑁𝑒𝑡:

𝐿𝑐𝑝(𝑢[1:𝑇], 𝑐) = ∑{
0,𝑖𝑓𝑘 = 𝑐

exp (−𝐸𝑘(𝑢[1:𝑇])) ,𝑜/𝑤
𝑘∈𝐶

 (8)

Therefore, the objective function to be minimized is:

𝐿 = ∑ 𝐿(𝑢1:𝑇 , 𝑐)

(𝑢[1:𝑇],𝑐)

 (9.a)

𝐿(𝑢1:𝑇 , 𝑐) = 𝐿𝑐(𝑢[1:𝑇], 𝑐) + 𝛼𝐿𝑝(𝑢[1:𝑇], 𝑐)

+ 𝛽𝐿𝑐𝑝(𝑢[1:𝑇], 𝑐)

(9.b)

where 𝛼 and 𝛽 are hyperparameters that weight the contribution
of each of the corresponding losses.

Training was performed using Backpropagation through
time [18] by unrolling 𝑇 times each one of the LSTM networks
and minimizing Eq. 9. ADAM [19] algorithm was used as the

gradient based optimizer. During the minimization process,
gradient norm clipping [20] was used to alleviate the exploding
gradient problem. To reduce overfitting problems, dropout [21]
was introduced as a regularization scheme. The architecture was
implemented using TensorFlow [22]

(a)

(b)

(c)

Fig 4: Comparison of training and testing errors on a network trained to

achieve: (a) low generation/classification errors (b) only low

classification errors. (c) shows the testing error comparison between the
two schemes. The error being shown is the percentage of misclassified

sequences. These results correspond to the Twitter dataset

(1)Code available at: github.com/MHRG-VCU

V. EXPERIMENTS

The generation-classification architecture was implemented
and tested on a sentiment analysis task (1). Given a set of positive
and negative reviews, the proposed architecture was trained to
generate positive and negative reviews and classify a given
review into positive or negative class.

The architecture was tested on a dataset of tweets [24], and
on the imdb movie review dataset [23]. The architecture shown
in Fig.3 was used for both datasets given that both datasets were
treated as binary classification problems.

A. Twitter dataset results

The Twitter dataset consisted of 5,137 tweets, divided on
3,094 positive and 2,043 negative tweets. The dataset contained
a total of 16939 characters [24].

For this dataset, the architecture was trained at character-
level, therefore �̂�[𝑡] is a one-hot encoding over a set of

graphemes. Only lowercase characters in the English alphabet
were considered, uppercase characters were converted to their
corresponding lowercase grapheme.

𝑃(𝐶|𝑢[1:𝑇]) was evaluated according to Eq. 10 instead of Eq.

5, given that the tweets are classified only as positive and
negative:

𝑃(𝐶|𝑢[1:𝑇]) = 𝜎(𝐸0𝑤𝑐 − 𝐸1𝑤𝑐) (10)

where 𝑤𝑐 is a positive scalar. Eq. 10 is basically just a soft
threshold between the prediction errors of 𝑁0 and 𝑁1

The dataset was divided 90% for training and 10% for
testing, the training was performed using an unrolling of 100
characters. Using a network of two layers, with 50 neurons in
each layer, the presented architecture achieved classification
errors of 18% on testing and 6.2% on training, using early stop
to prevent overfitting. Table I shows some of the sequences
generated by this model.

To evaluate the effects that the joint generation-classification
training has on the classification performance of the
architecture, the performance of a network trained using Eq. 9
as the objective function was compared with the performance of
the same network trained using only 𝐿𝑐 on Eq. 9 as the objective
function. The idea behind the experiment was to evaluate how
the performance of the network varied when trained for
simultaneous generation-classification (Eq.9 which includes

𝐿𝑐 , 𝐿𝑝, 𝐿𝑐𝑝) and when it is trained only for classification (i.e.

using only 𝐿𝑐 as the objective). The architecture was kept the
same for both scenarios to ensure that the capacity of the
network is not changed. The network used for the experiment

TABLE I. SAMPLES OF SENTENCES GENERATED BY THE NETWORK TRAINED

USING THE TWITTER DATASET

P
o
si

ti
v

e

c latet ac dcwit ing we th witerad lot in wizkis yawe ist ytamazy
ou ; gorc dc al azvol baok buck cowtist to bor ok tes ifl cletos
mt yo ; francicoftos tterid ac fot tinfrredring on tunten freakinn
to nlai ; qle s anvewe valsere a dyiwiby be counee ay gay sef
alats gocket aur ; qbk ate mizonsa fadd nc tocerti me ding to
amachizs in dlved bopco cack

N
eg

at
iv

e

spusoy fo man toing i t ivi merme nore carkcoft hale wharl jsow
be ; zy the mustat mazon ride ed xit gredange onglive time it dh
craspfard ; hof frame danosen sntimidoaus soveveor marnit a
wure andiligut groe ; aa berther thimak of re hay bud you dig bel
maye is progoe dry adrela ; core soft as pucleturans buft aalazln
vreene on hate laii a day vou

(a)

(b)

(c)

Fig 5: Comparison of training and testing errors on a network trained to

achieve: (a) low generation-classification errors (b) only low

classification errors. (c) shows the testing error comparison between the
two schemes. The error being shown is the percentage of misclassified

sequences. These results correspond to the imdb dataset

comprised of two layers, with 10 units in the first layer and 15
units in the second layer. The results of the experiment are
shown in Fig. 4, where the error (percentage of misclassified
sequences) trough epochs is shown for both scenarios.

The estimation of the classification error for training and
testing set is noisy because of the mini-batch training procedure,
therefore in Fig. 4 the error through epochs is shown together
with an averaged version to improve analysis.

Fig. 4 shows that for both objective functions, the
architecture is able to achieve low training error. On the other
hand, as seen in Fig. 4.c., using 𝐿𝑐 , 𝐿𝑝 and 𝐿𝑐𝑝 as the objective

function gives better classification performance on testing data
than using only 𝐿𝑐 . These experiments suggest that jointly
training the network with the aim of achieving simultaneous
generation-classification serves as a powerful regularization
scheme, allowing the architecture to improve generalization.

B. Imdb dataset

The Imdb dataset is a movie review dataset, with reviews
classified as positive or negative. It consists of 50,000 movie
reviews, 25,000 positive and 25,000 negative [23]. Further, the
dataset is divided 50%- for training and 50% for testing.

This dataset is composed by 32,376,725 characters. Due to
the size of this dataset, the architecture was trained in this case
at word-level, therefore �̂�[𝑡] is a one-hot encoding over a set of

words in a dictionary.

The dictionary is composed by the 3000 most frequent words
that were found in the dataset. The word frequency was counted
after a stemming process. When a word in a sentence is not
found in the dictionary, it is ignored (eliminated) before being
processed by the generation-classification architecture.

The training dataset was divided 90% for training and 10%
for validation, the training was performed using an unrolling of
64 words. Using a network of two layers, with 300 neurons in
each layer, the presented architecture achieved classification
errors of 18.5% on validation, 2% on training, and 20% on
testing, using early stop to prevent overfitting. Table II shows
some of the sequences generated by this model. Given that the
training of the network was done using stem words, the
generated sentences are composed by stem words. This is the
reason of not having well-formed words for the generation.

It is important to mention that given a sufficiently large
network, the architecture can easily overfit the dataset achieving

perfect classification on training dataset, although the
performance in testing is significantly decreased. An overfitted
model also generates sequences that make more sense, as shown
in Table III. The overfitted network had perfect classification
performance on training set, and an error of 26% on testing.

The obtained results are slightly worse than reported in [13].
However, it has to be noted that a much simpler word encoding
method was used in the presented work. Furthermore, the
emphasis of the paper was to explore the design and benefits of
generation-classification architectures, not on improving
sentiment analysis classification. Sentiment analysis was
intended to serve as a benchmark for testing the architecture.

The same tests performed on the Twitter dataset were
performed on the imdb dataset to compare the classification
accuracies with and without simultaneous generation-
classification training. The results are shown in Fig. 5. The
model used for the experiments consisted of two LSTM layers,
each with 100 units. The imdb dataset proved to be a more
challenging task than the Twitter dataset. A plateau in the
training process was found, as seen in Fig. 5.a.

It was seen that the model could get almost perfect
classification accuracy on training data using the simultaneous
generation-classification training loss (𝐿𝑐 , 𝐿𝑝 and 𝐿𝑐𝑝).

However, even when the error in training data was dramatically
reduced, the error on testing dataset was not considerably
reduced from the testing error that was achieved during the
plateau. (Fig. 5.a).

During the experiments, it was seen that the model trained
without including the generation loss (only 𝐿𝑐), often plateaued.
As a measure to improve the classification performance, the
architecture of Fig. 3 was changed by bypassing the output 𝑦[1:𝑇]
from the LSTM networks straight to the mean calculation, i.e.
ignoring the cross-entropy term 𝐻. The results shown on Fig. 5
used this modification. , By bypassing the cross entropy
operation, the architecture was able to further reduce the training
error, but as can be seen on Fig. 5. b., the generalization of the
model is significantly reduced after the training error exits the
plateau..

Comparing the testing error performance between the two
settings, joint training for generation-classification still provides
a better error on testing dataset, although the difference is not as
substantial as in the Twitter dataset. Fig. 5.c. shows the
comparison between the two approaches. Through the
experiments, we noticed that using simultaneous generation-

TABLE II. SAMPLES OF SENTENCES GENERATED BY THE NETWORK TRAINED USING THE IMDB DATASET

P
o
si

ti
v

e

beyond what thi is wonder and comedi a sort of unexpect littl stori wa an almost in anim bourn genr will treasur be alcohol goe on an oscar matthau
new film had record it mostli too late and knife back they dont realli enjoy it the charm wonder everi bug bond cartoon and act especi albert is offer
their stage as tri to boot and high school they pass a book
spectacular the director is portray as american and man and the caus so last thi thing in the way secret civil is a everi step of and accept that onli have
the problem of be a consist in the book the of life the murder by the joy are now allow to and observ by the killer who entir lie to the dark system not
just and the answer to the

N
eg

at
iv

e

pure action structur came loos i wonder what the hell would i agre with the stone read a lot of favor read the direct and stori itself for the most part
stephen king are spoiler in mani way that the director doesnt rememb us common much from wa just an interest storylin by wa it dull as the whose name
the knowledg and go past for a real world and he
cinematographi and thi just rate a three rate the last number of minut of the movi thi movi is noth short of a cult classic i think thi is a wast of my time
even can you say well the reason suck thing thi movi wa an and that what im surpris that thi movi wa unfortun the rate of or the act had the me to give a
tast of

classification training also lead to a more stable training. Fig. 5
shows evidence for this observation. As can be seen, training
without generation leads to a more “noisy” training (see Fig.
5.b). Moreover, finding hyper-parameter values that result in
stable training was more challenging than using the
simultaneous generation-classification architecture.

VI. DISCUSSION

The conducted experiments showed that the presented
simultaneous generation-classification architecture has several
advantages. One major advantage of the presented architecture
is that it provides a direct way for proving the model, which
allows to understand and evaluate the performance of the
network and how it is behaving. Another major advantage is
that, as shown by the experimental results, the presented
architecture enables using the generation procedure as a
regularization technique for the optimization/training procedure.
Furthermore, the presented architecture enables creating models
for each concept (each class) in the form of networks, 𝑁𝑐 ∈ 𝑁𝑒𝑡.

In addition to the advantages mentioned above, several
drawbacks of the presented architecture were identified. One
such drawback is that training of the “generative” model needing
supervised data. Although a pre-training phase using
unsupervised data could be introduced, the learning algorithm
relies heavily on the premise that labeled data are available.
Another drawback of the presented architecture is that since
optimization problem is multi-objective, minimization of the
objective function does not necessarily produce a reduction on
the classification error. Furthermore, a major drawback of the
system is that the number of hyper-parameters is increased.
Therefore, the amount of parameters that needs to be tweaked
increases, introducing variability in results depending on those
values.

VII. CONCLUSIONS

This paper presented an initial version of an architecture for
simultaneous generation and classification of sequences based
on LSTMs. The presented architecture was implemented and
tested on a sentiment analysis task with two different datasets.
The experiments carried out on the two datasets revealed that the
presented architecture had several advantages including the fact
that the generation procedure can be used as a regularization
technique for the classification. However, it was also noticed
that the presented architecture had some drawbacks, which
included the need of labeled data and the increased number of
hyper-parameters. Several fronts of future work were identified.

Since the presented architecture is an initial version, future work
will be conducted to improve the classification capability and
the generation capability of the architecture. In particular,
different versions of loss functions will be experimented with.
Further, the multi-objective optimization process needs to be
enhanced to guarantee a stable reduction of generation and
classification losses during optimization.

REFERENCES

[1] S. C. Greenwood, "Making Words Matter: Vocabulary Study in the

Content Areas," The Clearing House: A Journal of Educational
Strategies, pp. 258-263, 2002.

[2] C. W. Peters, "A Comparison between the Frayer Model of Concept

Attainment and the Textbook Aproach to Concept Attainment," Reading
Research Quartely, vol. 10, no. 2, 1974.

[3] G. E. Hinton, "Training Products of Experts by Minimizing Contrastive

Divergence," Neural Computation, vol. 14, no. 8, pp. 1771-1800, 2002.

[4] G. E. Hinton, "A fast learning algorithm for deep belief nets," Neural

Computation, vol. 18, no. 7, pp. 1527-1554, 2006.

[5] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

[6] D. J. Rezende, S. Mohamed and D. Wierstra, "Stochastic

Backpropagation and Approximate Inference in Deep Generative
Models," in Proceedings of the 31 st International Conference on

Machine Learning, Beijing, 2014.

[7] Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle, "Greedy layer-
wise training of deep networks," in Advances in neural information

processing systems, 2007.

[8] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio and P. Vincent, "The
Difficulty of Training Deep Architectures and the Effect of Unsupervised

Pre-Training," in Proceedings of the 12th International Conference on

Artificial Intelligence and Statistics (AISTATS), Clearwater Beach, 2009.

[9] A. Radford, L. Metz and S. Chintala, "Unsupervised representation

learning with deep convolutional generative adversarial networks," in

arXiv preprint arXiv:1511.06434, 2015.

[10] M. D. Zeiler and R. Fergus, "Visualizing and understanding

convolutional networks," in European Conference on Computer Vision,

2014.

[11] A. Graves, "Generating Sequences with Recurrent Neural Networks," 5

Jun 2014. [Online].

[12] I. Sutskever, O. Vinyals and Q. V. Le, "Sequence to Sequence Learning
with Neural Networks," in NIPS 2014, 2014.

[13] K. S. Tai, R. Socher and C. D. Manning, "Improved semantic

representations from tree-structured long short-term memory networks,"
in Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics, Beijing, 2015.

[14] D. L. Marino, K. Amarasinghe and M. Manic, "Building Energy Load
Forecasting using Deep Neural Networks," in Press IECON, 2016.

TABLE III. SAMPLES OF SENTENCES GENERATED BY THE OVERFITTED NETWORK TRAINED USING THE IMDB DATASET
P

o
si

ti
v

e

by thi and in my opinion the best film ive seen in a long time after watch movi a sequel are

combin with give a great movi that impress you by can past word how to love when your have christma yet

polic to the of a who through all of the peopl it is an intellig and documentari well give a as the killer the film director creat an atmospher that we
cannot imagin an extrem well made into an theme by all these element to make a veri good movi thi film is for real valu and is certainli not a polit

well i am to see how it is made for a high product and highli somewhat origin stori also obvious in end like the movi success it easili for the charact

and is interest peter is amaz as the and hi girlfriend

N
eg

at
iv

e

attract cant tell it a plot myself how did thi movi wa is still possibl the worst movi i have ever

put out time like some peopl have a of consid thi is a movi about you will see howev expect for
relat to the charact but at the veri least he doesnt even de a black guy who know woman would want an and her film beauti cant explain how he pull

sometim she could least be with all get in troubl an attempt at social on a to make stick with it one unless your watch a film like thi it where

plenti of peopl for thi movi is about minut to sing the thing on is done in the cast are worth wrong use it subject in a veri differ stori but just fail to
into when it wa into the stori had

[15] L. Bazzani, H. Larochelle and L. Torresani, "Recurrent Mixture Density
Network for Spatiotemporal Visual Attention," in arXiv preprint

arXiv:1603.08199 , 2016.

[16] O. Vinyals, A. Toshev, S. Bengio and D. Erhan, "Show and Tell: A

Neural Image Caption Generator," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015.

[17] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[18] P. J. Werbos, "Backpropagation Through Time: What It Does and How
to Do It," Proceedings of IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

[19] D. P. Kingma and J. L. Ba, "ADAM: A Method for Stochastic

Optimization," in ICLR, San Diego, 2015.

[20] R. Pascanu, T. Mikolov and Y. Bengio, "On the Difficulty of Training

Recurrent Neural Networks," in 30th International Conference on

Machine Learning, Atlanta, 2013.

[21] V. Pham, T. Bluche, C. Kermorvant and . J. Louradour, "Dropout

Improves Recurrent Neural Networks for Handwriting Recognition," in

14th International Conference on Frontiers in Handwriting Recognition

(ICFHR), Heraklion, 2014.

[22] M. Abadi, A. Agarwal, P. Barhman, E. Brevdo, Z. Chen, C. Citro and et

al., "TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems," in arXiv preprint arXiv:1603.04467, 2016.

[23] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng and C. Potts,

"Learning Word Vectors for Sentiment Analysis," in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies, 2011.

[24] P. Nakov, A. Ritter, S. Rosenthal, F. Sebastiani and V. Stoyanov,
"SemEval-2016 task 4: Sentiment analysis in Twitter," in 10th

international workshop on semantic evaluation (SemEval 2016), San

Diego, US, 2016.

