
Fast Trajectory Simplification Algorithm for Natural User

Interfaces in Robot Programming by Demonstration

Daniel L. Marino, Milos Manic

Department of Computer Science

Virginia Commonwealth University

Richmond VA, USA

marinodl@vcu.edu, misko@ieee.org

Abstract— Trajectory simplification is a problem encountered

in areas like Robot programming by demonstration, CAD/CAM,

computer vision, and in GPS-based applications like traffic

analysis. This problem entails reduction of the points in a given

trajectory while keeping the relevant points which preserve

important information. The benefits include storage reduction,

computational expense, while making data more manageable.

Common techniques formulate a minimization problem to be

solved, where the solution is found iteratively under some error

metric, which causes the algorithms to work in super-linear time.

We present an algorithm called FastSTray, which selects the

relevant points in the trajectory in linear time by following an

“open loop” heuristic approach. While most current trajectory

simplification algorithms are tailored for GPS trajectories, our

approach focuses on smooth trajectories for robot programming

by demonstration recorded using motion capture systems.

Two variations of the algorithm are presented: 1) aims to

preserve shape and temporal information; 2) preserves only shape

information. Using the points in the simplified trajectory we use

cubic splines to interpolate between these points and recreate the

original trajectory. The presented algorithm was tested on

trajectories recorded from a hand-tracking system. It was able to

eliminate about 90% of the points in the original trajectories while

maintaining errors between 0.78-2cm which corresponds to 1%-

2.4% relative error with respect to the bounding box of the

trajectories.

Keywords— Trajectory simplification, programming by

demonstration, splines, motion tracking.

I. INTRODUCTION

Nowadays we can record trajectory data from a wide range

of sources like motion capture systems, touch screens, GPS,

IMUs, cameras, among others. Processing this kind of data is a

key point to different applications, which one among them is

the construction of better natural user interfaces that are based

on user input like gestures or demonstrations.

Trajectory data in general is recorded as a sequence of

(position, time stamp)-pairs; In general, highly dense

trajectories are obtained when tracking the movement of a

person or an object. This is because of the high sampling ratio.

Therefore, it is usual to simplify the raw data by reducing the

number of points, a process called trajectory simplification [1],

which allows to reduce the storage and further processing cost

of the trajectories and makes the data more manageable. Hence,

the problem of trajectory simplification is to get a compact,

simple representation of the trajectory that preserves as close as

possible the original trajectory.

The standard way of solving the problem is by the user

providing to the algorithm a maximum error 𝜀, then the

algorithm sketches a simplified trajectory and measures the

error between the original points and the simplified trajectory,

if the error is too high the simplified trajectory is changed, in

general by increasing its complexity adding a new point. One

of the most well-known algorithms for trajectory simplification

is the Ramer–Douglas–Peucker algorithm, the algorithm run

time is 𝑂(𝑛 log(𝑛)) and 𝑂(𝑛2) in the worst case, a modification

of this algorithm is given in [2].

The approach mentioned in the previous paragraph is the

general design paradigm for algorithms that solve the trajectory

simplification problem. We refer to these algorithms as “closed

loop” because the choice of the points that will be kept is done

based on testing the sketch of a simplified trajectory over an

error metric, and modifying this trajectory according to the

feedback given by the error metric. This closed loop nature is

the main reason for the algorithms to have super-linear running

time.

In this paper we propose an algorithm called FastSTray

(Fast simplification trajectory), to perform trajectory

simplification. The algorithm is able to select the relevant

points in a trajectory in linear time 𝑂(𝑛), where 𝑛 is the number

of points on the original trajectory. The algorithm was

developed specifically to process trajectories acquired from the

tracking of human demonstrations using motion capture

systems [3]. These demonstrations are used to specify

trajectories for robot manipulators that execute the

demonstrated trajectories, a process called programming by

demonstration [4] [5].

FastSTray calculates for each point on the original

trajectory a coefficient that quantify its importance on the

definition of the trajectory, we call this coefficient

“information” coefficient; the calculation of the coefficient is

done in linear time. Once the coefficient is calculated for all

points, FastSTray selects which points should be kept by

applying a non-maxima suppression to eliminate points with

low coefficients. Using only the remaining points, the algorithm

calculates the parameters of a cubic spline, which gives us an

approximation of the original trajectory. The fact that the points

are being selected without constantly evaluating the error of the

simplified trajectory with respect the original points is which

gives our algorithm its “open loop” attribute and allows it to run

in linear time.

Using splines to interpolate between points in the simplified

trajectory, gives us a smooth trajectory that is suitable for

robotics, and it also provides a better model for the type of data

that we are working on (tracking of human actions) that allows

the simplified trajectory to fit the original trajectory with low

error and high reduction ratios.

Another reason of the use of splines is that they are easy to

interpret and modify by humans. As mentioned before, we are

using the trajectories recorded of a human performing an action

to serve as a demonstration for a robot of the trajectory it should

follow to execute a task; it is desired that this trajectory would

be in a format that it would be easy for a human to modify in

case that a modification of the trajectory or fine tuning is

needed; splines are often used to program robot trajectories, and

they are intuitive and easy to modify on OLP software [6].

We conducted tests on data gathered from a hand-tracking

system [3] and on GPS trajectory data. The results show a

reduction ratio about 90%, with relative error between 0.5%-

2.5%.

This paper is organized as follows: in section II a review on

the related work on trajectory simplification and similar areas

is presented; section III explains the FastSTray algorithm for

trajectory simplification using a linear correlation coefficient

that aims to preserve temporal and shape information; in section

IV a coefficient that aims to preserve only shape information is

presented; in section V the results on the test trajectories are

shown; section VI concludes the paper.

II. RELATED WORK

The development of trajectory simplification algorithms has

been an important topic specially for the processing of GPS

trajectory data. In [7], long et al. classify the existing

approaches in position-preserving trajectory simplification

(PPTS) [8], and direction-preserving trajectory simplification

(DPTS) [1]. PPTS algorithms ensure that the error between the

positions on the simplified trajectory and the original trajectory

is less than a certain given parameter; whereas DPTS tries to

preserve the direction information on the data. In PPTS and

DPTS algorithms the goal is to end up with the smallest

possible simplified trajectory while the error is held below a

certain threshold, in [7] this problem is called the min-size

problem, because the goal is to minimize the size of the

trajectory. An issue found with this approach is that the user has

to specify the error threshold which sometimes is hard to tune,

therefore [7] defines the min-Error problem which takes as user

parameter a storage budget which is more intuitive to specify

than the error threshold, but the drawback is the computational

cost which according to [7] it is 𝑂(𝑛2 log(𝑛)) for the exact

algorithm, and 𝑂(𝑛 log2(𝑛)) for the approximate algorithm.

In [9] an online trajectory sampling method for portable

devices is presented to reduce the trajectory data resulting from

streaming location data from portable devices to a location-

based services (LBS) server. The approach used is similar to the

Ramer–Douglas–Peucker algorithm, but it assumes that the

entire trajectory is not known a priori, hence the simplification

of the trajectory is performed online while the data is being

acquired.

In [10] a trajectory simplification algorithm specially

tailored for GPS trajectories is presented, this algorithm was

designed to preserve the shape and semantic meaning of the

GPS trajectory; it also shares some of the ideas that we use in

our work like using the deviation in heading direction to weight

the importance of points and make the decision of which points

should be kept according to this weight.

Another interesting area that is related is the problem of

fitting spline curves to unorganized data points [11]. The

standard approach is to formulate the problem as a nonlinear

constrained minimization problem. This problem is more

difficult that the trajectory simplification problem because it

assumes that the data is unordered. Calculating the error

between the current estimate of the spline and the original data

points is one of the critical steps for fitting the spline. Finding

the exact value for the error is prohibitively expensive,

therefore an approximation has to be used. There are three

mainly existing methods for curve fitting that propose different

ways of approximating the error: the first method is called Point

Distance Minimization (PDM) [12]; the second method is

called tangent distance minimization (TDM) [13] and the third

one is the Squared Distance Minimization (SDM) [14]. The

PDM method is the simplest one, but the SDM exhibits better

performance in terms of stability and convergence rate than

PDM and TDM; furthermore, in [14] the SDM method is shown

to be a quasi-Newton method which uses a positive definite

approximant of the Hessian of the objective function that

defines the fitting problem. In [11] a method that uses L-BFGS

optimization is used that is faster than the other methods.

III. DESCRIPTION OF THE PRESENTED FASTSTRAY

ALGORITHM

This section describes the algorithm using a linear-

correlation-based coefficient; later on, in section IV, the

direction-based coefficient is explained. The presented

algorithm takes as input a trajectory 𝑇 and returns trajectory �̂�.

The output trajectory contains fewer points and can be used to

recreate the trajectory 𝑇 using splines. Figure 1 shows the main

steps of the algorithm, while detailed procedure is described in

Algorithm 1. 𝛼, 𝛽, and 𝛾 are parameters given by the user who

also has to specify which coefficient should be used.

The input to the algorithm is a raw trajectory data 𝑇 which

is a structure composed by a sequence of N ordered

points 𝑇. 𝑃 = {𝒑(1), 𝒑(2), … , 𝒑(𝑁) }, and the corresponding

time stamps for each point 𝑇. 𝑆 = {𝑡(1), 𝑡(2), … , 𝑡(𝑁)}, where

the positions 𝒑(𝑖) ∈ ℝ3 and the time stamp 𝑡(𝑖) ∈ ℝ.

The output is a trajectory �̂�, which is an approximation of

the input trajectory 𝑇, with 𝑀 points, where 𝑀 < 𝑁 and �̂�. �̂� =
{𝒑(1), 𝒑(2), … , 𝒑(𝑀) }, 𝑇. �̂� = {𝑡(1), 𝑡(2), … , 𝑡(𝑀)}. The

points on �̂� are used to get a spline as specified in [15].

The first phase of the algorithm applies a filter to smooth

the trajectory and reduce the noise. This step is completely

optional and is used in cases where the trajectory provided is

noisy. The filter used in this paper is a simple moving average

filter with a window size 2𝛼.

The second phase performs a measure of the amount of

“information” that a point is providing to define the trajectory;

we quantify this information by giving each point in the

trajectory a coefficient 𝜉 ≥ 0, where a point that is providing

significant information to reconstruct the trajectory should have

a big coefficient. We introduce a linear-correlation-based

coefficient (details explained in Algorithm 1).

𝑟𝑎𝑡({𝑎}, {𝑡}) =
∑ (𝑎(𝑖) − �̅�)(𝑡(𝑖) − 𝑡̅)𝑖

√∑ (𝑎(𝑖) − �̅�)2
𝑖 √∑ (𝑡(𝑖) − 𝑡̅)2

𝑖

 (1)

𝜉(𝑷, 𝒕) =
1

(𝑟𝑎𝑡(𝑷. 𝒙, 𝒕))
2 +

1

(𝑟𝑎𝑡(𝑷. 𝒚, 𝒕))
2 +

1

(𝑟𝑎𝑡(𝑷. 𝒛, 𝒕))
2 (2)

where 𝑷. 𝒙 is a list of the x coordinate of the list of points P,

similarly 𝑷. 𝒚 and 𝑷. 𝒛 represent y and z coordinate respectively.

Figure 2 illustrates the idea behind the design of this

coefficient. We would like eliminate points with low curvature

because they do not provide significant information for the

definition of the trajectory, like the one highlighted in Figure

2.a), and to preserve points like the one highlighted in Figure

2.b). To helps us to identify these points, we are using the

correlation coefficient between the 2𝛽 neighbors of the point

whose coefficient is being evaluated, as shown in Figure 2

(where the number of neighbors in this figure is 2𝛽 = 4), points

with low linear correlation are those that we would like to

preserve, so we assign a high coefficient to these points by

taking the multiplicative inverse of the squared linear-

correlation of position with respect to time.

Phase 3 eliminates points with low 𝜉 coefficient by

performing a non-maxima suppression, preserving only points

that are key to reproduce the original trajectory. The non-

maxima suppression works as follows: a point is only preserved

if its “information” coefficient corresponds to the maximum

coefficient found on a window of size 2𝛾 centered on the point

whose coefficient is being evaluated, i.e. a point is preserved if

its coefficient has the maximum value on its 𝛾-neighborhood.

Phase 4 calculates the parameters of a cubic spline using

only the reduced set of points in the simplified trajectory �̂�.

Step 1 on Algorithm 1 corresponds to Phase 1 on Figure 1.

Step 2 corresponds to Phase 2. Step 3 to 9 corresponds to Phase

3. Finally step 10 performs the Spline interpolation. Steps 3 and

9 in Algorithm 1 ensure that the initial and final point on the

original trajectory belong to the simplified trajectory.

With respect to the computational complexity of the

algorithm, the following are the runtimes of each one of the

steps on Algorithm 1:

 Step 1: 𝑂(𝛼𝑁)

 Step 2: 𝑂(𝛽𝑁)

 Steps 4-9: 𝑂(𝛾𝑁)

Because 𝛼, 𝛽 and 𝛾 are in general much more smaller than

N, we conclude that the running time of the algorithm for

getting the simplified trajectory is 𝑂(𝑁). This running time

corresponds only to the simplification of the trajectory 𝑇, it

does not take into account the cost of getting the spline Π.

The spline Π is a cubic interpolation between the points on

�̂�, in other words Π is composed by |�̂�| = 𝑀 − 1 cubic

polynomials Π𝑘(𝑡). To get the parameters of the 𝑀 −
1 polynomials, a system of linear equations 𝐴Ψ = 𝑏 must be

solved, where 𝐴 is a known 𝑀x𝑀 matrix, 𝑏 is a known vector

and Ψ is the unknown vector that represent the acceleration on

each one of the timestamps, please refer to [15] for the details

of how to get 𝐴 and 𝑏. The simplest way for solving 𝐴Ψ = 𝑏

requires the inversion of the matrix 𝐴, which takes 𝑂(𝑀3); the

reduction ratio that was achieved in the tests that we performed

was about 90%, therefore 𝑀 ≈ 0.1𝑁, which means that the

running time for the inversion of 𝐴 is about 0.001𝑁3. This is a

significant reduction in the running time even when 𝑁 is large;

furthermore, for cubic interpolation, the matrix A has a

Figure 1: Steps performed by the presented algorithm

 a) b)

Figure 2: examples that demonstrate the central idea for the presented "information" coefficient based on linear correlation

time

x Low linear

correlation

tridiagonal band structure, therefore the linear system of

equations can be solved in O(M) using the Tridiagonal matrix

algorithm (Thomas algorithm). There are also efficient

algorithms like [16] for calculating the inverse of A.

Algorithm 1: FastSTray (𝐓, 𝛂, 𝛃, 𝛄)

Input: Trajectory 𝑇 , composed of a list of points 𝑃 and a list

of time stamps 𝑆

Output: Simplified trajectory �̂�, composed of the list of points

�̂� and a list of time stamps �̂�.

Spline Π(𝑡) that interpolates points in �̂�

Parameters: 𝛼: Size of the moving average filter

𝛽: Size of the neighborhood to measure the

correlation coefficient

𝛾: Size of the neighborhood to perform the non-

maximum suppression

1. Calculate the trajectory 𝑇1(composed by a list of points 𝑃1

and time stamps 𝑆1) using moving average filter:

𝑷𝟏[𝑖] ←
∑ 𝑷[𝑗]𝑗

|𝐽|
 ,

𝑆1[𝑖] ← 𝑆[𝑖]

Where 𝐽 = {𝑗 ∈ ℕ|max(0, 𝑖 − 𝛼) ≤ 𝑗 ≤ min (𝑖 + 𝛼, 𝑁) }

2. For each point 𝑷𝟏[𝑖] get the coefficient 𝐶𝑜𝑒𝑓(𝑖) that

corresponds to the measure of the linear correlation of the

2𝛽 neighbors of 𝑷𝟏[𝑖] with respect to time, according to the

correlation measure (𝜉) defined in Eq. (2)

𝐶𝑜𝑒𝑓(𝑖) ← 𝜉(𝑃𝑣(𝑖), 𝑡𝑣(𝑖))

Where:

𝑃𝑣(𝑖) = {𝑃1[𝑗]|𝑖 − 𝛽 ≤ 𝑗 ≤ 𝑖 + 𝛽}

𝑡𝑣(𝑖) = {𝑆1[𝑗]|𝑖 − 𝛽 ≤ 𝑗 ≤ 𝑖 + 𝛽}

3. �̂� = 𝑷𝟏[1] ; �̂� = 𝑺𝟏[1], i.e. add to the simplified trajectory

the initial point of the filtered trajectory

4. For each point 𝑷𝟏(𝑖) :

5. 𝑀𝑝 ← max({𝐶𝑜𝑒𝑓(𝑗)|𝑖 − 𝛾 ≤ 𝑗 ≤ 𝑖 + 𝛾})

6. If 𝐶𝑜𝑒𝑓(𝑖) = 𝑀𝑝 Then

7. �̂� ← �̂� ∪ 𝑷𝟏[𝑖] , i.e. add the point to the simplified

trajectory

8. �̂� ← �̂� ∪ 𝑺𝟏[𝑖]

9. �̂� ← �̂� ∪ 𝑷𝟏[𝑁] ; �̂� ← �̂� ∪ 𝑺𝟏[𝑁], i.e. add to the simplified

trajectory the final point of the filtered trajectory

10. Return �̂� as a structure composed by �̂�. �̂� and �̂�. �̂�, and use

the ordered points in the trajectory �̂� to get the spline Π.

IV. PRESERVING ONLY SHAPE INFORMATION

The coefficient defined in Eq. (2) aims to preserve position

information and temporal information, this might be desired in

certain applications like in robot programing by demonstration,

where temporal information provides important information on

how the task has to be performed.

In applications like GPS trajectory simplification, temporal

information is not relevant, only shape information is required,

so we introduce a coefficient that aims to preserve only shape

information. We call this coefficient direction-based

coefficient.

Figure 3 illustrates the idea behind the direction-based

coefficient. The coefficient makes use of the cosine similarity

between the vectors v1 and v2, defined by:

𝒗𝟏(𝑖)𝑇𝒗𝟐(𝑖)

‖𝒗𝟏(𝑖)‖2‖𝒗𝟐(𝑖)‖2

 (3)

The cosine similarity takes values between [-1,1], where 𝑣1

and 𝑣2 have similarity of 1 if they have the same orientation; a

similarity of zero corresponds to perpendicular vectors; and a

similarity of -1 corresponds to a pair of vectors that are

diametrically opposed. Based on this behavior of the similarity

measure, we define the “information” coefficient as:

𝐶𝑜𝑒𝑓(𝑖) =
1

1 +
𝒗𝟏(𝑖)𝑇𝒗𝟐(𝑖)

‖𝒗𝟏(𝑖)‖‖𝒗𝟐(𝑖)‖

 (4)

where:

𝒗𝟏(𝑖) = 𝑃1[𝑖] − 𝑃1[𝑖 − 1]

𝒗𝟐(𝑖) = 𝑃1[𝑖 + 1] − 𝑃1[𝑖]
(5)

The idea is that the inner product between the vectors shown

in Figure 3.b) will be higher than the inner product of the

vectors shown in Figure 3.a). which allow us to choose the point

in Figure 3.a) over the point in Figure 3.b) to be kept. The only

modification that must be done on Algorithm 1 is to change step

two to use the coefficient defined in Eq. (4) instead of using the

coefficient defined in Eq. (2)

It is important to highlight the fact that in Figure 1 the axes

are showing position vs time, whereas in Figure 3 the axes show

position x vs position y. In section III the coefficient was

defined in base of the linear correlation between the individual

coordinates with respect to time, this is the main reason of why

this coefficient preserves temporal information, while the

coefficient presented in this section measures the difference in

the direction between two adjacent points.

V. EXPERIMENTAL RESULTS

For evaluating the performance of the presented algorithm,

the following error metrics is being used:

𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑‖𝑃[𝑖] − Π(𝑇. 𝑡(𝑖)) ‖

𝑁

𝑖=1

 (6)

where 𝑃[𝑖] represents the points in the original trajectory; and Π

represents the spline obtained using the points in the simplified

trajectory �̂�, where Π(𝑡) corresponds to position on 3D space

interpolated via spline at time 𝑡.

This metric can be considered a synchronous distance

function [7], because the points in the original trajectory 𝑇 are

mapped to the spline (defined with the points in �̂�) using the

same time stamp in 𝑇. 𝑡.

a)

b)

Figure 3: Visual example that demonstrates the idea behind of the presented direction-based coefficient that only preserve shape information

The performance is also being evaluated by the percentage

of reduction achieved, which we define as:

|𝑇| = Number of points in the original trajectory

|�̂�| = Number of points in the simplified trajectory

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(%) = 100 (1 −
|�̂�|

|𝑇|
) (7)

We also define a relative error as the ratio between the error

defined in Eq. (6) and de maximum distance between two points

(in 3D space) in the original trajectory:

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = 100
𝑒𝑟𝑟𝑜𝑟

max
𝑖,𝑗

(‖𝑃[𝑖] − 𝑃[𝑗]‖)
 (8)

Figure 4 presents the results of the presented algorithm using

the linear-correlation-based coefficient. The trajectories that we

used for testing were recorded using a hand-tracking system [3].

As can be seen, this kind of trajectories are characterized by a

high sampling ratio and represent the movement of an object

over a smooth trajectory over time (there are no discontinuities

in the data). We can see that the algorithm is producing

simplified trajectories with reduction rates about 90%, and

errors between 0.78cm to 2cm, which gives relative errors

between 1% to 2.4%.

Figure 5 presents the results of the FastSTray algorithm

using the direction-based coefficient on a trajectory that tries to

resemble a square. As can be seen, the higher reduction rate, the

higher the error; we can also see that the coefficient 𝛾 is used to

control and tune the amount of reduction rate. Here, high 𝛾

values results in high reduction rates and higher mapping errors.

It is important to highlight the fact that for the tests with the

direction-based coefficient we are still using the synchronous

distance function error. Due to the fact that the direction-based

coefficient is not preserving temporal function, the error metric

reports higher errors compared to the results got with the

correlation-based coefficient because of the nature of the error

metric.

To test the algorithm on a different kind of trajectory data we

used the GeoLife GPS Trajectories dataset [17] [18]. Table 1

illustrates mapping error and reduction percentages for 𝛼 = 5

and varying 𝛾 values. As can be seen, the error increases as 𝛾

increases. These results were obtained by applying the

FastSTray algorithm using the direction-based coefficient on a

GPS trajectory with 3189 points.

The GPS trajectory with 3189 points also served as evidence

of the fast performance of the algorithm, which took 0.06

seconds to the get the simplified trajectory using the direction-

based coefficient, and 0.33 seconds using the linear-correlation

coefficient, in a non-optimized implementation of the algorithm

in Matlab, on a computer with an AMD 4GHz processor.

When working with GPS trajectories, special care has to be

taken with discontinuities in the trajectory data, the results that

we are showing are not taking into account these discontinuities

to process the trajectory which leads to poor performance in the

regions where discontinuities are found.

Another important point found when working with GPS

trajectories, is that with very long trajectories, using the same

values for 𝛼, 𝛽 and 𝛾 for the entire trajectory, usually leads to

poor performance in local regions. For example, when there is a

segment with higher variance compared to the average behavior

of the trajectory, the spline would have a poor fit in this local

region. A simple approach to improve performance for these

cases is to break the trajectory in segments and use different

values of 𝛼, 𝛽 and 𝛾 for each segment.

The fact that we are using splines instead of linear

interpolation allows us to have higher reduction ratios

(compared to linear interpolation) while the reconstructed

trajectory fits the original data points with low error. It is

important to highlight that the fitting of the spline is not taking

into account the points in the original trajectory 𝑇, the spline

TABLE I

PERFORMANCE OF THE PRESENTED ALGORITHM ON A GPS

TRAJECTORY WITH |𝑇| = 3189 AND USING 𝛼 = 2

𝜸 |�̂�| Reduction

percentage

Error

[m]

Relative

Error

[%]

1 420 86.83 10.6 0.5

2 274 91.4 15.6 0.74

3 197 93.82 24.14 1.14

4 153 95.2 29.15 1.38

5 122 96.17 32.78 1.55

6 105 96.72 38.35 1.82

|𝑇| = 334, |�̂�| = 31, Reduction= 91%, error: 9.5mm,

Relative error= 0.9%, 𝛼 = 1, 𝛽 = 2, 𝛾 = 2

|𝑇| = 270, |�̂�| = 18, Reduction= 93.3%, Error: 13.4mm,

Relative error= 1.66%, 𝛼 = 1, 𝛽 = 2, 𝛾 = 3

|𝑇| = 219, |�̂�| = 18, Reduction= 91.78%,

Error: 15.9mm, Relative error= 2.35%,

𝛼 = 2, 𝛽 = 3, 𝛾 = 2

|𝑇| = 219, |�̂�| = 30, Reduction= 86.3%,

Error= 7.8mm, Relative error= 1.15%

𝛼 = 1, 𝛽 = 2, 𝛾 = 1

|𝑇| = 181, |�̂�| = 16, Reduction= 91.16%,

error= 15mm, Relative error= 1.99%,

𝛼 = 1, 𝛽 = 2, 𝛾 = 2

Figure 4: Results of the trajectory simplification algorithm using the correlation coefficient for trajectories recorded from a human hand tracking system

|𝑇| = 207, |�̂�| = 7, Reduction= 96.6%, error: 57.84mm, 𝛼 = 5, 𝛾 = 5

|𝑇| = 207, |�̂�| = 11, Reduction: 94.68%, error: 40.85mm, 𝛼 = 5, 𝛾 = 3

|𝑇| = 207, |�̂�| =16, Reduction: 92.27%, error: 37.18mm, 𝛼 = 5, 𝛾 = 2

|𝑇| = 207, |�̂�| = 19, Reduction: 90.82%, error: 54.26mm, 𝛼 = 8, 𝛾 = 1

Figure 5: Result of the trajectory simplification algorithm using the direction-based coefficient on trajectory data recorded using a hand-tracking system.

-400 -200 0 200
700

800

900

1000

1100

1200

1300

1400

1500

-400 -300 -200 -100 0 100 200
700

800

900

1000

1100

1200

1300

1400

1500

-400 -200 0 200
700

800

900

1000

1100

1200

1300

1400

1500

interpolation is only taking into account the points in the

simplified trajectory �̂�, nonetheless the results show a low error

in the mapping of the original trajectory to the spline, which

means that the coefficients designed in this paper are a good

heuristic for the “open loop” approach that we took to solve the

trajectory simplification problem. If the error would like to be

further reduced, one approach could be to use the spline Π as an

initialization for a “closed loop” algorithm like [11].

Although the algorithm requires three parameters to be

specified, the tests performed showed that their values usually

fall in the range [1,10], mainly because values higher than 10

yield to high reduction ratios and high errors.

 The choice of the parameters 𝛼, 𝛽 and 𝛾 is intuitive and its

tuning is easy because their value correspond to the size of

neighborhoods for the corresponding operations, therefore the

parameters do not depend on the scale of the data. On the other

hand, the fast performance of the algorithm allows fine tuning

of the parameters interactively.

Another fact that we observed while performing the tests is

related to the role of the smoothing filter operation. We found

on our tests that big values of 𝛼 lead to bigger reduction ratios

and sometimes to lower mapping errors. Therefore, even if the

input trajectory is noise-free, this operation still can aid to a

better detection of significant points that should be preserved.

VI. CONCLUSION

This paper presents the FastSTray algorithm for trajectory

simplification on smooth trajectories. The main advantage of the

algorithm is that is able to select the relevant points that allows

to recreate the original trajectory using splines with low error

and high reduction ratios in linear time, showing that the

proposed coefficients are a good heuristic for the problem by

producing simplified trajectories with reduction rates about

90%, and errors between 0.78cm to 2cm, which gives relative

errors between 1% to 2.4%, for trajectories recorded from a

hand-tracking system.

Another advantage of the algorithm is that the required

parameters are intuitive and easy to tune, mainly because the

parameters define the neighborhood used by each one of the

phases of the algorithm, therefore they are invariant to the scale

of the trajectories. On the other hand, because the algorithm

runs in linear time, and the parameters usually take values on a

small range, algorithms that automate the choose of these

parameters can be proposed.

In the case that lower error rates need to be achieved, the

simplified trajectory obtained with the presented algorithm can

be used as an initialization for an algorithm that takes a standard

“closed loop” minimization-optimization approach for fitting

the spline on the points in the original trajectory.

In general, FastSTray works better for smooth trajectories

with constant high sampling ratio. This is basically because the

algorithm was specifically designed to work on smooth

trajectories used in natural interfaces for robot programming by

demonstration environments, nonetheless, we showed that the

algorithm could also be used on GPS trajectories although

further considerations should be taken on this kind of data,

especially when there is high variance in the sampling ratio

and/or spacing on neighbor points.

As future work, we will consider: 1) the orientation for the

end-effector. 2) longer trajectories where the values for the

coefficients (𝛼, 𝛽, 𝛾) will vary along the trajectory to improve

the fitting of the spline in local regions.

REFERENCES

[1] C. Long and H. V. Jagadish, "Direction-Preserving Trajectory

Simplification," in VLDB, 2013.

[2] J. Hershberger and J. Snoeyink, "Speeding Up the Douglas-Peucker

Line-Simplification Algorithm," in Proc. 5th Intl. Symp. on Spatial Data
Handling, 1992.

[3] D. L. Marino and J. A. Tumialan, "Hand position tracking using a depth

image from a RGB-d camera," in IEEE International Conference on
Industrial Technology (ICIT), Seville, 2015.

[4] A. Billard, S. Calinon, R. Dillmann and S. Schaal, "Robot Programming

by Demonstration," in Handbook of Robotics, Springer, 2008, pp. 1371-
1394.

[5] P. d. Torino, "Programming by Demonstration for a Industrial Robot,"

YouTube, 2014. [Online]. Available:
https://www.youtube.com/watch?v=caK5ZlJ_a9I. [Accessed 4 1 2016].

[6] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, "Recent Progress

on Programming Methods for Industrial Robots," Robotics and
Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87-94, 2012.

[7] C. Long, R. Wong and H. V. Jagadish, "Trajectory simplification: on

minimizing the direction-based error," in Proc. of the VLDB Endowment,
2014.

[8] H. Cao, O. Wolfson and G. Trajcevski, "Spatio-temporal Data Reduction
with Deterministic Error Bounds," The VLDB Journal , vol. 15, no. 3,

pp. 211-228, 2006.

[9] H. Park, Y.-J. Lee and J. Chae, "Online Approach for Spatio-Temporal
Trajectory Data Reduction for Portable Devices," Journal of Computer

Science and Technology, vol. 28, no. 4, p. 597–604, 2013.

[10] Y. Chen, K. Jiang, Y. Zheng, C. Li and N. Yu, "Trajectory Simplification
Method for Location-Based Social Networking Services," in

SIGSPATIAL GIS workshop on location-based social networks, 2009.

[11] W. Zheng, P. Bo, Y. Liu and W. Wang, "Fast B-spline curve fitting by
L-BFGS," Computer Aided Geometric Design, vol. 29, no. 7, pp. 448-

462, 2012.

[12] J. Hoschek, "Intrinsic parametrization for approximation," Computer
Aided Geometric Design, vol. 5, no. 1, pp. 27-31, 1988.

[13] A. Blake and M. Isard, Active Contours, Springer, 1998.

[14] W. Wang, H. Pottmann and Y. Liu, "Fitting B-spline curves to point
clouds by curvature-based squared distance minimization," ACM

Transactions on Graphics (TOG), vol. 25, no. 2, pp. 214-238, 2006 .

[15] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo, "Trajectory
Planning," in Robotics, Modelling, Planning and Control, Springer,

2009, pp. 172-179.

[16] R. A. Usmani, "Inversion of Jacobi’s Tridiagonal Matrix," Computers &
Mathematics with Applications, vol. 27, no. 8, pp. 59-66, 1993.

[17] Y. Zheng, X. Xie and W.-Y. Ma, "Mining Interesting Locations and

Travel Sequences From GPS Trajectories," in WWW , 2009.

[18] M. R. Asia, "GeoLife GPS Trajectories," [Online]. Available:

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-

9fd4-daa38f2b2e13/. [Accessed 2015].

