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Abstract— Trajectory simplification is a problem encountered 

in areas like Robot programming by demonstration, CAD/CAM, 

computer vision, and in GPS-based applications like traffic 

analysis. This problem entails reduction of the points in a given 

trajectory while keeping the relevant points which preserve 

important information. The benefits include storage reduction, 

computational expense, while making data more manageable.  

Common techniques formulate a minimization problem to be 

solved, where the solution is found iteratively under some error 

metric, which causes the algorithms to work in super-linear time. 

We present an algorithm called FastSTray, which selects the 

relevant points in the trajectory in linear time by following an 

“open loop” heuristic approach. While most current trajectory 

simplification algorithms are tailored for GPS trajectories, our 

approach focuses on smooth trajectories for robot programming 

by demonstration recorded using motion capture systems.  

Two variations of the algorithm are presented: 1) aims to 

preserve shape and temporal information; 2) preserves only shape 

information. Using the points in the simplified trajectory we use 

cubic splines to interpolate between these points and recreate the 

original trajectory. The presented algorithm was tested on 

trajectories recorded from a hand-tracking system. It was able to 

eliminate about 90% of the points in the original trajectories while 

maintaining errors between 0.78-2cm which corresponds to 1%-

2.4% relative error with respect to the bounding box of the 

trajectories.  

 

Keywords— Trajectory simplification, programming by 

demonstration, splines, motion tracking.  

I. INTRODUCTION 

Nowadays we can record trajectory data from a wide range 

of sources like motion capture systems, touch screens, GPS, 

IMUs, cameras, among others. Processing this kind of data is a 

key point to different applications, which one among them is 

the construction of better natural user interfaces that are based 

on user input like gestures or demonstrations.  

Trajectory data in general is recorded as a sequence of 

(position, time stamp)-pairs; In general, highly dense 

trajectories are obtained when tracking the movement of a 

person or an object. This is because of the high sampling ratio. 

Therefore, it is usual to simplify the raw data by reducing the 

number of points, a process called trajectory simplification [1], 

which allows to reduce the storage and further processing cost 

of the trajectories and makes the data more manageable. Hence, 

the problem of trajectory simplification is to get a compact, 

simple representation of the trajectory that preserves as close as 

possible the original trajectory. 

The standard way of solving the problem is by the user 

providing to the algorithm a maximum error 𝜀, then the 

algorithm sketches a simplified trajectory and measures the 

error between the original points and the simplified trajectory, 

if the error is too high the simplified trajectory is changed, in 

general by increasing its complexity adding a new point. One 

of the most well-known algorithms for trajectory simplification 

is the Ramer–Douglas–Peucker algorithm, the algorithm run 

time is 𝑂(𝑛 log(𝑛)) and 𝑂(𝑛2) in the worst case, a modification 

of this algorithm is given in [2].  

The approach mentioned in the previous paragraph is the 

general design paradigm for algorithms that solve the trajectory 

simplification problem. We refer to these algorithms as “closed 

loop” because the choice of the points that will be kept is done 

based on testing the sketch of a simplified trajectory over an 

error metric, and modifying this trajectory according to the 

feedback given by the error metric. This closed loop nature is 

the main reason for the algorithms to have super-linear running 

time. 

In this paper we propose an algorithm called FastSTray 

(Fast simplification trajectory), to perform trajectory 

simplification. The algorithm is able to select the relevant 

points in a trajectory in linear time 𝑂(𝑛), where 𝑛 is the number 

of points on the original trajectory. The algorithm was 

developed specifically to process trajectories acquired from the 

tracking of human demonstrations using motion capture 

systems [3]. These demonstrations are used to specify 

trajectories for robot manipulators that execute the 

demonstrated trajectories, a process called programming by 

demonstration [4] [5].  

FastSTray calculates for each point on the original 

trajectory a coefficient that quantify its importance on the 

definition of the trajectory, we call this coefficient 

“information” coefficient; the calculation of the coefficient is 

done in linear time. Once the coefficient is calculated for all 

points, FastSTray selects which points should be kept by 

applying a non-maxima suppression to eliminate points with 

low coefficients. Using only the remaining points, the algorithm 

calculates the parameters of a cubic spline, which gives us an 

approximation of the original trajectory. The fact that the points 

are being selected without constantly evaluating the error of the 

simplified trajectory with respect the original points is which 



gives our algorithm its “open loop” attribute and allows it to run 

in linear time.  

Using splines to interpolate between points in the simplified 

trajectory, gives us a smooth trajectory that is suitable for 

robotics, and it also provides a better model for the type of data 

that we are working on (tracking of human actions) that allows 

the simplified trajectory to fit the original trajectory with low 

error and high reduction ratios.  

Another reason of the use of splines is that they are easy to 

interpret and modify by humans. As mentioned before, we are 

using the trajectories recorded of a human performing an action 

to serve as a demonstration for a robot of the trajectory it should 

follow to execute a task; it is desired that this trajectory would 

be in a format that it would be easy for a human to modify in 

case that a modification of the trajectory or fine tuning is 

needed; splines are often used to program robot trajectories, and 

they are intuitive and easy to modify on OLP software [6]. 

We conducted tests on data gathered from a hand-tracking 

system [3] and on GPS trajectory data. The results show a 

reduction ratio about 90%, with relative error between 0.5%-

2.5%. 

This paper is organized as follows: in section II a review on 

the related work on trajectory simplification and similar areas 

is presented; section III explains the FastSTray algorithm for 

trajectory simplification using a linear correlation coefficient 

that aims to preserve temporal and shape information; in section 

IV a coefficient that aims to preserve only shape information is 

presented; in section V the results on the test trajectories are 

shown; section VI concludes the paper.  

II. RELATED WORK 

The development of trajectory simplification algorithms has 

been an important topic specially for the processing of GPS 

trajectory data. In [7], long et al. classify the existing 

approaches in position-preserving trajectory simplification 

(PPTS) [8], and direction-preserving trajectory simplification 

(DPTS) [1]. PPTS algorithms ensure that the error between the 

positions on the simplified trajectory and the original trajectory 

is less than a certain given parameter; whereas DPTS tries to 

preserve the direction information on the data. In PPTS and 

DPTS algorithms the goal is to end up with the smallest 

possible simplified trajectory while the error is held below a 

certain threshold, in [7] this problem is called the min-size 

problem, because the goal is to minimize the size of the 

trajectory. An issue found with this approach is that the user has 

to specify the error threshold which sometimes is hard to tune, 

therefore [7] defines the min-Error problem which takes as user 

parameter a storage budget which is more intuitive to specify 

than the error threshold, but the drawback is the computational 

cost which according to [7] it is 𝑂(𝑛2 log(𝑛)) for the exact 

algorithm, and 𝑂(𝑛 log2(𝑛)) for the approximate algorithm. 

In [9] an online  trajectory sampling method for portable 

devices is presented to reduce the trajectory data resulting from 

streaming location data from portable devices to a location-

based services (LBS) server. The approach used is similar to the 

Ramer–Douglas–Peucker algorithm, but it assumes that the 

entire trajectory is not known a priori, hence the simplification 

of the trajectory is performed online while the data is being 

acquired.  

In [10] a trajectory simplification algorithm specially 

tailored for GPS trajectories is presented, this algorithm was 

designed to preserve the shape and semantic meaning of the 

GPS trajectory; it also shares some of the ideas that we use in 

our work like using the deviation in heading direction to weight 

the importance of points and make the decision of which points 

should be kept according to this weight.  

Another interesting area that is related is the problem of 

fitting spline curves to unorganized data points [11]. The 

standard approach is to formulate the problem as a nonlinear 

constrained minimization problem. This problem is more 

difficult that the trajectory simplification problem because it 

assumes that the data is unordered. Calculating the error 

between the current estimate of the spline and the original data 

points is one of the critical steps for fitting the spline. Finding 

the exact value for the error is prohibitively expensive, 

therefore an approximation has to be used. There are three 

mainly existing methods for curve fitting that propose different 

ways of approximating the error: the first method is called Point 

Distance Minimization (PDM) [12]; the second method is 

called tangent distance minimization (TDM) [13] and the third 

one is the Squared Distance Minimization (SDM) [14]. The 

PDM method is the simplest one, but the SDM exhibits better 

performance in terms of stability and convergence rate than 

PDM and TDM; furthermore, in [14] the SDM method is shown 

to be  a quasi-Newton method which uses a positive definite 

approximant of the Hessian of the objective function that 

defines the fitting problem. In [11] a method that uses L-BFGS 

optimization is used that is faster than the other methods.  

III. DESCRIPTION OF THE PRESENTED FASTSTRAY 

ALGORITHM  

This section describes the algorithm using a linear-

correlation-based coefficient; later on, in section IV, the 

direction-based coefficient is explained. The presented 

algorithm takes as input a trajectory 𝑇 and returns trajectory �̂�. 

The output trajectory contains fewer points and can be used to 

recreate the trajectory 𝑇 using splines. Figure 1 shows the main 

steps of the algorithm, while detailed procedure is described in 

Algorithm 1. 𝛼, 𝛽, and 𝛾 are parameters given by the user who 

also has to specify which coefficient should be used. 

The input to the algorithm is a raw trajectory data 𝑇 which 

is a structure composed by a sequence of N ordered 

points 𝑇. 𝑃 = {𝒑(1), 𝒑(2), … , 𝒑(𝑁) }, and the corresponding 

time stamps for each point 𝑇. 𝑆 = {𝑡(1), 𝑡(2), … , 𝑡(𝑁)}, where 

the positions 𝒑(𝑖) ∈ ℝ3 and the time stamp 𝑡(𝑖) ∈ ℝ.  

The output is a trajectory �̂�, which is an approximation of 

the input trajectory 𝑇, with 𝑀 points, where 𝑀 < 𝑁 and  �̂�. �̂� =
{𝒑(1), 𝒑(2), … , 𝒑(𝑀) }, 𝑇. �̂� = {𝑡(1), 𝑡(2), … , 𝑡(𝑀)}. The 

points on �̂� are used to get a spline as specified in [15].  

The first phase of the algorithm applies a filter to smooth 

the trajectory and reduce the noise. This step is completely 

optional and is used in cases where the trajectory provided is 

noisy. The filter used in this paper is a simple moving average 

filter with a window size 2𝛼.  



The second phase performs a measure of the amount of 

“information” that a point is providing to define the trajectory; 

we quantify this information by giving each point in the 

trajectory a coefficient 𝜉 ≥ 0, where a point that is providing 

significant information to reconstruct the trajectory should have 

a big coefficient. We introduce a linear-correlation-based 

coefficient (details explained in Algorithm 1). 

𝑟𝑎𝑡({𝑎}, {𝑡}) =
∑ (𝑎(𝑖) − �̅�)(𝑡(𝑖) − 𝑡̅)𝑖

√∑ (𝑎(𝑖) − �̅�)2
𝑖 √∑ (𝑡(𝑖) − 𝑡̅)2

𝑖

 (1) 

𝜉(𝑷, 𝒕) =
1

(𝑟𝑎𝑡(𝑷. 𝒙, 𝒕))
2 +

1

(𝑟𝑎𝑡(𝑷. 𝒚, 𝒕))
2 +

1

(𝑟𝑎𝑡(𝑷. 𝒛, 𝒕))
2 (2) 

 

where 𝑷. 𝒙 is a list of the x coordinate of the list of points P, 

similarly 𝑷. 𝒚 and 𝑷. 𝒛 represent y and z coordinate respectively.  

Figure 2 illustrates the idea behind the design of this 

coefficient. We would like eliminate points with low curvature 

because they do not provide significant information for the 

definition of the trajectory, like the one highlighted in Figure 

2.a), and to preserve points like the one highlighted in Figure 

2.b). To helps us to identify these points, we are using the 

correlation coefficient between the 2𝛽 neighbors of the point 

whose coefficient is being evaluated, as shown in Figure 2 

(where the number of neighbors in this figure is 2𝛽 = 4), points 

with low linear correlation are those that we would  like to 

preserve, so we assign a high coefficient to these points by 

taking the multiplicative inverse of the squared linear-

correlation of position with respect to time. 

Phase 3 eliminates points with low 𝜉 coefficient by 

performing a non-maxima suppression, preserving only points 

that are key to reproduce the original trajectory. The non-

maxima suppression works as follows: a point is only preserved 

if its “information” coefficient corresponds to the maximum 

coefficient found on a window of size 2𝛾 centered on the point 

whose coefficient is being evaluated, i.e. a point is preserved if 

its coefficient has the maximum value on its 𝛾-neighborhood.  

Phase 4 calculates the parameters of a cubic spline using 

only the reduced set of points in the simplified trajectory �̂�. 

Step 1 on Algorithm 1 corresponds to Phase 1 on Figure 1. 

Step 2 corresponds to Phase 2. Step 3 to 9 corresponds to Phase 

3. Finally step 10 performs the Spline interpolation. Steps 3 and 

9 in Algorithm 1 ensure that the initial and final point on the 

original trajectory belong to the simplified trajectory. 

With respect to the computational complexity of the 

algorithm, the following are the runtimes of each one of the 

steps on Algorithm 1: 

 Step 1: 𝑂(𝛼𝑁) 

 Step 2: 𝑂(𝛽𝑁) 

 Steps 4-9: 𝑂(𝛾𝑁) 

Because 𝛼, 𝛽 and 𝛾 are in general much more smaller than 

N, we conclude that the running time of the algorithm for 

getting the simplified trajectory is 𝑂(𝑁). This running time  

corresponds only to the simplification of the trajectory 𝑇, it 

does not take into account the cost of getting the spline Π. 

The spline Π is a cubic interpolation between the points on 

�̂�, in other words Π is composed by |�̂�| = 𝑀 − 1 cubic 

polynomials Π𝑘(𝑡). To get the parameters of the 𝑀 −
1 polynomials, a system of linear equations 𝐴Ψ = 𝑏 must be 

solved, where 𝐴 is a known 𝑀x𝑀 matrix, 𝑏 is a known vector 

and Ψ is the unknown vector that represent the acceleration on 

each one of the timestamps, please refer to [15] for the details 

of how to get 𝐴 and 𝑏. The simplest way for solving 𝐴Ψ = 𝑏 

requires the inversion of the matrix 𝐴, which takes 𝑂(𝑀3); the 

reduction ratio that was achieved in the tests that we performed 

was about 90%, therefore 𝑀 ≈ 0.1𝑁, which means that the 

running time for the inversion of 𝐴 is about 0.001𝑁3. This is a 

significant reduction in the running time even when 𝑁 is large; 

furthermore, for cubic interpolation, the matrix A has a 

 

Figure 1: Steps performed by the presented algorithm 

   
 a) b) 

Figure 2: examples that demonstrate the central idea for the presented "information" coefficient based on linear correlation 
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tridiagonal band structure, therefore the linear system of 

equations can be solved in O(M) using the Tridiagonal matrix 

algorithm (Thomas algorithm). There are also efficient 

algorithms like [16] for calculating the inverse of A. 

Algorithm 1: FastSTray  (𝐓, 𝛂, 𝛃, 𝛄) 

Input:  Trajectory 𝑇 , composed of a list of points 𝑃 and a list 

of time stamps 𝑆 

Output: Simplified trajectory �̂�, composed of the list of points 

�̂� and a list of time stamps �̂�.  

Spline Π(𝑡) that interpolates points in �̂� 

Parameters: 𝛼: Size of the moving average filter 

𝛽: Size of the neighborhood to measure the 

correlation coefficient  

𝛾: Size of the neighborhood to perform the non-

maximum suppression  

1. Calculate the trajectory 𝑇1(composed by a list of points 𝑃1 

and time stamps 𝑆1) using moving average filter: 

𝑷𝟏[𝑖] ←
∑ 𝑷[𝑗]𝑗

|𝐽|
  ,     

𝑆1[𝑖] ← 𝑆[𝑖] 
 

Where 𝐽 = {𝑗 ∈ ℕ|max(0, 𝑖 − 𝛼) ≤ 𝑗 ≤  min (𝑖 + 𝛼, 𝑁) } 

 

2. For each point 𝑷𝟏[𝑖] get the coefficient 𝐶𝑜𝑒𝑓(𝑖) that 

corresponds to the measure of the linear correlation of the 

2𝛽 neighbors of 𝑷𝟏[𝑖] with respect to time, according to the 

correlation measure (𝜉) defined in Eq. (2) 

𝐶𝑜𝑒𝑓(𝑖) ← 𝜉(𝑃𝑣(𝑖), 𝑡𝑣(𝑖)) 

Where: 

𝑃𝑣(𝑖) = {𝑃1[𝑗]|𝑖 − 𝛽 ≤ 𝑗 ≤ 𝑖 + 𝛽} 

𝑡𝑣(𝑖) = {𝑆1[𝑗]|𝑖 − 𝛽 ≤ 𝑗 ≤ 𝑖 + 𝛽} 

3.  �̂� = 𝑷𝟏[1] ; �̂� =  𝑺𝟏[1], i.e. add to the simplified trajectory 

the initial point of the filtered trajectory 

4. For each point 𝑷𝟏(𝑖) : 

5. 𝑀𝑝 ← max({𝐶𝑜𝑒𝑓(𝑗)|𝑖 − 𝛾 ≤ 𝑗 ≤ 𝑖 + 𝛾})  

6. If 𝐶𝑜𝑒𝑓(𝑖) = 𝑀𝑝 Then 

7. �̂� ← �̂�  ∪ 𝑷𝟏[𝑖]  , i.e. add the point to the simplified 

trajectory 

8. �̂� ←  �̂� ∪ 𝑺𝟏[𝑖]  

9. �̂� ← �̂� ∪ 𝑷𝟏[𝑁] ; �̂� ← �̂� ∪ 𝑺𝟏[𝑁], i.e. add to the simplified 

trajectory the final point of the filtered trajectory 

10. Return �̂� as a structure composed by �̂�. �̂� and �̂�. �̂�, and use 

the ordered points in the trajectory �̂� to get the spline Π.  

IV. PRESERVING ONLY SHAPE INFORMATION  

The coefficient defined in Eq. (2) aims to preserve position 

information and temporal information, this might be desired in 

certain applications like in robot programing by demonstration, 

where temporal information provides important information on 

how the task has to be performed.  

In applications like GPS trajectory simplification, temporal 

information is not relevant, only shape information is required, 

so we introduce a coefficient that aims to preserve only shape 

information. We call this coefficient direction-based 

coefficient.   

Figure 3 illustrates the idea behind the direction-based 

coefficient. The coefficient makes use of the cosine similarity 

between the vectors v1 and v2, defined by: 

𝒗𝟏(𝑖)𝑇𝒗𝟐(𝑖)

‖𝒗𝟏(𝑖)‖2‖𝒗𝟐(𝑖)‖2

 (3) 

The cosine similarity takes values between [-1,1], where 𝑣1 

and 𝑣2 have similarity of 1 if they have the same orientation; a 

similarity of zero corresponds to perpendicular vectors; and a 

similarity of -1 corresponds to a pair of vectors that are 

diametrically opposed. Based on this behavior of the similarity 

measure, we define the “information” coefficient as: 

𝐶𝑜𝑒𝑓(𝑖) =
1

1 +
𝒗𝟏(𝑖)𝑇𝒗𝟐(𝑖)

‖𝒗𝟏(𝑖)‖‖𝒗𝟐(𝑖)‖

 (4) 

where: 

𝒗𝟏(𝑖) = 𝑃1[𝑖] − 𝑃1[𝑖 − 1]

𝒗𝟐(𝑖) = 𝑃1[𝑖 + 1] − 𝑃1[𝑖]
(5) 

The idea is that the inner product between the vectors shown 

in Figure 3.b) will be higher than the inner product of the 

vectors shown in Figure 3.a). which allow us to choose the point 

in Figure 3.a) over the point in Figure 3.b) to be kept. The only 

modification that must be done on Algorithm 1 is to change step 

two to use the coefficient defined in Eq. (4) instead of using the 

coefficient defined in Eq. (2) 

It is important to highlight the fact that in Figure 1 the axes 

are showing position vs time, whereas in Figure 3 the axes show 

position x vs position y. In section III the coefficient was 

defined in base of the linear correlation between the individual 

coordinates with respect to time, this is the main reason of why 

this coefficient preserves temporal information, while the 

coefficient presented in this section measures the difference in 

the direction between two adjacent points. 

V. EXPERIMENTAL RESULTS 

For evaluating the performance of the presented algorithm, 

the following error metrics is being used: 

𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑‖𝑃[𝑖] − Π(𝑇. 𝑡(𝑖)) ‖

𝑁

𝑖=1

 (6) 

where 𝑃[𝑖] represents the points in the original trajectory; and Π 

represents the spline obtained using the points in the simplified 

trajectory �̂�, where Π(𝑡) corresponds to position on 3D space 

interpolated via spline at time 𝑡. 

This metric can be considered a synchronous distance 

function [7], because the points in the original trajectory 𝑇 are 

mapped to the spline (defined with the points in �̂�) using the 

same time stamp in 𝑇. 𝑡. 



 
a) 

 
b) 

Figure 3: Visual example that demonstrates the idea behind of the presented direction-based coefficient that only preserve shape information 

 

The performance is also being evaluated by the percentage 

of reduction achieved, which we define as: 

|𝑇| = Number of points in the original trajectory 

|�̂�| = Number of points in the simplified trajectory 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(%) = 100 (1 −
|�̂�|

|𝑇|
 ) (7) 

We also define a relative error as the ratio between the error 

defined in Eq. (6) and de maximum distance between two points 

(in 3D space) in the original trajectory: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = 100
𝑒𝑟𝑟𝑜𝑟

max
𝑖,𝑗

(‖𝑃[𝑖] − 𝑃[𝑗]‖)
 (8) 

Figure 4 presents the results of the presented algorithm using 

the linear-correlation-based coefficient. The trajectories that we 

used for testing were recorded using a hand-tracking system [3]. 

As can be seen, this kind of trajectories are characterized by a 

high sampling ratio and represent the movement of an object 

over a smooth trajectory over time (there are no discontinuities 

in the data). We can see that the algorithm is producing 

simplified trajectories with reduction rates about 90%, and 

errors between 0.78cm to 2cm, which gives relative errors 

between 1% to 2.4%.  

Figure 5 presents the results of the FastSTray algorithm 

using the direction-based coefficient on a trajectory that tries to 

resemble a square. As can be seen, the higher reduction rate, the 

higher the error; we can also see that the coefficient 𝛾 is used to 

control and tune the amount of reduction rate. Here, high 𝛾 

values results in high reduction rates and higher mapping errors.  

It is important to highlight the fact that for the tests with the 

direction-based coefficient we are still using the synchronous 

distance function error. Due to the fact that the direction-based 

coefficient is not preserving temporal function, the error metric 

reports higher errors compared to the results got with the 

correlation-based coefficient because of the nature of the error 

metric.  

To test the algorithm on a different kind of trajectory data we 

used the GeoLife GPS Trajectories dataset [17] [18]. Table 1 

illustrates mapping error and reduction percentages for 𝛼 = 5 

and varying 𝛾 values. As can be seen, the error increases as 𝛾 

increases. These results were obtained by applying the 

FastSTray algorithm using the direction-based coefficient on a 

GPS trajectory with 3189 points.  

 
The GPS trajectory with 3189 points also served as evidence 

of the fast performance of the algorithm, which took 0.06 

seconds to the get the simplified trajectory using the direction-

based coefficient, and 0.33 seconds using the linear-correlation 

coefficient, in a non-optimized implementation of the algorithm 

in Matlab, on a computer with an AMD 4GHz processor.  

When working with GPS trajectories, special care has to be 

taken with discontinuities in the trajectory data, the results that 

we are showing are not taking into account these discontinuities 

to process the trajectory which leads to poor performance in the 

regions where discontinuities are found. 

Another important point found when working with GPS 

trajectories, is that with very long trajectories, using the same 

values for 𝛼, 𝛽 and 𝛾 for the entire trajectory, usually leads to 

poor performance in local regions. For example, when there is a 

segment with higher variance compared to the average behavior 

of the trajectory, the spline would have a poor fit in this local 

region. A simple approach to improve performance for these 

cases is to break the trajectory in segments and use different 

values of 𝛼, 𝛽 and 𝛾 for each segment.  

The fact that we are using splines instead of linear 

interpolation allows us to have higher reduction ratios 

(compared to linear interpolation) while the reconstructed 

trajectory fits the original data points with low error. It is 

important to highlight that the fitting of the spline is not taking 

into account the points in the original trajectory 𝑇, the spline  

TABLE I 

PERFORMANCE OF THE PRESENTED ALGORITHM ON A GPS 

TRAJECTORY WITH |𝑇| = 3189 AND USING 𝛼 = 2 

 

𝜸 |�̂�| Reduction 

percentage 

Error 

[m] 

Relative 

Error 

[%] 

1 420 86.83 10.6 0.5 

2 274 91.4 15.6 0.74 

3 197 93.82 24.14 1.14 

4 153 95.2 29.15 1.38 

5 122 96.17 32.78 1.55 

6 105 96.72 38.35 1.82 

 



 
 

 
|𝑇| =  334, |�̂�| = 31, Reduction= 91%, error: 9.5mm, 

Relative error= 0.9%, 𝛼 = 1, 𝛽 = 2, 𝛾 = 2 

 
|𝑇| =  270, |�̂�| = 18, Reduction= 93.3%, Error: 13.4mm, 

Relative error= 1.66%, 𝛼 = 1, 𝛽 = 2, 𝛾 = 3 

 
|𝑇| = 219, |�̂�| = 18, Reduction= 91.78%,  

Error: 15.9mm, Relative error= 2.35%,  

𝛼 = 2, 𝛽 = 3, 𝛾 = 2 

 
|𝑇| = 219, |�̂�| = 30, Reduction= 86.3%, 

Error= 7.8mm, Relative error= 1.15% 

𝛼 = 1, 𝛽 = 2, 𝛾 = 1 

 
|𝑇| =  181, |�̂�| = 16, Reduction= 91.16%,  

error= 15mm, Relative error= 1.99%, 

𝛼 = 1, 𝛽 = 2, 𝛾 = 2 

Figure 4: Results of the trajectory simplification algorithm using the correlation coefficient for trajectories recorded from a human hand tracking system 

 
|𝑇| =  207, |�̂�| = 7, Reduction= 96.6%, error: 57.84mm, 𝛼 = 5, 𝛾 = 5 

 
|𝑇| =  207, |�̂�| = 11, Reduction: 94.68%, error: 40.85mm, 𝛼 = 5, 𝛾 = 3  

 
|𝑇| =  207, |�̂�| =16, Reduction: 92.27%, error: 37.18mm, 𝛼 = 5, 𝛾 = 2 

 
|𝑇| = 207, |�̂�| = 19, Reduction: 90.82%, error: 54.26mm, 𝛼 = 8, 𝛾 = 1 

Figure 5: Result of the trajectory simplification algorithm using the direction-based coefficient on trajectory data recorded using a hand-tracking system.  
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interpolation is only taking into account the points in the 

simplified trajectory �̂�, nonetheless the results show a low error 

in the mapping of the original trajectory to the spline, which 

means that the coefficients designed in this paper are a good 

heuristic for the “open loop” approach that we took to solve the 

trajectory simplification problem. If the error would like to be 

further reduced, one approach could be to use the spline Π as an 

initialization for a “closed loop” algorithm like [11].  

Although the algorithm requires three parameters to be 

specified, the tests performed showed that their values usually 

fall in the range [1,10], mainly because values higher than 10 

yield to high reduction ratios and high errors.  

 The choice of the parameters 𝛼, 𝛽 and 𝛾 is intuitive and its 

tuning is easy because their value correspond to the size of 

neighborhoods for the corresponding operations, therefore the 

parameters do not depend on the scale of the data. On the other 

hand, the fast performance of the algorithm allows fine tuning 

of the parameters interactively.  

Another fact that we observed while performing the tests is 

related to the role of the smoothing filter operation. We found 

on our tests that big values of 𝛼 lead to bigger reduction ratios 

and sometimes to lower mapping errors. Therefore, even if the 

input trajectory is noise-free, this operation still can aid to a 

better detection of significant points that should be preserved. 

VI. CONCLUSION 

This paper presents the FastSTray algorithm for trajectory 

simplification on smooth trajectories. The main advantage of the 

algorithm is that is able to select the relevant points that allows 

to recreate the original trajectory using splines with low error 

and high reduction ratios in linear time, showing that the 

proposed coefficients are a good heuristic for the problem by 

producing simplified trajectories with reduction rates about 

90%, and errors between 0.78cm to 2cm, which gives relative 

errors between 1% to 2.4%, for trajectories recorded from a 

hand-tracking system.  

Another advantage of the algorithm is that the required 

parameters are intuitive and easy to tune, mainly because the 

parameters define the neighborhood used by each one of the 

phases of the algorithm, therefore they are invariant to the scale 

of the trajectories. On the other hand, because the algorithm 

runs in linear time, and the parameters usually take values on a 

small range, algorithms that automate the choose of these 

parameters can be proposed.  

In the case that lower error rates need to be achieved, the 

simplified trajectory obtained with the presented algorithm can 

be used as an initialization for an algorithm that takes a standard 

“closed loop” minimization-optimization approach for fitting 

the spline on the points in the original trajectory.  

In general, FastSTray works better for smooth trajectories 

with constant high sampling ratio. This is basically because the 

algorithm was specifically designed to work on smooth 

trajectories used in natural interfaces for robot programming by 

demonstration environments, nonetheless, we showed that the 

algorithm could also be used on GPS trajectories although 

further considerations should be taken on this kind of data, 

especially when there is high variance in the sampling ratio 

and/or spacing on neighbor points.  

As future work, we will consider: 1) the orientation for the 

end-effector. 2) longer trajectories where the values for the 

coefficients (𝛼, 𝛽, 𝛾) will vary along the trajectory to improve 

the fitting of the spline in local regions.  
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