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Abstract— Epilepsy is a neurological disease that causes 
seizures in its victims that can lead to physical injury or even 
death in some circumstances. It is caused by excessive, 
synchronous abnormal firing of neurons in the brain. This 
chronic disease has no known cure and affects millions of people 
worldwide but can be managed through various methods. The 
successful treatment is dependent upon correct identification of 
the origin of the seizures within a brain. One major challenge for 
doctors is the analysis of the immense amount of data collected 
by electroencephalogram (EEG) devices. In order to identify a 
region of the brain that causes epileptic seizures, millions of 
samples must be analyzed manually by a trained eye to find 
interictal spikes that emanate from the afflicted region of the 
brain. This paper presents a method for automatic interictal 
spike detection while minimizing false positives. In this way, it 
eliminates the lengthy, manual process currently used by doctors. 
Analyzing real world data, the presented Neural Network 
Epileptic Spike Detector (NNESD) showed a PPV of 72.67% and 
sensitivity of 82.68% on average over 300 trained networks on a 
single channel of EEG. 

Keywords—EEG, Interictal Spike Detection, Epilepsy, Neural 
Network 

I. INTRODUCTION 

Epilepsy is a neurological disorder that affects millions of 
people across all age groups and has no known cure. People 
who have epilepsy experience debilitating seizures that come 
without warning, interrupting their daily life and potentially 
endangering them. It is caused by an abnormal firing of a 
cluster of neurons in the brain [22,23]. With the invention of 
electroencephalography (EEG), doctors have been able to 
analyze the electromagnetic radiation given off by the brain, 
commonly called brainwaves.  

The EEG device consists of numerous electrodes that are 
placed in strategic locations around the patient’s head. Each 
electrode is used to measure the voltage potential across the 
brain, giving a voltage over time readout, as shown in Figure 1. 
The EEG readings can be used to identify abnormal brainwave 
patterns, such as an epileptic seizure, or in the case of this 
study, an interictal spike. An epileptic seizure is characterized 
in the EEG by a period of very high amplitude, short duration 
pulses. An interictal spike, however, is a high amplitude short 
duration pulse that occurs sporadically, as opposed to in a 
quick series. 

These interictal spikes, while not seizures themselves, are 
generated by the same group of neurons that cause the patient’s 
seizures [24,25]. Therefore, if neurologists can identify where 
in the brain these spikes are coming from, they have likely 
found the source of the patient’s seizures as well. To identify 
these spikes, a neurologist must manually analyze the EEG 
output across multiple channels. An EEG reading session can 
range from a few hours to dozens of hours, giving an immense 
amount of data to analyze [29-31]. The interictal spike lasts 
about 100ms, therefor the neurologist must examine in fine 
detail a multi-hour session millisecond by millisecond to find 
the spike pattern. Once enough spikes are identified, they can 
start to piece together which electrodes exhibit the spike 
pattern and identify where they are coming from within the 
brain. 

This process is incredibly time consuming, taking many 
hours of a neurologist’s valuable time away from other 
important tasks. If this process were automated, it would save 
many physician man-hours per patient. This paper presents a 
simple, automated method of identifying epileptic spikes in 
EEG using a single layered artificial neural network, and 
compares the results to an autocorrelation baseline, that seeks 
to approximate the neurologist’s visual pattern recognition. It is 
important to note that the datasets used in this study were 
chosen specifically because the interictal spike features were 
very difficult to visually discern from the surrounding data. 
The system uses datasets with epileptic spikes pre-annotated by 
a neurologist to provide ground truth. The presented method 
shows promising results, with a 72.67% PPV and 82.68% 
sensitivity. 

This paper is organized as follows: Section II takes a look 
at related works in the field studying both epileptic spikes as 
well as epileptic seizures. Section III details information 
regarding how EEGs work and discusses epileptic spikes 
further. Section IV analyzes the preprocessing steps utilized to 
prepare the data. Section V details the presented Neural 
Network Epileptic Spike Detector (NNESD) algorithm. 
Section VI presents the results and analysis of the research. 
Finally, Section VII concludes the paper with some closing 
comments and future work to be done. 



II. RELATED WORKS 

Machine learning and epileptic research have been closely 
tied for many years. Some of the first successful automated 
identification of both seizure and spike features started to come 
out in the mid 1970’s. 

Automated seizure and spike detection has been researched 
thoroughly for the past two to three decades. Earlier automated 
systems looked at neural networks by themselves as a tool for 
analysis, [2,11]. [9,10] utilized a self-organizing map (SOM) 
with neural networks to classify seizures. The early results had 
varying degrees of success, with more success in identifying 
seizures than interictal spikes.  

Many researchers have utilized neural networks in 
conjunction with other statistical analysis methods. Correlation 
methods, [1,3], use various filtering and thresholding to 
identify abnormal regions of EEG data. Zerifia et al. in [7] used 
a genetic algorithm to optimize these thresholding values to 
achieve accurate results on data that humans failed to 
accurately classify. James et al. in [13]. They analyzed 
epileptic spikes in patients using a neural network along with a 
fuzzy logic system that added spatial information to their 
process. 

Many papers use wavelet transforms to break down the 
voltage signal into frequency values for further analysis. 
Various methods of implementing these wavelet transforms 
have led to good results in classification. Approximate entropy 
of wavelet transformed data was used in [15,17]. In [8,14,16], a 
neural network utilized wavelet data as input for classification. 
[12] explored the use of superparamagnetic clustering of 
wavelet data while [5] analyzed the difference in accuracy 
between using continuous and discreet wavelet transforms 
(CWT vs DWT). 

Recent years have led to newer methods of analysis. [20] 
examined EEG data using a convolutional deep belief neural 
networks, and [27] explored unique feature vectors for neural 

network classification. The use of principal component 
analysis was compared in [18]. Slow waves patterns in EEG 
were examined in [6] and used along with the Adaboost 
classifier to identify spikes. In [4], Barkmeier et. al validated 
the use of these automated systems by showing the accuracy of 
their method was at least as good as the human reviewers they 
used for comparison. 

A recent survey in automated epileptic feature detection by 
Tzallas et. al [26] discussed many successful methods in 
extracting the desired features from EEG recordings. However, 
as seen in the previously discussed works and in the survey 
paper, there is no method which clearly outperforms all others. 
No consensus has been found regarding which system, if any, 
to employ in a commercial environment, and there has been 
little to no penetration of these systems into the medical 
community. 

III. EEG AND INTERICTAL SPIKES 

A. Electroencephalography 

EEG measures voltage differences across the brain from 
numerous electrodes placed around the head.  These electrodes 
can be placed directly on the brain itself, requiring invasive 
surgery, or directly on the scalp using electrically conductive 
gel to help increase the sensitivity of the electrodes. Figure 1 
shows an example of raw EEG voltage data from a single 
electrode. 

Each electrode of the EEG network outputs its own voltage 
reading over time. Different thought patterns, muscle 
movements, and even emotions [19] can cause a voltage 
differential detectable by the device. Artifacts in the data can 
be caused by excessive muscle movements, like smiling or 
blinking, as well as external sources, such as high-voltage 
power lines, cell phones or anything that generates 
electromagnetic radiation. 

B. Interictal Spikes 

Epileptic seizures are characterized by excessive, 
synchronous abnormal firing of neurons in the brain [22,23]. 

Figure 1: Single channel of raw EEG data showing high frequency noise from 
samples ~2000 to ~4000. 

 
 

Figure 2: A sample interictal spike. Characterized by a fast, large amplitude 
drop followed by a fast, large amplitude rise. Voltage values are normalized. 



Monitoring the brain for extended durations can show various 
patterns that arise as the patient is observed. One of these 
patterns, the interictal spike, tends to occur in the region of the 
brain where seizures emanate from, but the spike itself is not a 
seizure [24,25]. These interictal spikes are useful for doctors 
since they provide information about the regions of the brain 
where seizures originate. With this information, neurosurgeons 
attempt to pinpoint the region of the brain where seizures 
propagate from and surgically remove it. 

While spikes may differ from patient to patient, the general 
characteristics include a sharp change in amplitude of the 
voltage in a relatively short amount of time, much like a high 
frequency pulse. Figure 2 shows an example of an interictal 
spike after being run through a low pass filter. The feature 
itself is approximately 100ms in duration, exhibits a sharp drop 
in amplitude followed by an equally sharp rise in amplitude. 
This sharp change in amplitude is uncharacteristic of the 
surrounding region, making it stand out enough for a doctor’s 
eye to identify. 

Figure 3A-B shows two interictal spikes as seen in the 
surrounding environment. They can be seen as the sharp, 
negative pulses just before samples highlighted by the red line. 
This plot also shows the subtlety of the spike in the 
surrounding signals and how hard it can be to detect with an 
untrained eye. 

C. Current Detection Methods 

To detect these epileptic spikes, neurologists manually (by 
eye) analyze the time-domain voltage waveform across 
multiple electrodes (256 electrodes). This process is both time-
consuming and potentially inaccurate [4, 29-31]. The doctor is 
prone to fatigue, boredom, and any number of psychological 
effects that occur when performing repetitive, monotonous 
tasks. Thus, the standard approach for spike detection is still 
performed by physician inspection of frequency filtered EEG 
data. 

The EGI Dense Array EEG has 256 electrodes that record 
the voltage differential across the brain from their specific 
location on the scalp. Visually identifying these spikes requires 
a trained observer who knows what a “normal” EEG reading 

looks like at any given time. The doctor must be able to 
differentiate patterns from noisy interference, such as muscle 
artifacts, and patterns from normal brainwave activity, such as 
sleeping or a normal alert state. Identifying the subtle spike 
pattern amidst the range of EEG patterns provides an 
opportunity to ease the workload of the doctor by automating 
this process. Furthermore, robust detection of epileptic spikes 
may improve the efficiency of surgical interventions by more 
accurately pinpointing the spike source. 

IV. DATA PREPROCESSING STEPS 

A. Raw EEG Data 

The data used in this experiment came from an EGI Dense 
Array EEG [28] used in clinical study at VCU’s MCV 
Department of Neurology. EEG data from six different patients 
was analyzed for this study. A single patient reading could last 
on the order of 5 to 24 hours. The sampling rate of the EEG 
was 1000 Hz, or one sample every millisecond. This translates 
to roughly 20 million data points for each electrode on the 
lower end of the time scale. With 256 electrodes and 20 million 
data points, the scale of the data is immense, using roughly 25 
GB of hard drive space per patient for the raw data alone. For 
this reason, only small portions of the data were actually 
analyzed. The size of the analyzed sections ranged from 
approximately 70,000 to 250,000 samples, or roughly one to 
five minutes of continuous EEG data. The selected regions 
were chosen due to their high frequency of doctor-annotated 
interictal spike activity 

B. Signal Preprocessing 

The information output from the EEG data is a voltage 
signal propagating over time. Figure 1 shows the raw voltage 
as a function of time from a single electrode of EEG data. 

 
Figure 3: Original EEG data plotted with EEG data after being run through the bandpass filter. 

 
Table 1: Signal processing parameters. 

 
Filter Order 6 

Passband Frequency Low (Hz) 1 
Passband Frequency High (Hz) 30 

Passband Ripple (dB) 0.5 
Sample Rate (Hz) 1000 

 



Immediately obvious from samples ~2000 to ~4000 is a section 
of very noisy data. This noise may come from muscle artifacts, 
a strong, errant EM wave from some source within the 
hospital, or something similar. Any patterns exhibited in this 
noisy area would be impossible for a human eye to discern. To 
reduce the high frequency noise, the raw data is run through an 
infinite impulse response (IIR) Butterworth band pass filter 
from 1-30 Hz [21]. In effect, this band pass filter cuts off most 
frequencies below 1 Hz and above 30 Hz. To best approximate 
the neurologist’s filtering process, the parameters chosen are 
displayed in Table 1. 

The high pass filter cutting off any frequencies below 1 Hz 
acts as a de-trending tool. Any low frequency shift that 
occurred across the electrodes over time was eliminated by this 
filter.. Figure 3A-B shows a comparison between the raw 
voltage values and the filtered voltage values before 
normalization. To standardize the range of the data, the max 

and min values were normalized to 1 and -1 respectively. 

C. Data Extraction 

Out of the multiple hours of EEG reading and subsequent 
millions of data points, proportionally very few features were 
identified by a neurologist as interictal spikes. However, these 
spike features did not occur on every electrode at every labeled 
time step. These annotations were spread out across the entire 
data sets, with clusters of spikes occurring in various regions of 
data. Due to memory and processing limitations, the data sets 
were cropped to include smaller sections of data representing 
the regions of high spike frequency. 

Figure 5 shows a visual representation of the data 
extraction process. To capture the feature, a sliding window 
technique was used to analyze each section of data. The sliding 
window was set to the size of the feature spike, 120. These 
windowed sets of data were extracted from the continuous 
dataset to be analyzed separately. To compare the spike 
features to the rest of the signals, the window-sized chunk 
allows a direct comparison of each feature at a discrete time 
step along the signal. 

V. NEURAL NETWORK EPILEPTIC SPIKE DETECTOR 

A. Neural Network Design 

The neural network design, shown in Figure 8, followed the 
standard feed forward algorithm using the back propagation 
algorithm and was implemented using Matlab’s neural network 
toolbox. The neural network contained a single hidden layer 
with 10 neurons. The output layer consisted of one binary 
neuron, determining whether the individual feature being 
analyzed was a spike or not a spike. The input layer of the 
neural network contained 120 neurons. The input to these 
neurons was the 120 values from the windowed datasets. This 
allowed the neurons to learn on the individual values that 
represented each window. Figure 5-A shows a sample of 
windows that contained spike features. While the distribution 
of amplitudes is not tightly bound, there is a clear pattern in the 
amplitude drop. Figure 5-B shows a windowed feature from a 
non-spike region. The non-spike pattern clearly does not 
exhibit the drop in amplitude of the spikes. This difference in 

 
 

Figure 5: A shows all labeled spikes from patient 1. B shows all the features 
plotted along with a sample of non-spike data. C shows the filtered data with 

the bars representing the area plotted in B. All voltage values normalized. 

Figure 6: Overlay of all annotated spikes used in the autocorrelation method. 
Red represents all annotated spikes, blue represents the mean of all spike data. 

 

 
 

Figure 4: Flow diagram documenting the overall design of the process. 



pattern is what the neural network learns, and classifies each 
pattern accordingly.  

B. Training and Testing Datasets 

Figure 9 shows the process used to select training and 
testing features for the neural network. The data was first split 
into both spike sets and non-spike sets. All windows that 
included spike data were removed from the non-spike data to 
prevent contamination of the training set. Of the annotated 
spike windows, 50% were used for training, and the other 50% 
for testing. A continuous set of 2000 random non-spike 
samples were used for training, and a continuous set of 5000 
random non-spike features were used for testing. 

Once the neural network was trained, it was tested 100 
times on separate continuous sets of 5000 random non-spike 
features along with the remaining test spike features. This 
process of training and testing over 100 regions was repeated a 
total of 300 times, with each network being trained on 
randomized spikes and randomized non-spike features. The 
total number of tested samples was 500,000 for each trained 
network. 

VI. EXPERIMENTAL RESULTS 

A. Evaluation Metrics 

To evaluate the performance of the NNESD algorithm 
alongside the autocorrelation algorithm, the positive predictive 
value (PPV) and sensitivity were used as metrics. 

PPV is a measurement of how many positively predicted 
values are correctly predicted compared to the total number of 
positive identifications. It is defined as:  


)( FPTP

TP
PPV


  

where TP is true positives and FP is false positives. This 
determines how accurate the system is at filtering out actual 
spikes from falsely classified spikes. 

Sensitivity is a measurement of how many true positives 
are correctly identified out of the total number of true positives. 
It is defined as:  

 
 

Figure 9: Shows feature selection for testing and training for the artificial neural network. 

Figure 7: Output of the autocorrelation convolution.  
Figure 8: Design of the feed forward artificial neural network using error back 

propagation. 
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where TP is true positives and FN is false negatives. This 
determines how accurate the system is at accurately identifying 
real spikes that are occurring in the dataset. 

B. Results 

In order to provide a comparative analysis, a frequently 
used technique, autocorrelation, was used as a baseline. To 
develop a mean spike feature from the spikes in the region, all 
annotated spikes were centered about their minimum value as 
shown in Figure 6. This was performed separately for each 
patient. Once all the spikes were trough centered by time-
shifting, a time-wise mean voltage amplitude was computed, 
shown by the blue line in Figure 6. The mean voltage feature 
was convolved with itself over a 1600ms window, producing 
an autocorrelation index. From this feature autocorrelation, a 
threshold value was chosen to exclude signals with low 
correlation. Finally, the mean feature was convolved with the 
entire filtered electrode data, outputting an autocorrelation 
index of the mean feature for the entire sample recording. The 
thresholded autocorrelation index (>6) was plotted alongside 
the physician annotated spike locations, see Figure 7 for an 
example plot. 

Figure 10 shows the averaged PPV and sensitivity of the 
neural network and autocorrelation tested over all 6 patients. 
NNESD shows better PPV results than the autocorrelation 
method on all but patients five and six. The autocorrelation 
performs much better in the sensitivity metric, while NNESD 
still performs poorly on patients five and six. What can be 
gathered from these results is that NNESD is better at 
accurately filtering out false positives, while still performing 
quite well at correctly identifying labeled true positives. The 
autocorrelation is much less consistent across all patients, but 
does perform better on patients five and six, where NNESD’s 
performance drops quite substantially. 

It is important to note that NNESD’s performance is very 
subjective to the training region. After analysis of the results, it 

was found that certain regions trained the network worse than 
others. For this reason, the median result from the neural 
network was calculated to compare when statistical outliers are 
not taken into account. This difference is more pronounced in 
the sensitivity metric, where the median sensitivity for patients 
two, three, and four are all 100%. The difference between the 
mean and median result is likely due to a non-
uniform/suboptimal distribution of annotation quality. In 
addition, an analysis of the location of network errors showed 
these regions of poor classification were non-random (data not 
shown). 

While the reported PPV and sensitivity percentages do not 
approach consistently high values, analysis of the absolute 
number of errors provided useful information. The average 
number of false positives across all patients for NNESD was 
2.34, while the median was only 1.82 with the number of 
labeled spikes in the regions tested ranging from 6 to 23. The 
autocorrelation had an average number of 8.83 false positives 
across all patients. 

It is important to note the sparseness of the dataset used for 
this study. Physician annotated spikes represent less than 1% of 
the total dataset, very sparse by any measurement. Identifying 
these regions with potentially poor annotations and training on 
optimal regions of data is an area for improvement that 
requires additional feedback from neurologists. 

VII. CONCLUSION AND FUTURE WORK 

This paper presented a simple neural network design using 
only windowed voltage data from only a single channel EEG to 
accurately identify interictal spikes from the surrounding 
patterns. To provide a baseline comparison, an autocorrelation 
of a template epileptic spike was computed. The presented 
NNESD method achieved an average PPV of 72.67% and 
sensitivity of 82.68% over six test patients compared to the 
autocorrelation average PPV of 60.43% and sensitivity of 
90.61%. 

The autocorrelation performs well on the tested dataset, but 
requires manual analysis of the spikes to achieve a proper 
thresholding value. NNESD simply learns on the data 

 
 

Figure 10: Plots show the PPV and sensitivity comparison between the tested algorithms 



presented to it. In an implemented environment, the neural 
network would allow a more hands-off approach and simply 
point out which regions contain spikes without the need to 
optimize a thresholding value. The results clearly show that 
utilizing an automated system, while not able to 100% identify 
properly all spikes in a region, would be able to drastically 
reduce the amount of data a neurologist has to manually 
analyze. 

This work is part of a larger study to identify patterns in 
various epileptic spikes and develop a single tool to 
automatically extract the spike-features of interest and label 
their location in the patient’s brain. From this study, we were 
able to determine that information from a single channel EEG 
is probably not sufficient to identify interictal epileptic spikes 
from the surrounding data. A multichannel EEG approach is 
necessary to extract spatial information regarding the interictal 
spikes as well as reduce the number of false positives. This will 
be explored in future studies. 
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