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ABSTRACT 

 

The electrorefiner (ER) is the heart of pryoprocessing 

technology which is a high-temperature method for 

separating uranium from Used Nuclear Fuel (UNF). It is 

important to improve this technology with respect to nuclear 

materials detection and accountability. Artificial Neural 

Intelligence (ANI) is a novel data analysis and simulation 

method that can be applied to electrochemical data sets. 

This computational code, which has been performed using 

the commercial software MATLAB, can be trained to 

generalize adequate electrical current and potential 

simulated data sets for the unseen data with a high accuracy 

of prediction. For this purpose, a massive collection of 

cyclic voltammetry (CV) data sets by Hoover (2014), for 

0.5, 1, 2.5, and 5 wt% of zirconium chloride in LiCl-KCl 

molten salt with different scan rates at 773K has been 

considered. The computer is trained via ANI to predict the 

unseen data after providing suitable hidden layers and 

validation numbers. In addition, this work can trace the CV 

plot for a blind condition by interpolating between two 

simulated data set. The different hidden layers with various 

neurons (from 5 to 30) at several validation numbers (from 

5 to 30) has been studied and the average percent error 

between experimental and theoretical data for 0.5 wt% with 

200 and 450 mV/s has been calculated. Preliminary results 

demonstrate that if the number of hidden layers increases 

from one to three, the average error falls down from 44% to 

around 8%. The best condition which gives a minimum 

average percent error has been discovered and the simulated 

CV graph has been compared with the experimental data.  

 

INTRODUCTION 

 

Pyroprocessing is one of the efficient methods for 

recycling Integral Fast Reactor (IFR) fuel which separates 

the actinide elements from fission products [1]. This 

process, recovery of uranium and plutonium from used 

nuclear fuel (UNF) through pyroprocessing at Argonne 

National Laboratory (ANL), can be implemented via 

electrorefinery [2]. One common method in 

electroanalytical chemistry, being proposed for signal 

detection and material accountability of the electrorefining 

process, is Cyclic Voltammetry (CV) due to its wide range 

applications from simple redox to multielectron-transfer [3]. 

An Artificial Neural Intelligence (ANI) is a computer 

simulation approach which is inspired by brain neural 

neurons [4,5]. It can be implemented to learn massive data 

sets through iterations and interrelationships among system 

variables such as scan rate, potential, current, process time, 

and weight percent [4-7]. It is compatible with non-linear, 

noisy, and uncertain data sets which is invaluable for 

modeling, prediction, and optimization towards detection 

and material accountability in nuclear safeguards [4-8]. 

Therefore, the main goal of this study is to apply ANI on the 

cyclic voltammetry (CV) to find a condition that provide a 

minimum error while predicting unseen data sets by 

focusing on 0.5 to 5 wt% of zirconium chloride in LiCl-KCl 

eutectic molten salt at 773 K under different scan rates [9]. 

The outcome is to provide a desired CV graph with a low 

error by determining the adequate numbers of hidden layers, 

neurons, and validation number.  

 

SIMULATED PROCEDURE 

 

Multi-Layered Perceptron (MLP) is the most useful 

feedforward model for ANI consists of input, hidden, and 

output layers [4]. The inputs are weighted and contrasted 

with the sum of inputs to the threshold value to produce the 

outputs. There are many algorithms for determining the 

network parameters such as weight values. The most well-

known is Levenberg- Marquardt algorithm (LMA) which is 

more efficient due to its fast processing time [10, and 11]. It 

is important to mention that overfitting can occur when the 

system begins to memorize the training data set rather than 

learning. Therefore, overfitting happens when the training 

error is decreasing while validation error is increasing [12]. 

To avoid overfitting, the number of hidden layers, number 

of neurons, and number of training data sets can be 

increased [13]. Hoover’s experimental data sets (77,000 

points) from zirconium chloride in LiCl-KCl eutectic salt 

with different concentrations and scan rates were used in 

this simulating step [9]. The procedure is to run ANI at one 

to three hidden layers with various neurons at several 

validation numbers and calculate the average percent error 

between experimental and predicted data sets for 0.5 wt% 

with 200 and 450 mV/s. First for one hidden layer, the 

minimum error of each neuron at different validation 

number has been found. Therefore, the condition of both 

cases (200 and 450 mV/) with a minimum error percent was 

selected. Then, the number of hidden layer was increased to 

two and three layers with the same procedure. 

 

RESULTS 

  



The minimum error of one hidden layer for 0.5 wt% 

with 200 and 450 mV/s is related to 8 neurons (one layer 

with 8 neurons is denoted as {8}) with ~48% error. It is 

important to mention that with 25 neurons; the error is 

around 43% but because the process time increases 

significantly, it has not been considered as a good situation. 

Here, Figure 1 shows the minimum error at one hidden layer 

with 5 to 30 neurons. 

Then, the second layer with 5 to 30 neurons and 

validation number has been added to the first layer with 8 

neurons. That is, the first hidden layer has 8 neurons and the 

second hidden layer is considered with 5 to 30 neurons. The 

result has been demonstrated that the minimum error can 

happen at 13 neurons ({8 13}) with 23% error, 17 neurons 

({8 17}) with 20%, and 30 neurons ({8 30}) with 14%. Fig. 

2 shows the average minimum error for the second hidden 

layers. As mentioned before, this study does not work on the 

neurons larger than 25 due to its long process time. 

Therefore, the third layer is added to {8 13} and {8 17}. 

Fig. 3 demonstrates the effect of adding another hidden 

layers to {8 13} on the average error. Here, the minimum 

error occurs at {8 13 13} with 8% error. The validation 

numbers related to 200 and 450 mV/s yielding 8% error are 

related to 12 and 16, respectively. Summary of minimum 

average percent errors for this condition of 200 mV/s and 

450 mV/s at 16 and 12 is given in Table I.  The best 

condition that give less error with {8 13 13} is with 16 

validation number. The ANI predicted CVs at this condition 

for both 200 and 450 mV/s are shown Figures 4 and 5, 

respectively.  

Fig. 6 illustrates the minimum error for three hidden 

layers using up to 30 neurons with 5% error. However, 

overfitting happens after 18 neurons (with 10% error).  The 

error for 200 mV/s (a trained data set) is decreasing while 

the test data set error for 450 mV/s is increasing 

significantly after 18 neurons. Therefore, the next situation 

that displays small different error between 200 and 450 

mV/s is related to 16 neurons yielding ~8% error. Table II 

shows 200 and 450 mV/s at 28 and 23 validation number 

with 10% error. The 200 mV/s with 23 validation number 

provides 14% error and 450 mV/s with 28 validation 

number, gives 15% error. Therefore, the best condition for 

three layers providing the least error with the most adequate 

(less than 20 minutes) is related to {8 13 13}. 

 

 
Fig. 1. Minimum average percent error of one hidden layer 

for 5 to 30 hidden layer for 0.5 wt% at 200 and 450 mV/s. 

 

 
Fig. 2. Minimum average percent error of two hidden layers; 

first layer with 8 neurons and the second layer with 5 to 30 

neurons for 0.5 wt% at 200 and 450 mV/s. 

 

 
Fig. 3. Minimum average percent error of three hidden 

layers; first layer with 8 neurons, second layer with 13 

neurons, and the third layer with 5 to 30 neurons for 0.5 

wt% at 200 and 450 mV/s. 

 

 

 

 



Table. I. Minimum average percent error for {8 13 13} with 

12 and 16 validation number for 0.5 wt% at 200 mV/s and 

450 mV/s. 

 {8 13 13} 

 200 mV/S 450 mV/S 

Validation 

Number 

12 16 

 

Average 

Error % 

8% 8% 

Validation 

Number 
16 12 

Average 

Error % 

12% 30% 

 

 
Fig. 4. Comparison of CV plot for ANI method for {8 13 

13} with 16 validation number and experimental data for 

0.5 wt% zirconium at 200 mV/s. 

 

 
Fig. 5. Comparison of CV plot for ANI method for {8 13 

13} with 16 validation number and experimental data for 

0.5 wt% zirconium at 200 mV/s. 

 

 
Fig. 6. Minimum average percent error of three hidden 

layers; first layer with 8 neurons, second layer with 17 

neurons, and the third layer with 5 to 30 neurons for 0.5 

wt% at 200 and 450 mV/s. 

 

Table. II. Minimum average percent error for {8 17 7} with 

16 and 27 validation number for 0.5 wt% at 200 mV/s and 

450 mV/s. 

 {8 17 16} 

 200 

mV/S 

450 

mV/S 

Validation 

Number 

28 23 

Average 

Error  

10% 10% 

Validation 

Number 
23 28 

Average 

Error  

14% 15% 

 

CONCLUSION 

 

This work focused on zirconium chloride 

concentrations of 0.5, 1, 2.5, and 5 wt% at different scan 

rates at 773K based on the experimental data sets of Hoover 

[9]. One, two, and three hidden layers with neurons and 

validation numbers from 5 to 30 have been analyzed and the 

minimum average percent error for 0.5 wt% with 200 and 

450 mV/s have been calculated. The results show that by 

increasing the number of hidden layers, the error for both 

cases decreases. The conditions that give a lower error for 

both 200 and 450 mV/s are related to {8 13 13} and {8 17 

16} with 8% and 10%, respectively. Therefore, the {8 13 

13} is the condition that provide CV plot with a less error in 

adequate time. The results indicate that the CV plots 

providing by ANI can possibly be used as an alternative 

method for signal detection towards safeguards application 

in electrochemical process.   
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