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Abstract—Buildings are known to be significant energy 

consumers throughout the world. Thus, improving the energy 

efficiency of buildings is a key research goal. However, 

maintaining occupant comfort while improving energy efficiency 

in buildings requires close monitoring of the building environment 

and immediate control actions taken when sub-optimal behavior 

is identified. Such monitoring requires high frequency data from 

sensors. Therefore, increasing the data collection rate or the 

temporal resolution of sensors can lead to improved building 

control and state-awareness. This paper presents an on-line 

learning, data-fusion based methodology that uses Artificial 

Neural Networks (ANNs) to increase temporal resolution of 

building sensor data. The presented method utilizes sensor 

information from different sensors in the building to predict 

higher temporal resolution data of specific sensors. Furthermore, 

the presented method is capable of learning changing building 

behavior for improved long-term accuracy. The presented method 

was applied to a real-world building dataset and was shown to be 

able to predict high temporal resolution data with a higher 

accuracy compared to classical methods. Furthermore, the on-line 

learning was shown to increase the prediction accuracy in long-

term operation. 

Keywords—building energy management systems; data-fusion; 

on-line learning; artificial neural networks 

I. INTRODUCTION 

According to several studies, 20-40% of the world energy 
production is consumed by buildings [1], [2], [3]. In 
industrialized countries such as the U.S. and the Euro region 
countries, the energy consumption of buildings is closer to the 
40% mark and surpasses other areas such as industry and 
transportation [1], [4]. Such energy consumption also means that 
buildings account for significant portion of greenhouse gas 
production [1]. It has been estimated that buildings are 
responsible for over 30% of greenhouse gas production 
worldwide [5]. Furthermore, economic and population growth 
among other factors has led to an increasing trend in building 
energy usage in recent years [1], [4], [6]. 

Thus, increasing energy efficiency of buildings is gaining 
significant interest [2], [7], [8]. It has been identified that the 
largest consumer of building energy is Heating Ventilation and 
Air Conditioning (HVAC) systems, which are responsible for 
30-50% of total energy consumed in the buildings [2], [5], [8], 
[9]. Thus, improving HVAC performance is a significant factor 

that will yield better building energy performance [3], [4], [10], 
[11]. 

By implementing very low cost building management 
strategies alone, it has been shown that the energy efficiency of 
modern HVAC systems can be improved by more than 5% [2], 
[5]. Furthermore, it has been shown that the energy efficiency of 
HVAC systems can be improved by up to 40% by close 
monitoring and advanced control [12]. 

Another key factor in HVAC control is occupant comfort 
[13], [14]. As humans spend significant amount of time indoors, 
a comfortable environment ensures improved productivity and 
health [15]. 

Thus, modern buildings utilize Building Energy 
Management Systems (BEMS) for controlling building HVAC 
and lighting to improve energy efficiency while maintaining a 
comfortable indoor environment [3], [16]. Modern BEMS 
systems are highly complex systems that utilize sensor data from 
various locations inside and outside the building to achieve 
optimal control [17], [18], [19]. Furthermore, these systems act 
as a state-awareness tool for building mangers who are 
responsible for maintaining building comfort levels and 
operation of HVAC [3], [4], [20]. To achieve close monitoring 
of building environment and thereby achieving the energy 
efficiency goals and maintaining high levels of state awareness, 
sensor readings with a high temporal resolution is required [21], 
[22]. However, because of the high cost and time involved in 
installing new or additional sensors, increasing the temporal 
resolution of building sensors is a difficult task [23], [24]. 

Therefore, this paper presents a novel, on-line learning data-
fusion based methodology for increasing temporal resolution of 
building sensors. The data-fusion techniques enable combining 
information from multiple inter-related sources to generate most 
accurate predictions [25], [26]. Using data-fusion techniques has 
been shown to be effective in predicting behavior more 
accurately [26], [27]. The presented method utilizes Artificial 
Neural Networks (ANNs) for predicting high temporal 
resolution sensor data using multiple sensor information from 
throughout the building. Furthermore, the presented method is 
capable of learning new building behavior on-line, through 
known sensor data, at normal measurement intervals. This 
enables the presented method to consistently produce accurate 
predictions in the long term. The presented method was applied 



to a real-world dataset and was shown to be more accurate than 
classical interpolation based and polynomial regression based 
prediction. Furthermore, the presented method was shown to be 
adaptive to changing building behavior through on-line learning, 
and was shown to improve the prediction accuracy in the long-
term. 

This paper is organized as follows; section II details each 
module of the presented method for increasing temporal 
resolution of sensor data. Details about the implementation and 
the dataset used is presented in section III. Section IV provides 
the experimental setup and results. Finally, section V presents 
final conclusions and future research directions. 

 

II. ON-LINE LEARNING DATA-FUSION FOR INCREASING 

TEMPROAL RESOLUTION OF SENSOR DATA 

This section first describes the presented data-fusion based 
method for increasing temporal resolution of data. Then the on-
line learning method presented for improved long-term accuracy 
will be discussed. Finally the overall presented methodology is 
briefly described. 

A. Increasing Temporal Resolution of Building Sensor Data 

The goal of the presented method is to increase the temporal 
resolution of sensor data using only information available from 
low temporal resolution data.  

A BEMS contains a large number of sensors collecting data 
at different time intervals. The low temporal resolution, known 

data reading from a sensor Ssi   at time t  can be represented 

as )(tsi
, where S  is the set of sensors in the building, Tt  

and  ),...2(),(, 000  tttT is the constant interval 

sensor time series at which the data will be collected by the 

sensor 
i

s , 0  being the interval, and 
0

t  the data collection 

start time. Similarly, the high resolution data for the same sensor 

that will be predicted can be represented as )ˆ(ts
i

, where Tt ˆˆ  

and  ),...2(),(,ˆ
000

  tttT is the higher temporal 

resolution prediction times. Furthermore, 0  yielding 

the desired higher temporal resolution data.  

At a given time t , the higher temporal resolution data for 

sensor 
d

s , )ˆ(ts
d

 where )(ˆ  ttt  needs to be predicted. 

The simplest and the most common method for predicting 

)ˆ(ts
d

 is using either linear interpolation of the previous points 

or polynomial regression that minimizes sum of error squares of 
training data [28]. However, because of complex occupancy 
patterns, weather patterns, and other factors, the resulting BEMS 
behavior is highly non-linear and complex [3], [29]. This leads 
to sub-optimal results with interpolation and polynomial 
regression models. Therefore, in this paper, an ANN based data-
fusion model is presented that utilizes information from multiple 
sensors in the building to provide more accurate results. The 
ANN is capable of “learning” the inter-relationships between 
sensors and therefore provide a more holistic approach to model 
the sensor data.  

The ANN uses currently available known data from multiple 

sensors to predict the desired value. A subset of sensors SS   

is first selected such that the desired sensor 
d

s  is in Ssd
 . 

From each of the sensors selected, a number of previous time 

steps )}(),...,2(),(,{  ikttttT is selected as 

inputs to the ANN, where time t  is the immediate preceding 

data collection time to the desired high resolution time interval 

t̂ , i.e. )(ˆ  ttt . The number of time steps selected, 
ik , 

from each sensor i  may vary according to the importance of that 

sensor and correlation of that sensor to the desired sensor 
d

s .  

In addition to the known sensor values, current and desired 
time information is presented to the ANN as inputs in terms of 
time of day, day of week and a weekend flag. The output 
produced by the ANN will be the sensor value for the given 
desired time. 

Therefore, given the previously known sensor data and the 
current and desired time information as the inputs, the ANN 

 
 

Fig. 1 The overall architecture of the presented methodology 



predicts the value of the desired sensor for the desired time, 

)ˆ(~ ts
d

, where s~  represents a value predicted by the ANN. 

 

B. On-Line Learning for Improved Long-Term Accuracy 

Due to seasonal changes and gradual changes of occupant 
behavior as well as changes in equipment because of long term 
use, building behavior varies as time progresses. While the 
changes in behavior might not be significant in the short term, 
long term changes may affect the accuracy of the prediction. 
Furthermore, as more data becomes available the ANN is able 
to learn from the new data to produce even more accurate results. 
Thus, in this paper, an on-line learning scheme is presented for 
improving the accuracy of the ANN for increasing temporal 
resolution of sensor data in the long-term. 

Since ANNs are supervised learning systems, in order to 
achieve on-line learning, for a given prediction of a sensor the 
actual value should also be known. Using the difference between 
the predicted value and the actual value, the ANN can update the 
knowledge it has learnt, on-line.  

Thus, for the on-line learning, at each time step t  the desired 

sensor value of the higher temporal resolution, )ˆ(~ ts
d

 and the 

desired sensor value at the current time, )(~ ts
d

 is predicted. 

However, the actual value of the sensor at the current time step, 

)(ts
d

 is known since the sensor already collects that value. 

Using these values, the error at the given time can be calculated 

as: )()(~)( tststE dd  . Thus at each time step t  the ANN 

will be presented with the error )(tE  and is able to learn on-

line. To avoid significant changes to the knowledge already 
learnt by the ANN the new error value is weighed by a fraction 
before being used to train the ANN. 

 

C. Overall Methodology 

Therefore, the overall system takes known sensor values and 
current and desired time information as inputs and produces a 
single output that is the predicted sensor value of the desired 

sensor d
s~  for the desired time. At each time step of the sensor 

data recording time series, t , the high resolution predictions 

)(ˆˆˆ)ˆ(~  tttandTtts
d

are made. Meaning for all 

the high resolution time steps between the current sensor time 
step and the next sensor time step, sensor predictions will be 
made. These predictions will be the increased temporal 
resolution data for the given sensor that could then be used for 
control and state-awareness purposes.  

In addition to the high temporal resolution data, the sensor 

value of the current time )(~ ts
d

 will also be predicted by the 

ANN. This is done by using the current time as the desired time 
input to the ANN. As mentioned, this value will then be 
compared with the actual sensor reading to achieve on-line 
learning of the ANN at each time step. Thus, this step is only 
required for on-line learning. The overall architecture of the 
presented method is shown in Fig. 1. 

 

III. IMPLEMENTATION OF THE PRESENTED METHOD 

The presented methodology was applied to a real-world 
building dataset. The building dataset was collected from a 
single floor of a multi-story building in the United States. 

Zone temperature was selected as the sensor to increase 
temporal resolution, as temperature is one of the most significant 
factors in occupant comfort [30], and can yield various different 
information about the state of the overall BEMS operation [3], 
[4]. 

The selected floor of the building was separated into 16 
zones out of which 14 zones are occupied zones that contain 
individual temperature sensors. The zone map of the selected 
floor is shown in Fig. 2. The data collection interval of the 

temperature sensors was 45 minutes, i.e. nsmi45  in the 

sensor time step T . In order to obtain training and testing data 
to validate the predictions made by the presented methodology 
is accurate, a separate temporary wireless sensor network was 
deployed throughout the floor. Due to various logistical reasons, 
the wireless temperature sensors were placed in only 9 zones out 
of the 14 total occupant zones. 

The approximate locations of the BEMS temperature sensors 
and the temporary wireless temperature sensors are shown in 
Fig. 2. While some wireless sensors are in close proximity to the 
BEMS temperature sensors, others are further apart so that the 
readings can be significantly different. Therefore, after careful 
observation of sensor readings in all zones, the temperature 

 
 

Fig. 2 Floor plan and sensor locations of the selected building floor 



readings of BEMS sensors and wireless sensors in zones Z5 and 
Z8 were deemed significantly different. Therefore, these zones 
were not used for the experimental phase. Thus, a total of 7 
zones (Z1 to Z9, except Z5 and Z8 in Fig. 2) were selected for 
the experiment. 

The installed temporary wireless sensors are capable of 
recording sensor values at a high temporal resolution. For the 
experimentation purposes the data collection rate of these 
wireless temperature sensors were set to 5 minute intervals, i.e. 

nsmi5  of the higher temporal resolution prediction time 

series T̂ . The wireless sensor data with high temporal 
resolution is necessary to validate the presented method. While 
the availability of high temporal resolution data will improve 
performance, the presented method was also shown to produce 
good results even without using the high temporal resolution 
data from wireless sensors for training (see Section IV.C) 

For experimental purposes 6 weeks of data collected during 
the months of August and September was selected. The first two 
weeks of data was selected as the training data and the remaining 
as the testing and validation data.  

While a large number of sensor readings are available for 
each floor that monitor the air quality and the state of Air 
Handling Units (AHUs) along with outside conditions, only a 

subset of these sensors were selected for the data-fusion ( S ). 

While having a large number of sensor data strengthens the 
holistic approach of modelling the system, it may lead to over-
complex an ANN which will increase the computation time and 

may yield poor results. Therefore, 7 sensors were selected as S  

and are shown in Table I. These sensors were selected because 
they are directly related to zone temperature. As mentioned in 
section 2, along with the sensor data, current and desired time 
information is also used as an input to the ANN. The selected 
time variables used are also shown in Table I. For time 
information, the seconds were not used in this example because 
the resolution of the predicted data is 5 minutes.  

For all the sensors, the number of previous time steps used 

was set to 2, i.e. 2ik . Therefore, the set of time steps used 

for the input was )}90(),45(,{  tttT . Thus, from each 

sensor 3 values were used as inputs. Therefore the total number 

of sensor inputs to the ANN was 21. Along with the 6 time 
information, the total number of inputs to the ANN was 27.  

A feed-forward ANN with soft bipolar transfer functions for 
all layers was used. The architecture of the ANN selected for 
experimentation contained one input layer, two hidden layers 
and one output layer. The input layer contained 27 neurons and 
the output layer contained 1 neuron, representing the number of 
inputs and outputs. The hidden layers contained 15 and 7 
neurons each. This architecture was selected after experimenting 
with several different architectures. The training was done using 
Error Backpropagation, with Levenberg-Marquardt 
optimization. 

The selection of the set of sensor S  and the time periods 

for each sensor T  , along with the most appropriate architecture 
of the ANN can be improved by using techniques such as cross-
validation. Using such techniques will increase the prediction 
accuracy of the presented methodology. However, the current 
selection was deemed sufficient for the demonstration purposes 
of this paper. 

 

IV. EXPERIMENTAL RESULTS 

The presented method was implemented using the dataset 
and ANN architecture mentioned in section III. Thus, 7 different 
ANNs were trained (one for each selected zone). As mentioned, 
the first 2 weeks of data was used as the training data and the 
remaining 4 weeks was used for testing the trained models.  

The results of the tested models, which is the high temporal 
resolution temperature data was validated against the 
measurements from the temporary wireless sensor data. The 
results presented are the averaged prediction errors of all 
selected zones. The errors are presented in terms of mean and 
standard deviations of absolute errors in oC. 

Three different experimental cases were performed, each of 
which are described below. 

 

A. Experimental Case: 1 

The goal of this experiment was to compare the prediction 
accuracy of the presented method with typically used 
techniques. Therefore, in this case, the presented method is 
tested against a simple interpolation using the previous two 
points and a polynomial approximation which minimizes 
squared error. The polynomial model was selected using 10 fold 
cross validation and the 12th degree polynomial was shown to be 
the most accurate. Thus, the results of the 12th degree 
polynomial is presented.  

For this experiment, the data from the first 2 weeks was used 
as the training data. Furthermore, the high temporal resolution 
temperature data from the temporary wireless sensors was also 
used for training each model. For this case, the results of the 
weekends were ignored since the polynomial model cannot 
model such behavior.  

The on-line learning was not used for this experiment as it 
may increase the prediction accuracy of the presented system, 
giving it an unfair advantage. 

TABLE I.  SELECTED INPUT VARIABLES TO THE ANN 

Input Type Description Unit 

Known sensor data 
(S’) 

Zone temperature oC 

Outside air temperature oC 

Chiller temperature oC 

Mixed air temperature oC 

Return air temperature oC 

CO2 concentration PPM 

Supply fan load % 

Current time 

Hour Integer (1-24) 

Minute Integer (0-59) 

Day of week Integer (1-7) 

Weekend flag Binary 

Desired time 
Hour Integer (1-24) 

Minute Integer (0-59) 

 



The prediction error of 5 minute interval temperature data 
for this case is shown in Table II. The polynomial model 
performed the worse since the highly complex behavior of the 

building cannot be captured by it. While the linear interpolation 
works better compared to the polynomial, it was still worse than 
the presented ANN based method. Furthermore, it was observed 
that the linear interpolation performs poorly in day-night and 
cooling on-off transition periods. While this observation is 
intuitive, it has to be noted that such transitive behavior is the 
most important for control and state-awareness in buildings for 
maintaining occupant comfort and increasing energy efficiency. 

 

B. Experimental Case: 2 

The goal of this experiment was to exemplify the ability of 
the on-line learning method to learn new behavior of the 
building over time. Thus, in this case, the presented method was 
tested against the same ANN with the on-line learning disabled. 
As before, the first 2 weeks was used as the training data and the 
high temporal resolution temperature data was also used for 
training each model. For this experiment the weekends were 
included. 

The overall results of this case is shown in Table III. It can 
be seen that with the on-line learning enabled, the overall error 
is slightly decreased along with the standard deviation. Fig. 3 
shows the mean and standard deviation of absolute error of each 
model at the end of each day for the testing period. It can be 
observed that with the on-line learning enabled the prediction 
mean absolute error is almost as good as with the on-line 

learning disabled. Furthermore, as time progresses the mean 
absolute error is decreased with the on-line learning enabled. 

 

C. Experimental Case: 3 

Identifying whether the presented method can be used 
without having a temporary sensor network for training was the 
goal of this experiment. Thus, in this case, two instances of the 
presented ANN method is compared, where one instance is 
trained using only the BEMS data and the other instance trained 
using the wireless sensor data. The on-line learning was enabled 
in both instances. 

The results of this case is shown in Table IV. It can be clearly 
seen that with more training data the prediction error is lower. 
However, even without high temporal resolution data for 
training, the ANN is capable of learning the complex behavior 
of the system and produce good results. 

 

V. CONCLUSION 

This paper presented a data-fusion methodology that utilizes 
Artificial Neural Networks (ANNs) that increases the temporal 
resolution of sensor data. ANNs are capable of learning complex 
inter-relationships between various different types of sensors 
and provide accurate predictions. An on-line learning method is 
also presented that increases the prediction accuracy in the long-
term. 

The presented method was applied to a real-world building 
dataset to increase the temporal resolution of temperature 
sensors. Experimental results showed that the presented method 
is capable of predicting high temporal resolution data with high 
accuracy. Furthermore, the experimental results showed that the 
on-line learning is capable of improving the performance of the 
ANN in time. Finally, it was shown that the ANN is capable of 
learning the building behavior such that by using only low 
temporal resolution data, higher resolution data can be predicted 
effectively. 

TABLE II.  EXPERIMENTAL RESULTS CASE 1 

Method 

Absolute Error (oC) 

Training Testing 

Mean SD Mean SD 

12th order polynomial 1.837 1.985 2.241 2.143 

Linear interpolation 0.941 0.576 0.921 0.687 

Presented ANN 0.272 0.206 0.545 0.210 

 

TABLE III.  EXPERIMENTAL RESULTS CASE 2 

Method 

Absolute Error (oC) 

Training Testing 

Mean SD Mean SD 

Presented ANN without 

on-line learning 
0.272 0.206 0.630 0.290 

Presented ANN with 
on-line learning 

0.272 0.206 0.391 0.228 

 

TABLE IV.  EXPERIMENTAL RESULTS CASE 3 

Method 

Absolute Error (oC) 

Training Testing 

Mean SD Mean SD 

Presented ANN with  

all data 
0.272 0.206 0.399 0.228 

Presented ANN with 
only BEMS data 

0.462 0.370 0.567 1.034 

 

 

 
 

Fig. 3 Daily prediction absolute error curves for experimental case 2 



Future work entails applying the presented methodology for 
a longer period of time and to other sensors that can improve 
control and state-awareness of the building such as, CO2, 
humidity, and air handling unit sensors. Further improvements 
to the prediction can be made with more complex hybrid 
machine learning techniques such as combination of Fuzzy and 
Neural methodologies. The usefulness and feasibility of using 
the data predicted by the presented system for control should 
also be explored.  
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