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Abstract—Heating, Ventilation and Air Conditioning (HVAC) 

system is largest energy consumer in buildings. Worldwide, 

buildings consume 20% of the total energy production. 

Therefore, increasing efficiency of the HVAC system will result 

in significant financial savings. As one solution, Thermal Energy 

Storage (TES) tanks are being utilized with buildings to store 

excess energy to be reused later. An optimal control strategy is 

crucial for optimal usage. Therefore, this paper presents a novel 

control framework based on Artificial Neural Networks (ANN) 

for optimally controlling a TES for achieving increased savings. 

The presented ANN controller utilizes 3 main inputs: 1) current 

TES energy availability, 2) predicted building power 

requirement, and 3) predicted utility load/price. In addition to 

the design details of the control framework, this paper presents 

implementation details of the ANN controller. Further, 

experiments on several test cases were carried out and the paper 

presents the experimental setup and obtained results for each test 

case. Performance of the presented ANN control framework was 

compared against a classical proportional derivative (PD) 

controller. It was observed that the presented framework 

resulted in better cost savings than the classical controller 

consistently for all the experimental test cases.  

Keywords—Artificial Neural Networks; Thermal Energy 

Storage; Optimal Control; Building Energy Management Systems 

I. INTRODUCTION 

Building Energy Management Systems (BEMS) are 
responsible for controlling the Heating Ventilation and Air 
Conditioning (HVAC) and lighting systems in buildings. It is 
documented that more than 20% of the total energy production 
are consumed by buildings [1]. In the United States, buildings 
account for 40% of the total energy consumption [1]-[3]. Due 
to the high energy consumption, buildings are also one of the 
major contributors to greenhouse gas production [4]. These 
numbers are projected to increase due to economic growth and 
various other factors [1], [5].  

In a building, HVAC system is the largest energy consumer 
[6]. It has been documented that over 30% of the building 
energy consumption is accounted for by the HVAC [6]-[9]. 
Thus, increasing energy efficiency of the HAVC would result 
in substantial financial gains. Therefore, significant research is 
being carried out to devise methods to increase energy 
efficiency in buildings. One such methodology is to use energy 
storage tanks to store energy when the rates are cheaper and to 
reuse the stored energy when the power rate is higher. Thermal 

Energy Storage (TES) tanks are water tanks which are used to 
store thermal energy [10]. TES tanks can be utilized to store 
hot or chilled water with a loss of 1-2% per day under usual 
conditions [11]. Using TES tank for energy efficiency 
improvement has been studied in recent research work [12]-
[16]. Furthermore, the possibility of using TES in power peak 
shaving has been studied in [17].  

Regardless of the application, in order to acquire maximal 
benefit from TES, it is important to optimize the process of 
extracting and storing energy in the tank. Therefore, research 
has been conducted in the recent years to devise an optimal 
control methodology for using TES tanks to obtain financial 
savings. In [11], the authors presented a framework for using 
TES for building cooling with multiple chillers to cool the TES 
water. In their work, the number of chillers used and their 
times of operations were made variable. In their presented 
framework, costs were minimized by shifting chiller demand to 
an overnight period. The authors have used linear 
programming to perform the minimization operation subject to 
constraints. In [18], the authors proposed to define the 
optimization problem as a Mixed Integer Linear Programming 
problem and solve it using a branch and bound algorithm. The 
authors used predicted thermal demand and electricity price of 
the future in the optimization. In [19], the authors present a 
supervisory control scheme known as the Market Responsive 
Control to control the TES to achieve financial savings. The 
optimization of the control is achieved by the authors by 
solving a convex optimization problem. Model Predictive 
Control has been proposed to be used as a control mechanism 
for TES [20], [21]. Predictive control was also proposed to use 
for achieving peak reductions using TES [22], [23].  

This paper presents a novel control framework for TES 
based on Artificial Neural Networks (ANN). The proposed 
control framework is entirely data driven and it leverages from 
three main inputs; 1) current TES energy availability, 2) 
predicted building power requirement, and 3) predicted utility 
load/price. These inputs provide information to the TES control 
signal to make the optimal control decision. The ANN based 
control module attempts to minimize the cost of energy by 
utilizing the energy in the TES optimally. The emphasis of this 
paper is on the ANN based control module. Therefore, for 
purposes of this paper, Inputs 1, 2 and 3 are assumed to be 
already available and prediction methodologies are considered 
to be out of the scope of this paper. In addition to the presented 



framework for ANN based TES control, this paper presents the 
implementation details for the presented controller. Further, in 
order to validate controller and its implementation, different 
experiments were carried out and the performance of the 
presented controller was compared against a traditional PD 
controller. This paper elaborates the used experimental set up 
and the results obtained for each test case. 

The rest of the paper is organized as follows. Section II 
elaborates the presented framework. Section III presents the 
implementation details of the ANN based controller. Section 
IV and V present the experimental set up and the results 
obtained by the implemented framework. Finally, Section VI 
presents conclusions for the paper.  

II. PRESENTED ANN BASED TES CONTROL FRAMEWORK 

This section elaborates the complete control framework for 
the TES. In the context of this paper, the phrase “controlling a 
TES” is referred to controlling the amount of energy extracted 
from the TES. The energy extraction from the TES is directly 
governed by controlling the valves that control the flow rate of 
water going out of the tank. In addition to controlling the 
amount of energy extracted from TES, the recharging of the 
TES is considered to be in the scope of the presented 
controller. In building cooling, cooling the tank back down is 
considered recharging the tank. 

The overall framework is shown in Fig. 1. The presented 
framework is depicted for using a TES for cooling a building. 
In the framework, the water pumped from the TES is sent 
through a chiller. The chiller cools the water down to a 
predefined temperature before sending through the BEMS. It is 
assumed that the chiller is entirely powered by the power 
purchased from the utility. Once the water is run through the 
BEMS it is returned to the TES. Thus, the temperature of the 
TES gradually increases. I.e. the tank discharges. Therefore, 
the tank is recharged using the chiller (TES cooling loop in 
Fig. 1). 

The presented ANN based controller leverages outputs 
from three modules (green blocks in Fig. 1). As mentioned, for 
the purposes of this paper, these models are assumed to be 
implemented and are producing outputs with sufficient 
accuracy. The main emphasis of the presented work is the 
ANN based controller. Therefore as the main controller of the 
TES, the output from the ANN is the amount of power that is 
used from the TES for the next time step.  

As mentioned, the objective of utilizing a TES is to store 
energy when power costs are lower and reuse the stored energy 
when the power rate is higher. The controller should be able to 
take into account the predicted building power requirement, 
predicted utility load profile, and the TES behavior, and 
determine the optimal usage of TES, so as to achieve this goal. 
Information about the future will enable the controller to make 
a well informed decision about when and how to use TES 
power. Thus, both building power requirement and utility load 
is utilized to provide information about the power requirements 
and power prices of the future. Furthermore, the available 
chillers has to be able to cool the TES back to a given 
temperature during cooling hours, which results in power 
usage. Thus the controller should also consider and control the 

re-cooling of the TES. Therefore, the controller has to take into 
account how much power that is needed to cool the building, 
how much energy is available in the TES as well as how the 
utility load is going to be, to optimize the cost, while using the 
TES to a level such that it can be cooled back down. Thus, 
outputs from each green block in Fig. 1 will be used to 
generate the final control signal. 

The presented controller is designed as an Artificial Neural 
Network (ANN). ANNs are computational intelligence 
architectures based on biological neural networks and have the 
capability of “learning” interdependencies and trends in data. 
The basic unit of an ANN is a neuron which is functionally 
similar to a biological neuron and has a set of inputs and 
produces an output based on the inputs. An artificial neuron 
aims at achieving the same by using weights, a threshold value 
and producing an output vector for a given input vector. [24], 
[25]. The most used ANN learning methodology is the Error 
Back Propagation (EBP) method using the Levenberg - 
Marquardt algorithm [26] – [28]. However, since the control of 
the TES needs to be optimized, the ANN is trained using an 
optimization algorithm as opposed to EBP. The optimization 
methodology is elaborated below.  

The ANN controller is optimized subject to three variables. 
1) Total cost of cooling the building as well as re cooling the 
TES, 2) Total amount of wasted money because of 
overshooting the power required by the building, 3) The 
difference between the preset TES temperature lower limit and 
the actual TES temperature at the start of each week. 

The cost of building can be calculated trivially when the 
total power purchased from the utility is known. The wasted 
amount of money due to overshooting can be calculated once 
the wasted power is calculated. Wasted amount of power due 
to overshooting can be calculated using the following 
Equation.  

   BUILDINGCHILLERTES PPowerOutPowerOutPowerWaste   

 
 

Fig. 1. Presented ANN based TES control framework for using a TES for 

cooling 



Where 
TESPowerOut is the power produced from the TES at 

current time step, 
CHILLERPowerOut  is the power used by the 

chiller to cool the water down to the pre-defined temperature at 
the current time step, and 

BUILDINGP  is the total power required 

by the building for cooling the building down at the current 
time step. The difference between the actual temperature of the 
tank and the ideal temperature of the tank is considered 
because the recharging or re-cooling of the TES is in the 
controller’s scope as mentioned before.  

In order to achieve minimum cost, an error value is 
calculated. The calculated error value is then minimized using 
an optimization technique. In calculating this error value, four 
cost values are calculated at each time step. The four cost 
values are calculated as follows:  
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Where, 
TESNOCost _

is the hourly cost of power if the power was 

bought from the utility rather than TES, 
CHILLERCost is the 

hourly cost of power bought from utility to run the chillers, 

REMAININGCost  is the hourly cost of power bought from the 

utility to run the HVAC to make up for the power deficit from 
TES., 

WASTEDCost is the hourly cost of wasted power by 

overshooting the actual power required by the building, and 
CTU is the cost to purchase power from the utility at a given 
time.  

For each of the cost values that was calculated in Eq. (2) – 
(5), a total cost value is calculated over the period for the time 
of consideration. I.e. the hourly calculated cost values are 

summed up to get four total cost values. Then, the total cost 
values are used to calculate the following percentages that will 
be used in error value,  
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Where, the PercentSpent is the percentage of the cost that goes 
in to purchasing power from the utility when the TES is 
operational over the cost when TES is not used. PercentWasted 
is the percentage of cost that is wasted due to power wastage. 
Trivially, both these values should be minimized for optimal 
control.  

Finally, in order to take into account the cooling back of the 
TES, the following sum is used,  
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Where Recharging is the summation of the difference between 
the actual temperature of the tank and the pre-defined 
temperature of the tank over the period of testing. This entity 
should be minimized to keep the water of the tank as close as 
possible to the predefined temperature. 

Thus, using the above variables, the error value that is to be 
minimized can be calculated as follows, 
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As mentioned above, the minimization variables can be 
weighed according to the requirements of the user, and thus the 
weight variables ws, ww, wc can be user specified constants 
according to the contextual importance of each variable. Thus, 
the ErrorValue is minimized using an optimization algorithm. 
The weights of the ANN is found by minimizing the error 
value through the optimization algorithm. 

TABLE I. TRAINING AND TESTING DATA USED IN EXPERIMENTATION 

Data Start Finish 

Training Data 05/06/2013 1:00AM 05/27/2013 1:00AM 

Testing Data 05/06/2013 1:00AM 09/30/2013 1:00AM 

 

TABLE II. PRICING INFORMATION USED FOR EXPERIMENTATION 

Peak/Off Peak Price per kWh Time 

Peak hours $0.09001 7:00 AM to 8:00PM 

Off-peak hours $0.02405 8.00PM to 7.00AM 

 



The re-cooling control of the TES is based on a set of 
preset hard thresholds. A re-cooling time is the time interval in 
which the TES will be re-cooled. During this time the TES will 
not be used to cool the building. A desired temperature 
threshold to which the chillers will cool the water is set for the 
TES. The chillers will operate at maximum capacity until the 
desired temperature is reached, or the re-cooling time is over. 

III. EXPERIMENTAL SETUP AND IMPLEMENTATION 

This section presents details of the setup used for 
experimentation and implementation of the presented method.  

A simulated building was used to carry out the 
experimentation. A building with 10 floors was considered. 
Each floor was designed to have 5 occupant zones. An 
assumption was made that all floors are identical and thus the 
cooling demand of each floor is identical.  

Since the TES is being presented in a building cooling 

context, data were gathered for the presented building for the 
summer months. Data were simulated for the period of 
05/01/2013 – 09/30/2013. For the said time period, data were 
gathered in hourly time steps. The training and testing periods 
are given in Table I 

In order to calculate the costs for the peak and off peak 
hours, real world pricing information was used. The prices was 
obtained by a power company existing in Richmond, Virginia 
[29]. Pricing information used for calculations are given in 
Table II.  

In order to experiment with different sizes of TES, 3 tanks 
were specified. Each tank was specified with different sizes 
and maximum flow rates. Table III provides details of the 
different tanks that were used for testing. For testing purposes a 
specific chiller was used for each tank size. The chiller 
specifications are given in Table IV.  

The presented ANN controller was designed to consider 
predictions for the immediate next time step (next hour) for 
building power requirement and utility load. The inputs used 
for the ANN controller is given in Table V. The optimal 
architecture for the ANN was chosen by experimenting with 
architectures with different complexities. Initially, an ANN 
with one hidden layer and 2 neurons was implemented. Then, 
gradually the complexity of the ANN was increased by 
increasing the number of neurons per layer and the number of 
hidden layers. The optimization process was repeated for each 
architecture and the least complex ANN architecture which 
yielded the best results was selected. Therefore, the presented 
results are obtained by an ANN consisting of an input layer, 2 
hidden layers and an output layer. The layers contained 6, 8, 6 
and 1 neurons respectively in the final ANN architecture. 

TABLE IV. SPECIFICATIONS OF THE CHILLER USED 

Chiller Small Tank  Medium Tank  Large Tank 

Chiller Watts  40,000 100,000 150,000 

 

TABLE V. INPUTS TO THE CONTROL ANN 

Inputs Units 
Range 

Description 
Min Max 

Predicted power requirement 

of the building for the next 

time step 

Watt 0 11615 

Predicted power requirement of the building for cooling at time step t. The 

prediction is for the next time step. Multiple time steps can be used for a 

more informed decision. 

Predicted utility load for the 

next time step 
Percentage 10 95 

Predicted utility load percentage at time step t. The prediction is for the next 

time step. Multiple time steps can be used for a more informed decision. 

Power availability of the TES Watt 0 N/A 

The current power availability of the TES. Identifying the current 

availability of power, in order to determine the amount of extraction for the 
next time step. 

Hour of day Integer 1 24 

Identifying the hour of the day since the hour of the day affects cooling 

patterns.  
(E.g. – 9AM-5PM in an office building) 

Day of week Integer 1 7 

Identifying the day of the week since the cooling patterns for different days 

will be different. 

 (E.g. – Weekday and Weekend) 

Current outside air 

temperature 
Celsius 12.61 34.40 

The current outside air temperature. This is taken as an indication of the 

prevailing weather conditions. 

Current averaged room 
temperature 

Celsius 20 28 
This is the averaged room temperature of the whole building across all 

floors 

 

TABLE III. DETAILS OF THE DIFFERENT TANKS USED FOR EXPERIMENTATION 

Tank Variable Unit 
Small 

Tank 

Medium 

Tank 
Large Tank 

TES height m 5 10 15 

TES radius m 1 7 15 

Tank wall 

thickness 
m 0.3 0.3 0.3 

Thermal 

conductance 
W/mK 0.1 0.1 0.1 

Gallons in tank Gallons 4,000 400,000 2,800,000 

TES temp. 

upper limit 
oC 17 30 30 

TES temp. 

lower limit 
oC 2 2 2 

Max flow rate kg/s 0.5 5  

Efficiency 

Ratio of TES 
None 0.85 0.85 0.85 

Efficiency 

Ratio of chiller 
None 0.9 0.9 0.9 

 



The optimization problem of finding ANN weights was 
solved in the implementation using the Particle Swarm 
Optimization method (PSO) [30]. PSO is an optimization 
technique developed by Dr. Eberhart and Dr. Kennedy in 1995, 
inspired by social behavior of bird flocking or fish schooling. 
The basic idea behind the algorithm is that a set of solutions, 
called particles, will move in the solution space. The goal is to 
optimize a value known as the fitness function which is a 
measure of the goodness of the solution. The movement of the 
particles are affected by the best solution at the current 
iteration, the direction and amount of movement of that particle 
in the previous iteration, and some random number. More 
details on PSO can be found in [30]. 

ANN controller was compared against a classical 
Proportional Derivative (PD) controller. The PD controller was 
chosen for comparison since it is a widely used control 
algorithm. Therefore, the performance of the presented control 
algorithm could be benchmarked using one of the most popular 
control algorithms. The PD controller determines the amount 
of power to be used from the TES for the next time step, 
utilizing the current and previous power requirements of the 
building. The control equation for the PD controller is as 
follows,  
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where,   and   are constants that are determined by 

optimizing the controller using the training data specified in 
Table I. )1( tESPowerFromT  is the power that is extracted from 

the TES for the next time step (next hour).  

In the implementation, the re-cooling/ recharging of the 
TES was carried out based on a preset hard thresholds. A re-
cooling time is the time interval in which the TES was re-
cooled. During this time the TES was not be used to cool the 
building. A desired temperature threshold ( mpTESLowerTe in 

Eq. 8) to which the chillers cooled the water down, was defined 
for the TES. The chillers was assumed to operate at maximum 
capacity until the desired temperature was reached, or the re-
cooling time was over. The re-cooling time was set to be 
9.00PM to 6.AM. The mpTESLowerTe  was set to 20 Celsius.  

The optimization criteria and other specifications were 
unchanged for both ANN and PD controllers. In order to test 

the effectiveness of the presented methodology three TES 
tanks (see Table III) was tested on the simulated building: Test 
Case 1: Small Tank, Test Case 2: Medium Tank, Test Case 3: 
Large Tank. 

IV. EXPERIMENTAL RESULTS 

This section presents the results obtained for the three test 
cases defined in Section III.  

As mentioned, the goal of the TES is to decrease cost. 
Therefore wasted cost and the re-cooling were taken into 
consideration. Thus the experimental results for each test case 
in described are given in terms of 6 values: 1) Cost to cool the 
building if TES was not used, 2) Cost to cool the building with 
TES, 3) Amount saved in US dollars, 4) Percentage of savings 
and 5) Wasted cost. 

Table VI presents the results for the three test cases in 
terms of the above mentioned values. It was noticed that the 
ANN controller achieved better cost savings for all the test 
cases when compared to the PD controller. It was noticed that 
the medium tank provided the best performance for both PD 
and ANN controllers. When using the medium tank, the ANN 
controller was able to produce a 6.501% increase in savings 
when compared to the PD controller. Using the ANN controller 
with the medium tank, the experiments yielded a savings of 
$4152.804 for the testing period. Thus, this method could be 
used to gain significant financial savings over longer periods. It 
should be noted that the cost without the TES remains the same 
for all the test cases since the same building was used for all 
the experiments.  

Furthermore, it can be noticed that the wasted cost is much 
less in the ANN controller when compared to the PD 
controller. When using the medium sized tank, the PD 
controller wastes power which accounts to $546.578 while the 
ANN controller only wastes power which is worth $57.504. In 
addition, the ANN controller performed much better in terms 
of wasted cost in the two other test cases as well.  

Therefore, from the experimental results obtained, it can be 
concluded that the presented ANN based controller 
outperforms the PD controller in all aspects, for the presented 
test cases. 

V. CONCLUSIONS 

This paper presented a ANN based control framework for a 
TES. The presented controller leveraged three main inputs: 1) 

TABLE VI. EXPERIMENTAL RESULTS FOR THE THREE TEST CASES 

Test Case Tank Size Controller 
Cost without 

TES ($) 
Cost with TES ($) Savings ($) 

Savings 

Percentage (%) 

Wasted Cost 

($) 

Test Case 1 Small 
PD 

8370.508 

7455.746 914.761 10.928 3.703 

ANN 7428.485 942.023 11.254 3.326 

Test Case 2 Medium 
PD 4761.879 3608.628 43.111 546.578 

ANN 4217.703 4152.804 49.612 57.504 

Test Case 3 Large 
PD 5459.915 2910.592 34.772 494.534 

ANN 5257.788 3112.719 37.187 136.023 

 



Current TES power availability, 2) Predicted Building power 
requirement for the next hour, 3) Predicted Utility load for the 
next hour. For the purposes of the paper, the three inputs were 
assumed to be already available. In addition to details about the 
proposed architecture the paper presented implementation 
details for the ANN based controller. The presented 
architecture implementation was tested by carrying out several 
experiments. The paper presented details about the 
experimental set up and the experimental results for each test 
case. In order to perform a comparative analysis, a classical 
proportional derivative (PD) was implemented. For each test 
case, the presented framework was compared against the PD 
controller. Results showed that the presented controller 
outperformed the classical PD controller in all of the cases. The 
presented ANN controller not only increased the financial 
savings but also reduced the cost wastage which occurs from 
overshooting the power requirement. Further experiments 
should be carried out to further improve the controller using 
different optimization algorithms.  
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