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Abstract—Dependency of the transport sector on fossil fuels is 

encouraging a significant amount of research in to improving fuel 

efficiency in vehicles. Three primary techniques are identified for 

vehicle fuel efficiency improvement: 1) vehicle technology 

improvements such as drivetrain improvements, 2) traffic 

infrastructure improvements such as traffic flow management and 

route selection, and 3) driver behavior changes such as 

acceleration and deceleration profiles. Out of the 3 techniques, 

driver behavior changing has the least implementation cost and is 

able to provide immediate results. Thus, this paper presents a fuel 

efficient driving behavior identification and feedback architecture 

that is specific to fleet vehicles. The presented method utilizes 

historical data from fleet drivers on specific routes and generates 

fuel optimal velocity profiles that do not affect travel time. The 

identified velocity profile is the prompted to the driver via a low-

cost plug-and-play style un-obstructive display. The display uses 

an intuitive and easily understandable visualization to prompt 

drivers on fuel efficient velocity. The presented architecture was 

tested on the Idaho National Laboratory (INL) bus fleet in real-

world driving conditions and was shown to be able to increase the 

fuel economy by 9% and 20% in two different driving scenarios.  

Keywords—Eco-driving; visualization; fuel efficiency; driver 

feedback; passive driver assistance 

I. INTRODUCTION 

With increasing fossil fuel prices and the climate change 
concerns related to carbon emissions and other pollutants, 
reducing fossil fuel usage is gaining increasing attention. 
Research has shown that the transportation sector is the largest 
consumer of fossil fuels in many countries. For example nearly 
71% of the petroleum consumed in the United States (U.S.) is 
consumed by the transportation sector [1], [2]. Furthermore, it 
has also been shown that the transportation sector is the largest 
contributor to carbon emissions throughout the world. In the EU, 
transportation is attributed to more than a fourth of carbon 
emissions [3]. Similarly, in the U.S. the transportation sector is 
the largest carbon emitter contributing to over a third of all 
carbon emissions, of which over 40% are from passenger cars 
[4]. Furthermore, in the U.S. the carbon emissions by the 
transportation sector has increased in recent years [4]. 

Therefore, increasing vehicle fuel efficiency has become a 
major research area with significant impacts on fossil fuel usage 
and the global carbon footprint [5], [6], [7]. Three major 
techniques are identified in the literature for improving vehicle 
fuel economy, which are: 1) vehicle technology improvements, 

2) traffic infrastructure improvements, and 3) driver behavior 
changes [8].  

Vehicle technology improvements entail improving the 
physical design of the vehicle such as engine, gearbox, and 
aerodynamics [7], [9], [10]. Alternative fuel designs and 
improvements fall under this category as well. While, these 
improvements have the highest potential for long term impacts, 
they have long implementation times, high implementation cost, 
and will not affect the vehicles currently on the road [5], [11].  

Traffic infrastructure improvements are concerned with 
managing traffic flow such that vehicle idle times and travel 
times are reduced. These methods further include alternate route 
selection with an emphasis on fuel economy [8]. While, traffic 
infrastructure improvements yield immediate results and affects 
all road vehicles, they are costly to implement and logistically 
difficult.  

Driver behavior changes related to fuel economy entail an 
overall less aggressive driving style, with smooth acceleration 
and deceleration profiles [3], [12], [13], [14]. Such driving 
techniques are known as “eco-driving” and can be loosely 
defined as a driving decision making process that positively 
influences the vehicle fuel efficiency [3]. Thus, driver behavior 
changes do not require any mechanical changes or infrastructure 
changes, which makes it easy to implement with comparatively 
very low cost [5], [12], [15]. Furthermore, they can be 
implemented in already existing vehicles, leading to fast 
implementation and turn-around times [5], [12]. Previous 
studies report fuel efficiency improvements ranging in 5-15% 
through driver behavior changes alone [3], [13]. Thus, this paper 
is concerned with changing driver behavior to achieve improved 
fuel economy.  

Two primary methods of influencing driver behavior for 
improved fuel economy has been investigated in the past: 1) 
driver education, 2) driver feedback. Driver education entails 
training drivers on fuel efficient driving styles [12], [15]. While 
this method has been shown to be effective [1], [15], it has been 
shown that over time, some drivers tend to depart from fuel 
efficient behavior [15], [16]. Furthermore, training a fleet of 
drivers is time consuming and costly. Driver feedback entails 
real-time or non-real-time feedback about the fuel economy and 
how to change behavior for increased fuel economy. Real-time 
continuous feedback devices are known as passive driving 



assistance tools and have been shown to the extremely effective 
[17], [18]. 

The primary concern of real-time feedback devices is safety 
[5]. While audio [18], [19], visual and haptic [20] feedback for 
fuel efficient driving has been investigated in the past, it can be 
argued that visual feedback is the optimal. Visual feedback that 
are non-distracting and easily ignored ensures safe operation 
[20]. For example audible cues may be distracting in hazardous 
situations where quick decisions need to be made. Furthermore, 
early research has suggested that drivers may have up to 50% 
spare attention capacity in regular driving conditions [21]. 
Recent research have further suggested that glancing behavior at 
an in-vehicle information system suggests that it may not lead to 
visual distraction, and might not increase mental workload [22]. 

This paper presents a fuel optimal driver behavior 
identification and feedback architecture for fleet vehicles 
driving in preset highway routes. Fleet vehicles present a unique 
situation where different drivers drive similar vehicles over a 
preset route where the driving times are governed by strict 
guidelines [6]. Furthermore, highway driving conditions are 
more consistent and have less aggressive acceleration and 
deceleration points. The presented architecture uses a modified 
version of the data driven driver behavior identification 
methodology presented in [6], and utilizes the low cost, easy to 
understand prompting framework along with the visualization 
previously presented in [5]. The presented architecture was 
tested on a real-world driving scenario with 3 drivers on a 12 
kilometer route in Idaho. The experimental results show 9% and 
20% increase in the average fuel economy with the presented 
framework implemented.  

This paper is organized as follows; section II details the data 
driven driver behavior identification and extraction 
methodology, and the driver behavior feedback framework is 
detailed section III. Section IV provides the implementation 
details while section V presents experimental results. Finally, 
section VI presents final conclusions and future research 
directions.  

 

II. FUEL EFFICIENT DRIVER BEHAVIOR IDENTIFICATION 

This section describes the driver behavior identification 
methodology for fleet vehicles that is used in this paper. The 
driver behavior identification methodology is a slightly 
modified version of the method that was presented in [6].  

As mentioned, fleet vehicles present a unique situation 
where similar vehicles are being driven on the same route 
multiple times by different drivers. Thus, the basic idea behind 
the driver behavior identification methodology is to utilize 
driving data from multiple drivers to derive an overall fuel 
optimal behavior for a specific route. The final extracted 
behavior will be a combination of driving behavior of multiple 
drivers, driving similar vehicles, multiple times on the same 
route. Furthermore, the presented method is for highway driving 
situations, and it is assumed that the vehicle will be in the same 
transmission gear position throughout the run. This was found 
to be a safe assumption by analyzing the data for the specific 
route chosen for the experiment. 

In order to combine multiple data from multiple drivers, first 
data is gathered from multiple runs on the same route in similar 
vehicles. The data is collected from the vehicle on-board 
diagnostics system, can be represented as: 

 

 ),...}(),(),({)( tftptvtd   (1) 

 

where, )(td  is the data point collected at time t. )(tv , )(tp , 

and )(tf are the velocity, the position, and the fuel rate of the 

vehicle and at time t respectively. Other features such as 
transmission gear position, engine rpm, and gas pedal position 
are also collected, but will not be used for generating the driver 
behavior profile.  

The state of the vehicle at time t, )(tx  is extracted from the 

collected data and can be expressed as: 

 

 )](),([)( tptvtx   (2) 

 

where )(tv , and )(tp  are the velocity, and the position of the 

vehicle and at time t respectively. Thus, for an entire run the state 
of the dataset can be expressed as: }...0),({ TttxX  , where 

T is the total data collection time.  

However, in order to synchronize multiple runs according a 
specific route, the temporal data must be converted in to spatial 
domain. Thus, using )(tp , the state of the vehicle at position p, 

)( px  can be expressed as: 

 

 ]),([)( ppvpx   (3) 

 

where, )( pv  is the velocity of the vehicle at position p. 

Thus the converted spatial dataset can be expressed as 

}...0),({ LppxX P  , where L is the length of the route. 

Once the data is converted in to the spatial domain, segments 
can be identified. These segments are defined in terms of a 

starting position 
Sp  and an end positon 

Ep . Thus a segment 

can be expressed as ),( ES ppS . To combine data from multiple 

datasets, identical segments will be used, meaning the state of 

the vehicle in each dataset at 
Sp  and 

Ep  must be identical. 

Thus given two datasets in the spatial domain 
1PX  and 

2P
X , a 

segment that can be merged ),( ESM ppS  can be identified by: 
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where, , 
11 )( PXpx  and 

22 )( PXpx  . The set of points that 

satisfy these conditions are called switch points. Fig. 1 (a) shows 
a simple case of a switch point.  

Thus, the definition of ),( ESM ppS  ensures that segments 

from different datasets, can be interchanged without affecting 
the physical feasibility of the final solution [6]. The two datasets 

1PX  and 
2P

X  can be from two different drivers driving similar 

vehicles on the same route or the same driver driving the same 
vehicle on the same route at two different times. 

Using the recorded fuel rate )(tf , the fuel rate for a given 

position )( pf , can be extracted. The amount of fuel consumed 

by the vehicle for a given segment ),( ES ppS  can then be 

calculated as: 
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where, ),( ES ppF  is the amount of fuel consumed between 

positions 
Sp  and 

Ep  (see Fig. 1 (b)). 

The amount of fuel used at each segment can then be used to 
merge 2 given runs to generate a single velocity profile that is 
more fuel efficient than the initial runs. The merged velocity 

profile ),( ESM ppV  for two datasets 
1PX  and 

2P
X  at a 

segment that can be merged ),( ESM ppS  can be expressed as: 
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where, }...),({),( ESiESi ppppvppV   for a given run i.  

Note that for the starting segment ),0(0 ipS  and for ending 

segment ),( LpS
jL

 there may not be any segment that meets 

the requirements in (4), in these special cases equation (6) is 
used even though the merging criteria is not met. Thus, the final 

merged velocity profile 
M

V̂  can be expressed as: 
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where, 
0

V  and 
L

V  are the start and end segment velocity 

profiles respectively, and )1...(1  Ci  where, C is the 

number of switch points for the two datasets given. Fig. 1 (c) 
shows the merged velocity profile using the fuel consumption in 
each segment. The complete process of merging two datasets 
with two switch points is detailed in Fig. 1. 

However, given multiple datasets, finding the most optimal 
fuel efficient velocity profile is not trivial since switch points are 
different in different datasets. Furthermore, while minimizing 
the fuel efficiency, the time to destination should be kept within 
an acceptable level, as well as maintaining the velocity of the 
vehicle within certain legal and safe bounds. Thus, the problem 
of combining multiple datasets to generate a single velocity 
profile with the optimal fuel efficiency is a bounded multi-
criteria optimization problem. While there are many different 
methods of finding the optimal defined by these parameters, in 
this paper, a simple evolutionary algorithm was used. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 1 The process of extracting the fuel efficient driving behavior from two 

datasets. (a) identifying segments that can be merged, (b) calculation of the 

cumulative fuel usage for each segment, (c) identifying the most fuel efficient 

velocity profile 



The final fuel efficient driver behavior extracted from the 
process mentioned above is a set of velocities of the vehicle for 
a given position of the route. This set of velocities is only 
optimal to the specific route and type of vehicle. The velocity 
profile can be improved as more data becomes available for that 
route.  

 

III. DRIVER BEHAVIOR PROMPTING 

The extracted fuel efficient driving behavior is recorded in 
terms of a set of velocities for a given positions in the route. This 
information should be prompted to the driver real-time in an 
unobtrusive manner.  

For prompting the fuel efficient velocity, the framework 
presented in [5] was used. In this framework, real-time data is 
gathered from the vehicle along with location information and 
utilized to provide accurate and timely feedback to the driver  

The vehicle related data such as velocity, engine rpm, and 
transmission gear is collected via the on-board diagnostics 
systems available in modern vehicles [5]. These systems collect 
accurate, high frequency data from sensors throughout the 
vehicle for diagnostics purposes and can be readily collected via 
industry standard interfaces.  

The road position data can be collected via accurate GPS 
devices. Such devices are becoming increasingly available as the 
technology progresses. However, to increase the accuracy of the 
positioning, a combination of prior knowledge about the route 
and the real-time vehicle speed is used to augment the latitude 
and longitude information from the GPS device [5]. This type of 
dead-reckoning can be used to maintain accurate position 
information even during loss of GPS data. Thus, combining data 
from the vehicle and the GPS device a data point of the vehicle 
at time t, )(td  can be created (see equation (1)). 

Once the data is collected, as before, the temporal data is 
converted to the spatial domain and the real-time state of the 

vehicle )( px
r

 at a given position p is generated: 

 

 ]),([)( ppvpx rr   (6) 

 

where, )( pvr
 is the real-time velocity of the vehicle at position 

p. 

Using the merged optimal fuel profile generated in the 

previous section, 
M

V̂ , the optimal velocity for the current 

position p, )(ˆ pv  can be found. However, since merged data is 

discrete, optimal velocity for the current position might not be 
available. In such cases, linear interpolation of the optimal 

velocities between the two closest available positons 
M

V̂  will be 

used as the optimal velocity. 

Once )( pvr
 and )(ˆ pv  is calculated, 

)(ˆ)()( pvpvpv r   is also calculated. The driver is then 

presented with this information using a visual display. 

The visual display setup and the visualization that is used in 
this paper is the visualization that was found to be least 
obstructive, most intuitive, and most understandable in [5]. The 
visualization used is shown in Fig. 2. The speedometer dial in 
the visualization is a near exact match to the actual speedometer 
in the vehicle. Furthermore, the current velocity of the vehicle is 
clearly displayed. Thus, drivers who are accustomed to looking 
at the speedometer frequently can utilize the provide 
visualization to get velocity information of the vehicle. The 
current actual velocity of the vehicle is augmented with a 
colored segment that shows the difference in the current velocity 
of the vehicle and the fuel efficient velocity for the current 

position )(ˆ pv . Furthermore, the background color changes 

from green to red representing whether the current velocity is 
lower than optimal or higher than optimal, respectively. The 
intensity of the color represents the magnitude of the difference 

)( pv .  

 

IV. IMPLEMENTATION 

This section details the hardware implementation of the 
presented fuel optimal driver behavior identification and 
feedback architecture. The presented architecture was 

 
 

Fig. 2 Visualization of the fuel efficient velocity on the speedometer 



implemented on the Idaho National Laboratory (INL) bus fleet 
using low-cost Commercial Off-The-Shelf (COTS) hardware.  

The INL bus fleet consists of over 90 buses of several models 
that travel in several preset routes throughout the south-eastern 
region of Idaho [23]. For the implementation of the presented 
framework, the MCI D-series model D4505 buses were selected 
[24]. 

The hardware implementation of the data collection and 
visualization was similar to the previously presented setup in [5]. 
Since the optimal velocity calculation can be performed offline, 
the amount of processing that need to be performed real-time is 
minimal. Thus a small, low power computing device is sufficient 
for the real-time calculations. A low cost, self-powered USB 
enabled tablet device running Windows operating system was 
therefore utilized as the on-board data processing computer. 

Data collection for fuel efficient driver behavior 
identification and real-time behavior prompting was performed 
through the industry standard system called CANbus, utilized by 
the MCI D4505 buses. For diagnostic purposes, a 6 pin Deustch 
connection is present in the cabin of the bus. Using a 
commercially available interface device called the NexiqTM 
USB link [25], a USB equipped computer can be interfaced with 
the CANbus via the Deustch connector. Thus, the raw data being 
passed through the CANbus can be read by the computer. 
However, the raw data is encoded in using the J1939 protocol 
[26], which is decoded in the computer to access the actual data 
stream [5]. 

For obtaining the position data, a low cost, USB enabled, 
COTS device from US Global Sat Inc. was used [27]. As, with 
the raw data from the bus, a separate data parser was used to 
decode the data stream from the GPS device and obtain the 
actual latitude and longitude data. Because of the low resolution 
of the GPS device and the high probability of errors, a 
combination of dead-reckoning using the velocity of the bus 
from the Nexiq device and prior knowledge about the route was 
used in conjunction with the GPS data for accurate positioning. 

In order to present the driver with the visualization described 

in Section III, a 7 inch High-Definition display ( 7201280
resolution) display was utilized. The display was self-powered 
and mountable, so that it can be placed anywhere in the drivers’ 

periphery that is least obstructive while being easy to glance at. 
The high resolution and high brightness (450cd/m2) of the 
device maximized the legibility of the visualization. The small 
form factor and portable nature of the device ensured that the 
device could be easily positioned within the bus cabin (See Fig. 
3). 

V. EXPERIMENTAL RESULTS 

In order to test the presented architecture, a 12 km portion of 
the US20 West highway in eastern Idaho was selected. This 
portion of the highway was selected because: 1) ease of access 
to buses from town, 2) consistent traffic conditions, 3) access to 
turning points for buses, 4) varying elevation profile and 5) one 
of the most used routes of the buses. Fig. 4(a) shows the selected 
portion of the route and Fig. 4(b) shows the elevation profile. 
Starting point (point A in Fig. 4) was set at lat. 43° 33' 
10.9794"N, long. 112° 32' 48.8394"W and finishing point (point 
B in Fig. 4) was set at lat. 43° 33' 2.9874"N, long. 112° 23' 
56.3634"W. Two sets of data were collected for the selected 
portion of the route: 1) Eastbound: travelling from point A to 
point B, 2) Westbound: travelling from point B to point A. 

The data was collected using a single bus and three different 
drivers. First, data was collected to extract the optimal fuel 
efficient driving behavior. Thus, each driver was first asked to 
drive the route in a manner which they judged to be the most 
economical, while keeping the bus within 5mph of the speed 

 
 

Fig. 3 Presented visualization placed in the bus cabin, in the driver’s periphery 

 
(a) 

 

 
(b) 

 

Fig. 4 Selected 12 km route (a) top view (b) elevation profile 



limit (65mph). Each driver was given 3 runs in each direction. 
In order to keep the data uniform and relevant, weather 
conditions were monitored during the data collection and due to 
unfavorable weather, 2 runs were removed from the Eastbound 
direction. To keep the datasets uniform, the Westbound runs 
corresponding to the removed runs were also removed. Thus, 7 
runs in each direction was used to extract the fuel efficient driver 
behavior. Fig. 5(a) and 5(b) depict the extracted velocity profiles 
for Eastbound and Westbound directions respectively.  

Once the fuel efficient driver behavior was extracted, the 
presented visualization framework was setup in the bus and the 
same drivers were asked to drive the routes while the prompter 
is running. The drivers were specifically asked to keep attention 
on the road as usual and only pay attention to the prompter if 
they feel the necessity, and the conditions allow it. Due to time 
and resource constraints only 5 runs in each direction were 
performed with the prompter running (2 drivers performing 2 
runs and the other driver performing only 1 run, in each 
direction).  

Fig. 6(a) and 6(b) show the average and standard deviation 
bands of the fuel efficiency of each run along with the extracted 
optimal fuel efficiency for Eastbound and Westbound runs 
respectively. The final fuel efficiencies are given in Table I. 
From the initial experimental results it can be observed that with 
the presented architecture operating, the average fuel economy 

has been increased and has a lower variability, in both cases. 
However, the lower standard deviation in the prompted case can 
be attributed to the smaller sample size. 

For the Westbound run travelling slightly uphill, the average 
fuel economy was increased by 9% while for the slight downhill 
Eastbound direction the increase was 20%. In both cases the 
difference in fuel economy with and without the presented 
architecture was statistically significant with a 95% confidence 
interval. 

For a pessimistic estimation of fuel economy, the best fuel 
economy achieved without the prompting and the worst fuel 
economy with the prompting were compared. For the Eastbound 
direction, these numbers were nearly identical with the 
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Fig. 5 Extracted optimal fuel efficient velocity profile  

(a) Eastbound (b) Westbound 
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(b) 

 

Fig. 6 Average fuel efficiency curves  

(a) Eastbound (b) Westbound 

TABLE I 

AVERAGED FUEL EFFICIENCY FOR EACH RUN 

 

 Unprompted Prompted 

 
Average 

(mpg) 

SD 

(mpg) 

Average 

(mpg) 

SD 

(mpg) 

Eastbound 9.25 0.49 11.12 0.46 

Westbound 6.72 0.35 7.34 0.28 

 



unprompted showing 0.4% better fuel economy. The same 
numbers for the Westbound direction showed an increase of 5% 
fuel economy with prompting. Thus even with the most 
pessimistic comparison, the fuel economy with the presented 
architecture was at least as good as without it. 

VI. CONCLUSIONS 

The need to reduce fossil fuel usage has been exemplified in 
recent years with increasing oil prices and the need to reduce the 
carbon footprint. Transportation sector has been shown to be the 
highest consumer of fossil fuel throughout the world and also 
has the most potential of improving. One of the least expensive 
and easy to deploy methods of achieving better fuel economy in 
vehicles is passive driver assistance devices. 

Thus, this paper presented an architecture for fleet vehicles 
for identifying and extracting fuel efficient behavior of drivers 
and presenting drivers with a continuous feedback on the most 
fuel efficient velocity through an un-obstructive, easy to 
understand visualization. The presented architecture was 
implemented using low-cost COTS devices on a MCI D-series 
bus, and tested in real-world driving conditions.  

The experimental results showed 9% and 20% 
improvements on average fuel consumption using the presented 
architecture on two different tests. The differences achieved 
were shown to be statistically significant in both cases when 
compared to the presented architecture not being used. 

Future works entails further experimentation with longer 
runs and larger number of drivers to obtain more generalized 
results. By implementing the system for a longer period of time 
it will be possible to identify driver acceptance of the system and 
longer term effects. Furthermore, driver distraction and glace 
frequencies with and without the system should be measured to 
identify safety risks involved.  
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