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Abstract—Fuzzy Logic Systems (FLS) are a well documented 

proven method for various applications such as control 

classification and data mining. The major advantage of FLS is 

the use of human interpretable linguistic terms and rules. In 

order to capture the uncertainty inherent to linguistic terms, 

Fuzzy Membership Functions (MF) are used. Therefore, 

membership functions are essential for improving the 

understandability of fuzzy systems. Optimizing FLS for 

improved accuracy in terms of classification or control can 

reduce the understandability of fuzzy MFs. Expert knowledge 

can be used to derive MFs, but it has been shown that this might 

not be optimal, and acquiring expert knowledge is not trivial. 

Therefore, this paper presents a data driven method using 

statistical methods to generate membership functions that 

describe the data while maintaining the understandability. The 

presented method calculates key points such as membership 

function centers, intersections and slopes using data driven 

statistical methods. Furthermore, the presented method utilizes 

several understandability metrics to adjust the generated MFs. 

The presented method was tested on several benchmark 

datasets and a real-world dataset and was shown to be able to 

generate MFs that describe the dataset, while maintaining high 

levels of understandability. 

I. INTRODUCTION 

UZZY Logic Systems (FLS) are a well documented and 

proven method for control, classification, data mining and 

various other fields [1], [2]. The main advantage of FLS is 

the utilization human understandable linguistic terms that are 

capable of capturing uncertainty and vagueness in everyday 

language [3]. The ability to handle such linguistic terms make 

FLS attractive as they are highly interpretable and transparent 

[4]-[7]. 

However, the understandability of a fuzzy system is 

heavily dependent on the understandability of its linguistic 

terms [1], [8]. The linguistic terms are modeled in the data 

domain via Fuzzy Membership Functions (MFs). Therefore, 

determination of the linguistic terms, hence the generation of 

MFs plays a significant role fuzzy system design [1]. The MF 

should be capable of conveying the knowledge contained in 

the original data [9], [10].  

However, the design of MFs significantly affect the 

outcome of the FLS [11], [12]. Therefore, many recent work 

optimize FLS by focusing on the accuracy of the output 

without considering the understandability of the system [7], 

[13]-[16]. Such numerical optimization results in highly 

accurate FLS, however, they pay little attention to the 
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semantical properties of the generated MFs and linguistic 

terms, thus degrading the understandability of the resulting 

system [2], [7], [17]. Furthermore, for data mining 

applications such as linguistic summarization [2], [18], [19] 

or descriptive rule generation [20], where understandability 

of data is the goal [19], generating semantically correct MFs 

is important. 

Membership functions derived from expert knowledge are 

capable of solving understandability issues [12]. However, 

expert knowledge acquisition can be a difficult task. Experts 

on the required domain may not be always available, and even 

when they are available their opinions vary and can be 

incomplete, varying, and overly precise [4], [17]. 

Furthermore, due to the large number of dimensions, 

gathering expert knowledge for highly multi dimensional 

problems is difficult. Many applications consider pre-defined 

fuzzy MF [1]. However, this is also sub-optimal as it assumes 

the data will be distributed in a certain manner and therefore 

cannot be effectively used to handle specificity of real-world 

problems [1]. Therefore, the most attractive method of 

deriving MF is data driven. Furthermore, data driven methods 

have been shown to accommodate adaptation and self-tuning 

[4]. 

Typical MF generation techniques include data histogram 

based methods, heuristic methods, probability based 

methods, clustering based methods, neural networks based 

methods, etc. [21]. However, very little work focuses on the 

understandability of generated MF [1], [4], [13]-[17]. 

Furthermore, it has been shown that there is no one optimal 

way of generating MFs and the optimality depends on the 

application [21]. 

Thus, this paper presents a simple, data driven MF 

generation method that is capable of describing the dataset 

while maintaining understandability. The presented method 

utilizes statistical techniques to calculate MF centers, spread, 

overlap, slope etc. Student’s t-test is utilized to identify initial 

prototypes for MFs. Two different understandability metrics 

are introduced that measures understandability of MFs. The 

presented MF generation method utilizes these and several 

other understandability metrics to generate MFs and thus 

further increasing the understandability of the MFs. The 

presented method was tested on several benchmark datasets 

with known distributions as well as a real-world dataset. The 

generated MFs were shown to describe the data while 

maintaining high levels of understandability. 

The rest of the paper is organized as follows. Section II 

describes metrics proposed in the literature for measuring 

understandability of MFs, and discusses related work. Section 

III details the presented data driven method for MF 

generation. Finally, Section IV presents experimental results 
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and Section V concludes the paper. 

II. UNDERSTANDABILITY OF FUZZY MEMBERSHIP 

FUNCTIONS  

This section first presents metric proposed in literature to 

calculate understandability, and then discusses related work.  

A. Metrics for Understandability in Membership 

Functions  

Fuzzy Membership Functions (MFs) capture the 

uncertainty and vagueness of everyday linguistic terms [3]. 

Therefore, finding optimal partition of the input space, the 

shape of MFs, the coverage of MFs, and the linguistic term 

associated with the MFs are significant factors affecting the 

understandability of FLS [1], [10], [16], [22], [23]. 

Many metrics have been proposed in literature that 

measure understandability of MFs [8], [10], [16], [17], [24]. 

However, since understandability or interpretability depends 

on multiple factors, and understandability is extremely 

subjective and domain dependant, metrics for measuring true 

understandability are difficult to define [8], [10]. 

Fig. 1 shows three commonly used MFs defined for the 

input dimension X; a) triangular, b) trapezoidal and c) 

Gaussian. For a given input value x the membership degree 

for each MF )(xi , where i is the MF, can be calculated (See 

Fig. 1). The core or the center of the MF is defined as the set 

of values whose membership degree is 1: 1)(  xx i . 

Similarly, the footprint or the support of the MF is where the 

membership degree is greater than 0: 0)(  xx i . The 

core and the support of a MF can be expressed as: 
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Equations (1) and (3) describe the left and right boundaries 

of the core, respectively. Equations (2) and (4) describe the 

left and right footprint of the MF respectively. 

A Normal MF is defined as a MF that has a core, i.e. the 

membership degree is 1 for at least one point in the input 

dataset, and is considered to be a property for increased 

understandability [9], [8], [17]. For a given MF i, Normality 

can be expressed as: 
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where, normi is the normality for i
th

 MF. Thus, if a given MF 

has a core, then normality will be 1. 

It is universally agreed that MFs should be monotonic and 

convex for increased understandability [3], [9], [8], [23], [24]. 

In [23] this property is referred to as Unimodality, which can 

be expressed as: 
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Dataset Coverage is also considered by many as a simple 

yet important metric for understandability [8], [17], [24]. This 

metric states that the range of the input dataset should be 

covered by at least one MF to a certain degree: 
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where, 10   and can be preset by the user, and pi

where p is the set of MF for input dimension X. 

Relatively moderate number of MFs for each dimension is 

also important for understandability [7], [8], [17]. This 

characteristic is simplified by authors in [7] as Partition 

Granularity by: 
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where, p is the number of MFs for a given dimension, and it is 

assumed that 2p . 

For increased understandability, generated MFs should be 

sufficiently distinct from each other, with limited overlap [8], 

[17], [24]. This is typically achieved by a threshold value for 

intersection points: 
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where, 10  and can be preset by the user, and p is the 

number of MFs. 

The measure Complementarity [8] is also closely related to 

the above measure. Complementarity is a property where for 

a given input value, the sum of all membership degrees is 

close to 1, and can be expressed as:  
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where, 0 and can be preset by the user 

Another measure used to identify the distinctness of MFs is 

 
 

Fig. 1 Typically used Fuzzy Membership Functions (MF) 



 

 

 

the property of Separation. This property states that the cores 

of adjacent MFs must be separated by at least  : 
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Symmetry of generated MF is also considered as a relative 

measure of understandability as it reflects of universal duality 

and natural relativity of terms [8], [25]. In this paper, the 

measurement, Relative Dissymmetry is proposed to measure 

symmetry in MFs and is formalized as: 
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where, dissi is the dissymmetry measure for i
th

 MF, and the 

dissymmetry measure can be normalized for a given MF as: 
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The dissymmetry measure cannot be calculated for 

shoulder MFs that describe extremes (minimum and 

maximum) of data. 

A threshold can also be set for the membership degree of a 

MF inside the core of another MF [8], [16]. This property can 

be formalized as: 
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where, 10   and can be preset by the user. Typically   is 

set to zero [16], meaning membership degree of other MFs is 

zero within the core of a given MF. 

Finally, in this paper, a measurement is introduced that 

measures the compliance of a MF to the data explained by it. 

This measure is called Compliance and can be measured by 

utilizing a normalized histogram [26] containing n bins. The 

normalized degree of compliance for i
th

 MF icomp  can be 

formalized as: 
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where, )(xh


 is the maximum possible value of the 

histogram for the input value x, which in the case of the 

normalized histogram is 1. And,  
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where, h(x) is the height of the normalized histogram for 

value x. 

The normalized degree of compliance is 1 when the MF 

fully complies with the data and decreases as the MF does not 

comply with the data. 

B. Related Work 

Several authors have proposed methods for generating 

understandable MFs in recent years [8]. Some have used 

several of the above mentioned understandability 

(interpretability) measures. Typically the proposed methods 

used can be separated into three main categories: cluster 

based methods, evolutionary methods, and combined 

methods with pre-set MFs. 

A constrained Fuzzy C-Means (FCM) based method is 

used in [3] generating more understandable MFs. Similarly, a 

modified FCM based method is used in [23]. The authors 

utilize clustering to generate MFs and then combine similar 

MFs for increased understandability in [4] and [27]. 

Clustering and cluster distances are used to derive 

understandable MFs in [24]. However, clustering based 

methods has several disadvantages as well as advantages [3]. 

In [1] the authors use hedge algebra based semantics to 

assign linguistic terms to information granules and utilize 

simulated annealing to optimize MFs. Symmetrical MFs are 

generated using evolutionary algorithms in [25]. In [16] and 

[17] evolutionary algorithm based approaches are proposed 

that make use of understandability metrics.  

The authors use preset MFs, and tune these using lateral 

movements in [28]. In [14] and [15] the authors propose an 

algorithm that utilizes pre-shaped MFs along with Fuzzy 

C-Means (FCM) clustering to generate transparent MFs. 

Similar method that also utilizes evolutionary algorithms is 

proposed in [13] and [29].  

Pre-set MFs require the use of experts and may be 

sub-optimal as mentioned in Section I. The primary drawback 

of clustering and evolutionary algorithm based methods is the 

increased computational complexity. 

In contrast, the presented method utilizes a deterministic, 

statistical approach to identify the optimal parameters for 

MFs. Furthermore, the presented method utilizes several 

understandability metrics to derive and fine-tune these 

parameters. This ensures that the understandability of 

generated MFs is maintained, while describing the data 

distribution. 

III. DATA DRIVEN METHOD FOR GENERATING 

UNDERSTANDABLE MEMBERSHIP FUNCTIONS 

The presented data driven, statistics based MF generation 

method is a 5 step process: Step1: Generate initial prototypes, 

Setp2: Refine generated prototypes, Step3: Generate initial 

MFs, Step4: Remove unwanted MFs, Step5: Refine 

generated MFs. Each step is focused on increasing the 

understandability of the MFs while maintaining the ability to 

describe the data properly. Prior to the MF generation process 

the dataset is normalized between 0 and 1. Detailed 

descriptions of each step are given below. 

Step1: In the first step initial prototypes for MFs are 



 

 

 

generated. The first prototypes are the sample mean dataX  , 

minimum, mindata and maximum, maxdata values of the 

dataset. The Students’ t-test for unequal sample size and 

unequal variance [30] was used to identify portions of the 

data that are significantly different from the mean, to generate 

secondary prototypes. The Students’ t-test for two mean 

values 1x  and 2x  can be expressed as: 
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where, s and n are standard deviation and sample size of each 

sample, respectively. If the t value is greater than the critical t 

value then the null hypothesis is rejected, meaning the two 

sample means are significantly different from each other. 

Using the Student’s t-test two prototypes to the left and two 

prototypes to the right of the sample mean are generated. 

These are formalized as: 
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Similarly,  
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where, PBL and PML are two secondary prototypes to the left 

of the sample mean and PBR and PMR are two prototypes to 

the right of the sample mean. These prototypes signify 

portions of the data that are significantly different from the 

initial prototype (sample mean). 

This process is iterated to the left of PBL and to the right of 

PBR using PML and PMR as the initial prototypes, until the 

newly generated prototypes surpasses the minimum and 

maximum values. 

Step2: In this step the generated initial prototypes are 

refined. First similar prototypes are combined. Prototypes 

within   range of each other are averaged: 
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where k is the set of generated prototypes, Pi and Pj are 

prototypes Pn is the new prototype and   is a preset constant, 

and  denotes the absolute value. Once this is done, Pi and 

Pj are removed from k and Pn is added to k. 

Secondly, prototypes within   of the minimum and 

maximum values are removed, retaining only the minimum 

and maximum values. This is done because it is generally 

accepted that data extremes must be prototypes of some MFs 

[24]. 
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Thirdly, the remaining prototypes are grouped to satisfy the 

separation property described in (11): 
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where, G is a set of prototypes.  

By performing the grouping, portions of the data that are 

separable, but leads to higher granularity, are combined. 

During grouping if a group contains more than three 

prototypes, prototype that is closest to the left or right 

boundary of the group is deleted. This grouping process is 

performed until all prototypes satisfy the (25) and (26). 

Step3: Once the prototypes are refined, the initial MF are 

generated. For each of the generated groups G a MF is 

generated. The cores of the MFs are defined using the 

minimum and maxim prototypes of a group G: 
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where, i is the generated MF and M is the set of generated 

groups in Step2. The support of the i
th

 MF is defined as: 
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Thus, the left support of the i
th

 MF SL,i is the prototype to 

the immediate left of the left core CL,i, and similarly the right 

support SR,i is the prototype to the immediate right of the right 

core CR,i. 

Step4: In this step the some of the generated MF are 

removed or combined to decrease granularity and increase 

understanding. Average understandability is defined for the 

fuzzy system which is used to identify MFs that will be 

removed or combined. The average understandability, AU is 

defined in terms of normalized dissymmetry (13) idiss  and 

normalized degree of compliance (15) icomp , because 



 

 

 

other metrics are already fulfilled: 
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where M is the number of MF in the system, and AU is the 

averaged understandability.  

When a MF is deleted, the prototypes that were used to 

generate the core of that MF are also deleted. For certain 

occasions detailed below, MFs are combined. This is done by 

creating a new MF by defining the core as the leftmost and 

rightmost prototypes of the MFs that are combined: 
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where, i and j are the MFs that are being combined and n is 

the new MF that is generated. 

The MFs generated using the minimum and maximum 

prototypes of data are not deleted [24]. The remaining MFs 

are deleted or removed as follows: remove MFs that increases 

AU while the number of MF is greater than  . If the number 

of MFs is still greater than   then identify MF that reduces 

AU the least, and combine it with the closest MF using (32) 

and (33), until the number of MF is less than or equal to  . 

The constants   and   are preset such that 2 . 

This ensures that the generated fuzzy system contains at least 

  MFs and less than or equal to   MFs. 

Step5: Finally, the spread of the remaining MFs are 

adjusted to fulfill criteria (7), (9), (10) and (14). This is 

achieved using the same method in Step3 using (29) and (30). 

IV. EXPERIMENTAL RESULTS 

The presented method was tested on several benchmark 

datasets with known distributions and a real world dataset. In 

order to verify the understandability of the generated MF, the 

compliance of each MF to the understandability metrics 

presented in Section II was used.  

In [5] Takagi and Sugeno stated that in order to claim the 

validity of a generated fuzzy system and the linguistic terms, 

the MFs must remain same in the presence of noise. Thus, in 

order to evaluate the validity of the presented system, 

different levels of noise were introduced to the dataset and 

MFs was generated. These MFs were then compared to the 

MFs generated without noise by using the following measure: 
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where, i and j are the MF that are being compared, and i is 

from the set of original MF and j is from the set of MF created 

with noisy data. The similarity value, sim is 1 when i and j are 

completely overlapped and 0 when there is no overlap. 

The similarity of the fuzzy system was calculated using: 
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where, ori is set of MF generated using the original data and 

noise is the set of MF generated using the noisy data. pori is 

the number of MF in ori and pnoise is the number of MF in 

noise.  

Noise from Signal-to-Noise Ratio (SNR) 20dB to SNR 
10dB was introduced to the original data to generate the noisy 

data, where SNR is defined as: 
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where, Asignal and Anoise are amplitude of the input and 

amplitude of the noise, respectively. 

The preset values as tested for the understandability 

constraints presented in Section II are shown in Table I. Using 

these preset values four different benchmark datasets were 

tested. Each dataset was generated using a random number 

generator to follow a known distribution and contained 2000 

data points. The tested known distributions were: uniform 

distribution, normal distribution, bivariate normal 

distribution, and right skewed distribution. Fig. 2 shows the 

initially generated prototypes and final MF for each 

benchmark dataset. 

TABLE I 

PRESET CONSTRAINTS 

 

Description Symbol Value 

Dataset coverage   0.2 

Maximum overlap point for two MF   0.7 

Complementarity   0.15 

Core Separation   0.15 

MF inside the core of another MF   0 

Hard threshold for the number of MF   5 

Soft threshold for the number of MF   3 

 

TABLE II 
SIMILARITY OF GENERATED FUZZY SYSTEMS AT DIFFERENT LEVELS OF NOISE  

 

Dataset 

Noise Level (SNR) 

20dB 14dB 12.5dB 11dB 10dB 

Benchmark Uniform 1 0.99 0.97 0.98 0.85 
Benchmark Normal 0.99 0.97 0.9 0.87 0.82 

Benchmark Bivariate 0.98 0.94 0.91 0.86 0.8 

Benchmark Skewed 0.99 0.91 0.85 0.81 0.73 
Real-world Zone1 0.9 0.9 0.87 0.8 0.81 

Real-world Zone2 0.99 0.93 0.88 0.85 0.8 

Real-world Zone3 1 0.92 0.88 0.79 0.79 

 



 

 

 

 

   
 (a) (b) 

   
 (c) (d) 

   
 (e) (f) 
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Fig. 2 Initial prototypes for (a) uniformly distributed data, (c) normally distributed data, (e) bivariate normal data, and (g) right skewed data, along with 

generated MF for, (b) uniformly distributed data, (d) normally distributed data, (f) bivariate normal data, and (h) right skewed data.  



 

 

 

For further validation, the presented method was tested on 

a real-world dataset obtained form an office building 

containing temperature of 3 zones. These zones were selected 

for their varying distributions of data. The dataset contained 

temperature values collected every 30 minutes for a period of 

a month. The initial prototypes and the generated MFs for the 

real world dataset are shown in Fig. 3. 

For all cases tested, all understandability constraints given 

in Section II were met. This is because the presented method 

ensures each of the understandability constraints is met 

during the MF generation process. 

The similarity of the generated fuzzy systems for different 

noise levels is shown in Table II. Even for high noise levels, 

the generated fuzzy systems are close to the ones generated 

for the original dataset, thus confirming that the generated 

fuzzy systems are valid and describe the data consistently. 

V. CONCLUSION 

This paper presented a novel, data driven, statistical 

method for generating understandable Fuzzy Membership 

Functions (MFs) that describe data. The presented method 

uses classical statistical methods to identify initial MF 

prototypes. Two understandability measures were introduced. 

These, along with several other understandability metrics 
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Fig. 3 Initial prototypes for real world zone temperature data - (a), (c) and (e), along with generated MF - (b), (d) and, (f)  



 

 

 

were used to generate and fine-tune MFs for increased 

understandability. 

The presented method was tested on several benchmark 

datasets with known distributions as well as real-world 

datasets. The presented method was shown to produce 

meaningful MFs that describe the data while maintaining 

high degree of understandability. 

As future work, the presented method will be compared to 

other methods for understandable MF generation. The 

presented method will also be expanded further using more 

advanced statistical methods and will extended to 

accommodate the generation of Gaussian or Bezier MFs. 

Furthermore, the presented method can also be extended to 

facilitate the generation of type-2 MFs. Hybrid of classical 

methods and the presented method can be used to improve 

accuracy in classification and control system FLS while 

maintaining high levels of understandability. 
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