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 

Abstract—— Resiliency and improved state-awareness of 

modern critical infrastructures, such as energy production and 

industrial systems, is becoming increasingly important. As 

control systems become increasingly complex, the number of 

inputs and outputs increase. Therefore, in order to maintain 

sufficient levels of state-awareness, a robust system state 

monitoring must be implemented that correctly identifies system 

behavior even when one or more sensors are faulty. 

Furthermore, as intelligent cyber adversaries become more 

capable, incorrect values may be fed to the operators. To address 

these needs, this paper proposes a Fuzzy-Neural Data Fusion 

Engine (FN-DFE) for resilient state-awareness of control systems. 

The designed FN-DFE is composed of a three-layered system 

consisting of: 1) traditional threshold based alarms, 2) anomalous 

behavior detector using self-organizing fuzzy logic system, and 3) 

artificial neural network based system modeling and prediction. 

The improved control system state-awareness is achieved via 

fusing input data from multiple sources and combining them into 

robust anomaly indicators. In addition, the neural network based 

signal predictions are used to augment the resiliency of the 

system and provide coherent state-awareness despite temporary 

unavailability of sensory data. The proposed system was 

integrated and tested with a model of the Idaho National 

Laboratory’s (INL) hybrid energy system facility known as 

HYTEST. Experimental results demonstrate that the proposed 

FN-DFE provides timely plant performance monitoring and 

anomaly detection capabilities. It was shown that the system is 

capable of identifying intrusive behavior significantly earlier 

than conventional threshold based alarm systems. 

 
Index Terms— Artificial Neural Networks, Data Fusion, Fuzzy 

Logic Systems, Resilient Control Systems, State-Awareness 

 

I. INTRODUCTION 

ESILIENCY and enhanced state-awareness are highly 

desirable properties of modern control systems. It is of 

paramount importance that critical infrastructures, such as 

energy production and industrial systems, are equipped with 
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intelligent components for timely reporting and understanding 

of the status and behavioral trends of the control system. This 

goal can be achieved via complex system monitoring, real-

time system behavior analysis and timely reporting of the 

system state to the responsible human operators [1]. Here, the 

enhanced state-awareness is understood as set of diverse 

performance criteria such as cyber or intelligent analysis that 

is used to maximize the adaptive capacity of the system to 

respond to threats. 

As modern control systems become increasingly complex, 

operators rely on multiple heterogeneous sensors located at 

various different locations, to understand system behavior. If 

one or more sensors or communication pathways are disrupted 

critical system information maybe lost which leads to a 

lowered state-awareness. Therefore, in order to maintain 

complete state-awareness in such situations, various different 

component based methodologies are implemented such as 

redundancy. Similarly, as intelligent cyber adversaries become 

more and more capable and motivated, sensor “spoofing” 

maybe done to mask intrusion activities, where sensor values 

are manipulated before it is sent to the user. Such 

methodologies can be used to disrupt critical systems while 

keeping the system operators in the dark. This also leads to a 

reduced state-awareness of system operators.  

However, in these types of scenarios, advanced data-fusion 

techniques can be used. Data fusion techniques combine 

information from multiple heterogeneous sources, and utilize 

the inherent interdependencies within the data as well as 

system knowledge to achieve better understanding and thus 

improved state-awareness, than those achieved by a single 

sensor alone [2]-[7]. 

To address these issues, this paper proposes a novel 

architecture of Fuzzy-Neural Data Fusion Engine (FN-DFE) 

for increased state-awareness of resilient control systems [7]. 

The main purpose of the FN-DFE is to provide real-time 

monitoring and analysis of complex critical control systems. 

The improved control system state-awareness is achieved via 

fusing input data from multiple sources and combining them 

into robust system modeling methodologies and anomaly 

indicators. These anomaly indicators are then delivered to the 

operator via a Human Machine Interface (HMI). The proposed 

robust state-awareness architecture is based on the previously 

proposed anomaly detection methodology for advanced 
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control systems [7]. The proposed FN-DFE architecture uses 

Computational Intelligence (CI) algorithms such as Artificial 

Neural Networks (ANN) and Fuzzy Logic Systems (FLS) for 

system behavior modeling, prediction and anomaly detection 

[8]-[12].  

The proposed FN-DFE architecture consists of a dedicated 

data fusion module for each individual unit of the control 

system. Each module implements a three-layered system 

behavior monitoring system consisting of: 1) traditional 

threshold based alarms, 2) anomalous behavior detector using 

Self- Organizing Fuzzy Logic System (SOFLS), and 3) 

Artificial Neural Network (ANN) based control system 

modeling and behavior prediction. Both the SOFLS and the 

ANN predictor are trained offline on a set of recorded normal 

behavior data. The SOFLS is used to learn fuzzy rules that 

describe this normal behavior data. During the testing phase, 

individual fuzzy rules calculate the degree of similarity of the 

observed behavior with the previously known normal behavior 

patterns. The feed-forward ANN is used to forecast the future 

measurements for each sensor based on the previously 

observed history. This ANN based signal forecasting layer is 

used to augment the resiliency of the system and to provide 

coherent state-awareness in case of temporally unavailable 

sensory data. Furthermore, the predicted measurements are 

then retrospectively matched to the true observation and the 

prediction error is fused into a robust anomaly indicator using 

a fuzzy logic controller.  

The rest of the paper is organized as follows. Section II 

briefly describes related work. Section III provides high-level 

overview of the FN-DFE’s three-layered architecture. Section 

IV descries the implemented threshold based alarm system. 

Section V discusses the SOFLS based anomaly detection. 

Section VI focuses on the behavior prediction using artificial 

neural networks including the fuzzy logic based alarm 

generation. Finally, Section VII presents experimental results 

and the paper is concluded in Section VIII. 

II. RELATED WORK 

Early work related to CI-based nuclear power plant 

modeling shows the possibility of utilizing methodologies 

such as ANN to model plant behavior accurately [13], [14]. 

However, these works only focused on predicting very small 

number of dimensions and used low complexity models. 

Fuzzy logic has been previously used for monitoring 

sensory data and alarm processing in nuclear power plants in 

[15]-[19]. ANNs have been applied to nuclear reactor 

monitoring in [15], [16]. In [22], the fusion of Support Vector 

Machines (SVM) and Adaptive Neuro-Fuzzy Inference 

System (ANFIS) was used for fault detection and diagnosis in 

industrial steam turbines.  

Many other related CI-based approaches for plant 

monitoring can be found in literature. However, most of the 

approaches in literature focus on alarm generation and fault 

diagnosis.  

ANNs have been widely used for alarm detection and fault 

identification in nuclear power plants [23]. The authors use 

ANN to identify and classify transient behavior in nuclear 

power plants using ANN in [24]. In [23] the authors used 

ANN to identify previously seen and unseen malfunctions in 

nuclear power plants. Hadad et al. used optimized ANN 

architectures for fault diagnosis and dynamic fault 

identification [25]. Similar online fault diagnosis method 

using ANN for nuclear power plants was proposed in [26]. 

Fuzzy logic based fault diagnosis methodologies have also 

been proposed in literature [27]. 

The cyber-security of critical infrastructure control systems 

was also analyzed using fuzzy logic and artificial neural 

networks in [28], [29]. However, cyber-security aspect is 

mostly focused on network traffic analysis and other such 

methods to identify intrusions. In [30] the authors proposed a 

intrusion detection system by means of system state 

monitoring. The system proposed in [30] utilizes previously 

described system states and identifies system deviations for 

intrusion detection. 

An ANN based sensor validation architecture was proposed 

in [31] and was tested on EBR-II reactor simulation. In [32], a 

novel HyBUTLA algorithm for learning the behavior of 

hybrid (discrete and continuous) systems was used for 

identification of behavior models of industrial production 

processes. A pre-alarm system where alarms are generated to 

alert system operators of probable future changes in the 

system was proposed in [33]. 

Very little work has been focused on robust state-awareness 

schemes for operators of large scale systems using CI-based 

methodologies. Similarly, intrusion detection systems 

proposed are largely focused on network traffic monitoring or 

rely on identifying intruders by means of monitoring system 

behavior via sensors. Furthermore, majority of the previously 

published work was applied to small scale systems. In the 

presented work, the developed FN-DFE was integrated with a 

model of the INL’s hybrid energy testing facility called 

HYTEST [34], [35]. 

III. FUZZY-NEURAL DATA FUSION ENGINE – FN-DFE 

ARCHITECTURE 

This section provides a high level overview of the proposed 

FN-DFE architecture. This architecture is depicted in Fig.1. 

The system consists of three main blocks: knowledge base, 

online processing and system state identification. The 

knowledge base block is constructed offline based on the 

acquired normal training data and is used as a normal behavior 

model for on-line anomaly detection. The online processing 

block analyzes the incoming stream of sensory measurements. 

The input measurements are passed through a sequential three-

layered anomaly detection system. Finally, the full system 

behavior is identified and forwarded to the user interface. 

The first layer of the anomaly detection systems consists of 

known thresholds on the normal operating conditions. When 

the incoming measurements reach outside the normal behavior 

interval, an alarm is immediately reported. The second layer 

consists of SOFLS, which is trained offline to model the 

previously observed normal behavioral patterns. The online 

processing engine interprets each fuzzy rule of the FLS as a 

similarity measure between the current plant behavior and the 
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previously observed normal patterns. The third layer of the 

FN-DFE consists of ANN based behavior predictor, which 

processes the temporary previous history of plant’s behavior 

and predicts the expected near future behavioral patterns. In 

case of temporary unavailability of sensory measurements, the 

ANN predicted future values are used instead of the missing 

values to maintain coherent state awareness of the system. 

Thus for a given time-step, the available sensor data, or the 

predicted values are sent to each of the 3 layers 

simultaneously. If an alarm is produced at any of the 3 layers 

that alarm will be sent to the operator immediately, thus 

notifying the operator of abnormal system behavior. 

Furthermore, the predicted patterns are then retrospectively 

compared to the real plant behavior. Significant deviations are 

reported in form of prediction error vectors. The prediction 

error vector is fused into a scalar robust anomaly indicator by 

a fuzzy logic controller.  

IV. LAYER 1: THRESHOLD BASED ALARMS  

The first layer of the presented FN-DFE architecture is the 

traditional threshold based alarm system (See Fig. 1). This 

layer implements simple threshold based system state 

validation methodology. 

The knowledge base for this layer is known bounds of the 

system process, i.e. the minimum and maximum possible 

values for each sensor.  

Once sensor data is retrieved, a simple comparison with the 

known interval for normal operation is made. If the current 

sensor measurement is outside the normal operation interval 

an alarm is generated and immediately sent to the human 

operator. 

This method of alarm generation is extremely robust and has 

very low computational complexity, thus it is an ideal method 

for initial alarm generation. The traditional threshold based 

alarm generation method restricts the known system behavior 

into a multi-dimensional hypercube. However, potential 

unwanted system behavior can occur within this hypercube as 

well. Thus, layer 2 and layer 3 of the presented FN-DFE is 

implemented to identify these situations. 

V. LAYER 2: ANOMALY DETECTION WITH SELF-ORGANIZING 

FUZZY LOGIC SYSTEM 

This section describes the self-organizing construction of 

fuzzy logic system. Next, the second layer of the FN-DFE, 

which uses the SOFLS for anomaly detection, is discussed.  

A. Self Organizing Fuzzy Logic System (SOFLS) 

The proposed FN-DFE uses self-organizing algorithm for 

learning the structure and parameters of a fuzzy logic system. 

This method is inspired by the FLS structure learning 

algorithm previously used by Juang et al. [36], [37]. The 

advantages of this learning approach is that it automatically 

derives the structure of the FLS from the input data, it ensures 

continuous coverage of the input data points with fuzzy rules 

and it is suitable for large data sets, because the structure 

identification is performed during a single pass through the 

data. 

Initially, there are no rules and no fuzzy sets in the FLS. A 

fuzzy rule can be understood as a cluster in the input space 

and the degree of firing of this rule for an input pattern can be 

seen as a degree of belonging of this pattern to the cluster [36]. 

For an m-dimensional input vector Xt the SOFLS learning 

method can be summarized as follows: 

 

IF Xt is the first input THEN DO 

 {Generate new fuzzy rule for Xt} 

ELSE{ 

 FOR each pattern Xt DO{ 

  Find the rule RI with the maximum degree of firing: 
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Here, M(t) denotes the number of existing fuzzy rules at 

time t, ]1,0[ is a predefined threshold and the degree of 

firing of rule Ri can be calculated using the minimum t-norm 

operations applied to the rule antecedents as: 
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Fig. 1 Architecture of the proposed FN-DFE. 
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Here, k

jA is the jth antecedent fuzzy sets of the kth fuzzy rule 

and i

tx is the ith component of the input vector Xt. New fuzzy 

rules are generated by projecting the input pattern Xt into the 

input domain and generating a Gaussian membership function 

in each dimension by setting its mean in the jth dimension as 
j

t

j

tM xm )(
and its standard deviation to predefined spread 

parameter as  j

tM )(
.  

The threshold parameter   controls the number of clusters. 

Smaller values of  result in generating smaller number of 

clusters as more input patterns are assigned to already existing 

fuzzy rules with smaller membership. The spread parameter 

 determines the generalization capability of the model. 

Larger values result in Gaussian membership functions with 

greater spread covering larger areas around the input data.  

 

B. System Modeling Using SOFLS  

The traditionally used thresholds restrict the admissible 

system behavior into a multi-dimensional hypercube. As long 

as any anomalous plant behavior stays in this hypercube, the 

anomaly remains undetected. In order to alleviate this issue, 

the 2nd layer of the FN-DFE uses SOFLS for system modeling 

and behavior identification. The SOFLS is trained to detect 

deviations from a normal behavior model. 

The input vector tX  for the SOFLS training is constructed 

from the current measurements tW , the previous 

measurements 1tW  and the derivative of the sensory 

measurements 1 ttt WW : 

 

  tttt WWX   ,, 1  (3) 

 

The trained SOFLS models the topology of the normal data 

within the threshold hypercube. During the on-line processing 

stage, each fuzzy rule describes the similarity of an input 

vector with a specific region of the threshold hypercube. The 

strength of firing )( tR X
i

 of rule Ri can be computed using 

the minimum operator as in (2). In this application of system 

modeling, the output of each fuzzy rule is a singleton fuzzy set 

expressing the belonging of input pattern Xt to the normal 

behavior class. Hence, the output of a particular fuzzy rule is 

its own firing strength )( tR X
i

 . The output of all rules is 

aggregated using the maximum operator: 
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In this manner, the SOFLS computes the similarity of the 

input vector with the approved normal behavior training data. 

This similarity measure can be used to signal any deviations 

from the normal behavior model. 

Thus this type of system modeling is capable of identifying 

anomalous system behavior that might fall within the 

aforementioned hypercube of traditional threshold based 

system modeling. 

VI. LAYER 3: BEHAVIOR PREDICTION USING ARTIFICIAL 

NEURAL NETWORKS  

This section first briefly describes the structure and learning 

of feed-forward artificial neural network. Next, the 3rd layer of 

the FN-DFE, which uses the ANN for behavior prediction, is 

discussed.  

A. Feed-Forward Artificial Neural Networks  

A feed-forward ANN is composed of multiple 

interconnected layers, each consisting of several neurons. The 

training of ANN proceeds in a supervised manner. The 

gradient descent approach is used to optimize system 

parameters with respect to the error between the computed and 

the desired output. Here, a specific combination of the Error 

Back-Propagation and the Levenberg-Marquardt - EBP-LM 

algorithm was used [38]-[40].  

First, an input vector }...,,{ 1 m

ttt xxX  is provided to the 

input layer of ANN. The net input value of neuron i in layer 

1k  is calculated as the weighted sum of the input 

connections: 
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Here Sk denotes the number of neurons in layer k ,

),(1 jiwk
 is the weight of the connection from neuron j in 

layer k, )(1 ibk
 is the bias of neuron i and )( jak

 is the output 

from neuron j in layer k. 

The output of neuron i  in layer 1k  is: 
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 (6) 

 

Here 
1kf  is the activation function of neuron i. Typically, a 

sigmoidal activation function is used. 

For an ANN with L layers, the task of the EBP-LM 

algorithm is to minimize the total error:  
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Here P and M are the number of patterns and the number of 

outputs respectively, and dpm denotes the desired output. The 

weight update rule for the EBP-LM algorithm is derived from 

the Newton’s method using the Hessian and the gradient of 

system parameters. For the error function E, which is a sum of 

squares, the Hessian and gradient can be computed using the 

Jacobian of partial derivative of error with respect to the 

weights. Details of the algorithm can be found in [40]. 

 

B. Artificial Neural Network Based Signal Forecasting 

The dynamics of the sensor measurements in a complex 

control system are determined by the basic underlying 

processes. For example, in a nuclear power plant these 

measurements are governed by complex physical and 
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chemical processes. Because such complex physical process 

contain inherent sources of uncertainties such as unknown 

non-linear multi-dimensional dependencies and measurement 

noise, the dynamics are difficult to model using conventional 

mathematical modeling techniques. However, the temporal 

behavioral patterns of the system can be modeled using 

computational intelligence techniques such as the feed-

forward ANN. In the 3rd layer of the proposed FN-DFE, the 

ANN based signal forecasting block, that was first presented 

in [7], is used to forecast the near future behavior of the plant 

based on the temporal historical data. 

Fig. 2 depicts the implemented ANN based signal 

forecasting block. The input vector to the ANN is constructed 

from the previous three sensory measurements and the 

previous two measurements derivative vectors as follows: 

 

  121 ,,,,   tttttt WWWX  (8) 

 

While the derivative terms, 1,  tt  represent redundant 

information already in the input vector, the derivative terms 

were included as they reduce the total number of neurons as 

they represent a vital relationship between the other input 

vectors. 

A unique ANN was trained offline for forecasting the 

values of each individual sensor. The future expected p values 

of the sensory readings are assigned as the desired output 

vector tY . Once the set of ANNs are trained, a prediction 

vector tŶ  that predicts the future p values of all available 

sensors based on the history of the previous measurements is 

produced. 

This prediction is then used as a model of the system 

behavior in the future p steps. In case of lost sensor values, 

this prediction can be used temporarily so that state-awareness 

of operators is not affected.  

After obtaining the real p future measurements from the 

actual plant, the predicted values can be matched against the 

observations and an error vector E can be computed. For the ith 

sensor the prediction error 
i

te for the expected signal 

forecasted at time t can be calculated as follows: 
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Here, j

ty is the jth component of the prediction vector tŶ , 

and i

jtx 
is the real measurement value for the ith sensor at time

)( jt  . Hence, the ANN based signal forecasting block 

generates a prediction error vector Et . Each vector element is 

the average prediction error for a specific sensor.  

This prediction error is an indication that the sensor values 

being reported are not the values that the system should have 

given normal operating conditions. Thus this type of behavior 

may indicate faulty sensors that are reporting incorrect values 

or a cyber attack where actual sensor values are substituted by 

incorrect values. In both cases the state-awareness of operators 

is severely hindered. Therefore, the proposed FN-DFE 

identifies this type of behavior and produces an alarm. 

However, calculating this alarm vector does not necessarily 

contribute to the enhanced state-awareness of the operator [7]. 

In order to avoid the alarm flooding problem, this error vector 

is transformed into a robust scalar anomaly indicator by a 

fuzzy logic controller. 

 

C. Fuzzy Logic based Alarm Generation  

Generating a small set of robust and easy-to-understand 

alarms increases the state-awareness of operators considerably 

[7]. For a specific control system module, the ANN based 

signal forecasting block generates a prediction error vector. In 

the proposed FN-DFE, a Fuzzy Logic Controller (FLC) is 

implemented to fuse the prediction error vector into a robust 

scalar anomaly indicator. 

The proposed FN-DFE uses the two-input FLC presented in 

[7]. The first input is the maximum error emax from the 

calculated prediction based error vector. The second input is 

the absolute value of the current gradient of the sensory input 

with the highest prediction error gmax. After normalization, 

both inputs are fuzzified using 2 sigmoid fuzzy sets Small, 

High and one Gaussian fuzzy set Medium as depicted in Fig. 

3(a) and Fig. 3(b). Similarly, the output of the anomaly 

indicator is also modeled using 2 sigmoid fuzzy one Gaussian 

fuzzy depicted in Fig. 3(c). These outputs express the anomaly 

level of the obtained sensory measurements. 

Table I shows the rule base with 9 linguistic fuzzy rules. 

The respective output control surface is depicted in Fig. 4. The 

used fuzzy rules suppress the amplitude of the produced 

anomaly indicator when a significant system transient is 

observed. The rationale behind this design is that it is more 

likely to encounter a prediction error when the plant is in a 

dynamic transient behavior. However, prediction error 

generated during a steady system behavior is a strong 

indication of an anomaly. 

VII. EXPERIMENTAL RESULTS 

This section presents experimental testing of the 

implemented FN-DFE integrated with the HYTEST plant 

monitoring. Four test scenarios have been considered: 1) 

 
 

Fig. 2 ANN based signal forecasting component of DFE. 
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normal plant behavior, 2) control system behavior prediction 

when no sensor data is received, 3) intrusion with sensor data 

substitution, 4) plant behavior with faulty components. 

A. HYTEST – Hybrid Energy System Facility Test Bed 

This section describes the hybrid energy system testing 

facility known as HYTEST, which was used as the 

experimental test-bed for the developed FN-DFE. The actual 

test-bed depicted in Fig. 5 consists of Matlab Simulink model 

of the INL’s HYTEST process. The HYTEST is a testing 

facility for hybrid energy systems composed of tightly-

coupled chemical processes [34], [35]. The system is 

composed of interconnected units such as chemical reactors, 

heaters, condensers, storage tanks or compressors. Each 

HYTEST unit is equipped with a suite of sensors measuring 

its physical state (See Fig. 5). 

The overall HYTEST system is composed of 16 units (some 

not pictured in Fig. 5) with 9 sensors in each unit (e.g. 

temperature, pressure or flow rate sensors). For each unit, a 

separate FN-DFE module was implemented. Altogether 144 

ANNs were trained to forecast the future behavior of the plant. 

Due to the limited space, this section only demonstrates the 

experimental testing of the FN-DFE on a selected HYTEST 

component – a chemical reactor PBED2 (See Fig. 5). 

The training data set composed of normal behavior 

transients, where the temperature set point on the PBED2 

controller was adjusted by {-100K, -75K, -50K, -25K, 0K,  

25K, 50K, 75K, 100K}. The SOFLS was trained with 7.0 . 

This value was experimentally determined to provide a 

compromise between accuracy and the number of generated 

fuzzy rules. In total 94 fuzzy rules were created by the SOFLS 

learning method. Set of 9 ANNs were trained to predict the 

future 4p  sensory readings. Each ANN had 45 inputs as in 

eq. (8), and contained 2 hidden layers with 20 and 10 neurons, 

respectively. This architecture of the ANN was selected by 

trial and error process as a compromise between the size of the 

model and the accuracy of the predictions. 

 

B. Test Scenario 1: Normal Behavior 

In the first test case, the FN-DFE system was used for 

system monitoring in a normal operating transient. The 

purpose of this test was to verify that 1) the FN-DFE correctly 

learns the normal behavior model, 2) no alarms are generated 

when the system is at normal operation, and 3) the set of 

ANNs is capable of correctly predicting the future sensory 

measurements.  

       
(a) (b) (c) 

Fig. 3 Input fuzzy sets (a), (b) and output fuzzy sets (c) for the prediction error based anomaly indicator FLC. 

  

 

 
 

Fig.4 Fuzzy logic control surface of the anomaly indicator. 

  

TABLE I 

FUZZY RULE TABLE FOR ALARM SYNTHESIS 

  emax
 

  Low Medium High 

g
m

a
x
 Low Low High High 

Medium Low Medium High 

High Low Medium Medium 

 

 

 
 

Fig.5 Basic block diagram of the INL HYTEST system 
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For testing normal operating transient behavior, the PBED2 

temperature set point was increased by 62.5K at time t=300s 

(See Fig. 6(a)). It should be noted that this temperature 

gradient was not part of the training data set and constitutes 

previously unseen testing data. 

The comparison of the actual and the predicted sensory 

readings for four selected sensors can be seen in Fig. 6(a)-(d). 

It can be seen that the change in the set point resulted in an 

increase of temperature of the reactor (Fig. 6(a)). At the same 

time the concentration of H2O in the gas significantly dropped 

(Fig. 6(c)) and the pressure also decreased slightly (Fig. 6(b)).  

Fig. 6(e)-(f) then show the aggregated robust prediction 

error indicator and the SOFLS anomaly indicator. Fig. 6(e) 

depicts the prediction error generated from the fuzzy alarm 

generation, using the maximum error and maximum gradient. 

The generated prediction error is below the alarm threshold. 

Thus an alarm is not generated in this normal operation 

scenario. Similarly, Fig 6(f) shows that the SOFLS similarity 

        
 (a) (b) 

 

        
 (c) (d) 

 

       
 (e) (f) 

Fig. 6 ANN prediction of temperature (a), pressure (b), H2O concentration (c) and flow rate (d) sensors. ANN prediction error alarm (e) and SOFLS 

similarity based alarm (f). 

  

          
 (a) (b) 

Fig. 7 ANN prediction of temperature (a) and H2O concentration (b) during normal transient on PBED2 with temporary unavailable temperature sensor data. 
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indicator shows high similarity to observed values and does 

not go below the similarity threshold. Thus, the FN-DFE 

correctly accepted the transient normal operating procedure 

and no alarm was generated. 

 

C. Test Scenario 2: No Sensor Data Received 

Next, the performance of the presented FN-DFE when 

sensor readings are temporary unavailable was investigated. 

Typical real world scenario might be faulty sensor network 

communication failure. In this experiment the data from the 

temperature sensor was unavailable from time t=400s to time 

t=1000s.  

Since the temperature reading is utilized by all ANN 

predictors for forecasting the signal from all sensors, such 

network failure would completely disable the FN-DFE. 

However, in case of unavailability of the sensory data, the FN-

DFE automatically uses the previous ANN signal prediction in 

place of the real data, thus maintaining approximated but 

coherent state-awareness of the system. 

This property is demonstrated in Fig. 7, which displays the 

signal predictions for the temperature and the H2O 

concentration sensors. The dashed vertical lines mark where 

the temperature sensor data was unavailable. It can be 

observed, that both the approximated prediction of the 

temperature and the selected H2O concentration sensor 

maintained coherent state indication for the time of temporary 

unavailability of the sensory readings. 

Thus, the operators were able to identify system state even 

when the sensor data was temporarily unavailable, thereby 

maintaining the state-awareness of the system. 

 

D. Test Scenario 3: Sensor Data Substitution  

Next, the detection of a potential cyber-attack where 

attackers have taken control of one or more critical systems 

and sensor data is being substituted with incorrect values, as 

with the case of Stuxnet [41], was investigated. 

In this scenario, an intruder gained network access to the 

control system of the reactor and starts linearly increasing the 

power to the chemical reactor heaters in an attempt to overheat 

        
 (a) (b) 

 

        
 (c) (d) 
 

       
 (e) (f) 

 

Fig. 8 ANN prediction of temperature (a), pressure (b), H2O concentration (c) and flow rate (d) sensors. ANN prediction error alarm (e) and SOFLS similarity 
based alarm (f). 
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the systems at time t=300s. Furthermore, to disguise the attack 

from the operator, the intruder manipulates the values of the 

temperature sensors and supplies a faulty constant temperature 

reading to the system. 

The comparison of the value received from the sensor and 

the predicted sensory readings can be seen in Fig. 8(a)-(d). It 

can be observed in Fig. 8(a), the measurement, i.e. the value 

returned from the temperature sensor is constant at 1100K. 

However, the control changes performed by the intruder 

results in system state changes such that the predicted value of 

the temperature start diverging from the manipulated 

measured value. Fig. 8(a) shows each of the 4 ANN 

predictions diverging significantly from the spoofed value. 

Fig. 8(e)-(f) then show the aggregated robust prediction 

error indicator and the SOFLS anomaly indicator. It can be 

seen that while the SOFLS still indicates high similarity of the 

manipulated incorrect sensor values with normal behavior 

until reporting a similarity alarm at time t=1010s, the 

significantly deviating ANN prediction cause a prediction 

alarm at time t=710s. For a comparison, the conventional 

threshold based alarm triggers at time t=1420s. The FN-DFE 

thus provides 710s earlier alarm indication than the traditional 

threshold based alarm. 

The prediction error produced by the ANN is driven by the 

previously learnt model of the system dynamics. While the 

attacker was able to change the values returned by the 

temperature sensor to cover the heating of the reactor, this 

change of the plant state also affected other measured 

variables, such as the concentration of H2O in Fig. 7(c). These 

additional variables caused the ANN predictor to forecast an 

expected sharp temperature gradient, which is manifested by 

the diverging temperature readings predictions in Fig. 7(a). 

Since these did not match the manipulated temperature values 

that were sent from the sensor, a prediction alarm was 

reported. 

 

E. Test Scenario 4: Component Failure Detection 

Finally, a scenario where a component has failed and the 

system is deviating from normal operating parameters, was 

investigated. 

         
 (a) (b) 
 

        
 (c) (d) 

 

       
 (e) (f) 
 

Fig. 9 ANN prediction of temperature (a), pressure (b), H2O concentration (c) and flow rate (d) sensors. ANN prediction error alarm (e) and SOFLS similarity 

based alarm (f). 
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The FN-DFE was tested on a scenario of performing a 

normal operating procedure by decreasing the temperature set 

point by 50K at time t=300s. During this transient, the cooler 

component COOL1 neighboring the PBED2 component was 

malfunctioning with a cooling control signal “stuck” at a 

constant value irrespective of the dynamic transients. 

The comparison of the actual and the predicted sensory 

readings for COOL1 can be seen in Fig. 9(a)-(d). Fig. 9(e)-(f) 

then show the aggregated robust prediction error indicator and 

the SOFLS anomaly indicator. It can be seen that the observed 

behavior is immediately marked at time t=370s as anomalous 

by the SOFLS. Shortly after at time t=410s follows the ANN 

prediction alarm due to high prediction errors of the ANN 

model. Note, that the conventional threshold based alarm did 

not trigger because the plant remained in the interval of 

normal behavior. 

This early alarm reporting is triggered by the modified 

dynamics of the system due to the stuck controller component 

for COOL1 unit. This modification caused a significant 

divergence of the recorded plant’s behavior and the previously 

learnt normal behavior model. 

VIII. CONCLUSION 

This paper presented the design of a Fuzzy-Neural Data 

Fusion Engine (FN-DFE) for enhanced state-awareness of 

resilient hybrid energy systems. The implemented FN-DFE 

consists of a three-layered system behavior monitoring system 

consisting of: 1) traditional threshold based alarms, 2) 

anomalous behavior detector using self organizing fuzzy logic 

system, and 3) Artificial Neural Network (ANN) based control 

system modeling and behavior prediction. The improved 

control system state-awareness is achieved via fusing input 

data from multiple sources and combining them into robust 

system modeling and anomaly indicators.  

The proposed FN-DFE was integrated with a model of 

INL’s HYTEST hybrid energy systems testing facility. It was 

shown that it can provide timely plant performance monitoring 

and anomaly detection capabilities. It was demonstrated that 

the neural network based signal predictions can be used to 

augment the resiliency of the system and provide coherent 

state-awareness despite temporary unavailability of sensory 

data. In addition, it was also shown that the system is capable 

of robust alarm reporting significantly earlier than 

conventional threshold based alarm systems.  

Future work includes improving the ANN based behavior 

prediction model by utilizing data preprocessing steps such as 

outlier detection. Furthermore, the proposed system can be 

coupled with advanced Fault Detection and Isolation (FDI) 

methodologies to further enhance the state-awareness of 

system operators. 
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