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Abstract—Brain Computer Interfaces (BCI) have gained 

significant interest over the last decade as viable means of human 

machine interaction. Although many methods exist to measure 

brain activity in theory, Electroencephalography (EEG) is the 

most used method due to the cost efficiency and ease of use. 

However, thought pattern based control using is difficult due two 

main reasons; 1) EEG signals are highly noisy and contain many 

outliers, 2) EEG signals are high dimensional. Therefore the 

contribution of this paper is a novel methodology for recognizing  

thought patterns based on Self Organizing Maps (SOM). The 

presented thought recognition methodology is a three step 

process which utilizes SOM for unsupervised clustering of pre-

processed EEG data and feed-forward Artificial Neural 

Networks (ANN) for classification. The presented method was 

tested on 5 different users for identifying two thought patterns; 

“move forward” and “rest”. EEG Data acquisition was carried 

out using the Emotiv EPOC headset which is a low cost, 

commercial-off-the-shelf, noninvasive EEG signal measurement 

device. The presented method was compared with classification 

of EEG data using ANN alone. The experimental results show an 

improvement of 8% over ANN based classification. 

Keywords— Brain Computer Interface; Emotiv EPOC; EEG; 

SOM; ANN 

I. INTRODUCTION  

Brain Computer Interfaces (BCI) are communication 
systems where humans interact with external devices using 
merely their brain activity [1], [2]. Therefore BCI enables 
humans to control machines without any peripheral muscular 
activity [3] ,[4]. BCIs can be of immense benefit to people who 
suffer from severe physical imparities by providing them with 
a method to interact with machines [5]-[7], design of prosthetic 
devices that can be controlled by thought [8]-[10]  etc. Further, 
it has been shown that BCI can be used for tele-operation of 
robots [1], [11], gaming [12], [13] etc.  

Theoretically, brain activity monitoring for BCI can be 
carried out by several measurements such as; electric field of 
brain (EEG), magnetic field of brain (MEG), functional 
magnetic resonance (fMRI), position emission tomography or 
functional near-field infrared spectroscopy(fNIR) [4], [14]. 
However, in practice, Electroencephalography (EEG) signal 
measurement is the most used method used for BCI due to the 
low cost measurement set up and low demanding technical 
requirements [4], [15]. Extensive research on EEG based BCI 
and modern technological advancements has resulted in 

development of low cost consumer grade EEG-BCI devices. 
Emotive EPOC [16], Neuroski Mindwave [17] and Myndplay 
BrainBand [18] are existing examples for such consumer grade 
hardware. 

The accuracy of an EEG based BCI largely depends on its 
ability to identify different thought patterns of the user, since 
those thought patterns are transferred into commands [19]. The 
thought pattern identification process relies on the performance 
of the classification algorithm used [19]. EEG data are highly 
noisy and multi dimensional [4], [19] and can contain noise 
such as muscle movements, eye movements, eye blinks making 
it extremely difficult to identify the portion of signal pertaining 
to the intended BCI command [19].  

Researchers have proposed various applications for EEG 
based BCIs. In [1], the authors proposed a BCI for mobile 
robot control. The authors investigated the feasibility of using a 
consumer grade EEG-BCI device and concluded by stating it is 
possible but significant improvements to the classification 
algorithm should be made. Various different classification 
methodologies have been explored in the past for different 
applications. In [20], the authors have proposed an EEG 
classification method which uses Support Vector Machines as 
the EEG classifier. Similarly, in [21], the authors have used 
Support Vector Machines based EEG classification for 
identifying epileptic seizures. The authors used a neural 
network classifier optimized with a genetic algorithm for EEG 
based BCI for wheelchair control in [22]. In [8], the author 
used Self Organizing Maps combined with Auto-regressive 
spectrum to distinguish between hand and foot movement 
through EEG classification.  

This paper presents a methodology for identifying specific 
thought patterns which enables brain activity based mobile 
robot control that utilizes a combination of Self-Organizing 
Maps (SOM) [24], and feed-forward Artificial Neural 
Networks (ANN) [23] for thought patter recognition. The 
presented methodology can be divided into 4 steps: 1) data 
acquisition, 2) data pre-processing, 3) unsupervised clustering 
by SOM, and 4) classification by ANN. The SOM is used to 
cluster the pre-processed data in an unsupervised manner, and 
a separate ANN is trained for each of the clusters in the SOM 
which perform the final classification of the data. 

The thought pattern identification method presented in this 
paper was implemented for recognizing two thought patterns; 
“move forward” and “rest” and was tested on 5 healthy 



individuals. Emotiv EPOC neuroheadset [16], which is a low 
cost, commercial-off-the-shelf, non-invasive EEG device, was 
used for EEG data acquisition. Furthermore, the presented 
methodology was compared to a thought pattern identification 
process using only ANN. The experimental results show an 
improvement of 8% over ANN based classification. 

The rest of the paper is organized as follows. Section II 
introduces Self-Organizing Maps and its functionality. Section 
III describes the presented method. Section IV describes the 
implementation of the presented method. Section V presents 
the experimental results and finally, Section VI concludes the 
paper. 

II. SELF-ORGANIZING MAPS 

The Self-Organizing Map (SOM) was developed by 

Kohonen [24] which employs unsupervised learning. The 

SOM comprises of a topological neuron grid typically 

arranged in a 1D or 2D lattice [25], which defines the spatial 

neighborhood of each neuron. SOM adjusts itself to the 

topological properties of the input data set using unsupervised 

winner take all learning algorithm together with cooperative 

adaptation.  

For a C dimensional input space, a synaptic weight vector, 

}...,,{ 1 Cwww 


, is maintained by every neuron. A dataset B 

containing G data points can be expressed as: 
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where cgv ,  is the cth dimension of gb


. 

Initialization of all neurons is done randomly and they are 

adapted iteratively based on the training input data set. The 

training process can be described in several steps as follows 

[25]:  

 

Step 1 - Initialization: Randomly initializing all synaptic 

weight vectors in the input domain. 

 

Step 2 - Sampling: Selecting a random input pattern gb


from the training dataset. 

 

Step 3 – Competitive Learning: Finding the Best 

Matching Unit (BMU) for the current input pattern gb


. The 

BMU is the neuron where the Euclidean distance between its 

synaptic weight vector w


, and the input pattern gb


, is 

minimal. The BMU can be expressed as, 
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where, )( gbBMU


is the best matching unit for input pattern 

gb


, operator  denotes the Euclidian distance norm, and J is 

the number of all the neurons in the SOM. 

 

Step 4 – Cooperative Updating: Updating the synaptic 

weight vectors of all neurons in SOM using the cooperative 

update rule: 
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where, i denotes the iteration, )(i is the learning rate and 

)(
)(,

ih
gbBMUj
 is the value of the neighborhood function for the 

neuron k centered at )( gbBMU


. 

 

Step 5 – Convergence Test: Checking whether the 

specified convergence criterion is met. If the criterion is met, 

learning process is terminated. If not, algorithm is moved back 

to Step 2. 

 

The learning process is controlled by two parameters; 1) 

neighborhood function h and 2) dynamic learning rate  . A 

Gaussian function centered at the selected neuron as the BMU 

   
(a) (b) 

 

Fig. 1 Self-Organizing Map displayed in the output space (a) and in the input space adapted to 2D distribution of input points (b). 



is typically used as the neighborhood function. Its amplitude 

applied to neuron k can be expressed as, 
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The size of the Gaussian neighborhood function is 

determined by parameter  . When parameter   is 

decreased, the size of the neighborhood deceases. Thus, 

parameter  is decreased to improve convergence. 

The learning process described in Steps 2-5 is repeated 

until a specific convergence criterion is met. Typically, 

training is terminated when the average weight change for an 

iteration drops below a predefined value.  

After convergence, the number of times each neuron j was 

selected as a best matching unit (BMU) is stored as jBMUN , . 
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where J is the number of neurons and C is the total number of 

data points. 

Furthermore, for labeled data, the number of times each 

neuron j was selected as a best matching unit (BMU) for each 

class is stored as fjBMUN ,, . 

 

 

 


J

j

F

f
fjBMU CN

1 1
,,

 
 (7) 

 
where f is the class label and F is the number of classes in the 
dataset 

 

III. SOM BASED THOUGHT PATTERN RECOGNITION FOR 

MOBILE ROBOT CONTROL 

This paper presents a methodology that benefits from a 
combination of, unsupervised learning capability of SOM and 
the non-linear classification capability of ANN to perform 
thought pattern recognition. The thought pattern recognition 
methodology presented in this paper can be divided into 4 
steps:  

Step 1 - Data Acquisition: EEG data acquisition for 
different actions from an individual. 

Step 2 - Data pre-processing: Converting the EEG data in 
the time domain to the frequency domain. Then segmenting the 
frequency data into the frequency bands that exist in brain 
signals. 

Step 3 - SOM based clustering: Clustering the thought 
patterns using the frequency data obtained in Step 2 as inputs. 

Step 4 - ANN based classification: Classifying the thought 
patterns using the clusters obtained in Step 3. 

Each step of the process is explained in detail below. 

A. Step1: Data Acquisition 

EEG data for T number of actions are acquired from an 

individual using a non invasive EEG measurement device, 

which includes several sensors. Therefore, if the measurement 

device contains M number of sensors, a single data record 

consists of M dimensions. A data record acquired at time t, 

from a EEG measurement device with M sensors, can be 

expressed as,  
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where 
t
mS  is the value of the mth sensor at time t.  

For real-time application, and reduced noise in the input 
data, data processing performed for a window of n data records 
at a time. The data window is designed to move through the 
data set, moving one data record at a time. Thus, two adjacent 

data windows; kW and 1kW , can be expressed as,  
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where, dt is the M dimensional data record acquired at time t.  

B. Step2: Data Pre-Processing 

Once the window Wk is acquired, the raw data is converted 
into the frequency domain using Discrete Fourier 
Transformation (DFT) method. The DFT method converts the 
data in the time domain to the frequency domain enabling 
segmentation of data with respect to frequency bands that exist 
in EEG signals.  

DFT is applied to each sensor separately to obtain the 
frequency values for each sensor independently. Thus, for 

window kW , DFT is applied M times. The DFT conversion 

process can be expressed as,  
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TABLE I. FREQUENCY BANDS AND THEIR NOTATION [8] 

Frequency Band Notation Frequency Range (Hz) 

Delta   <4 

Theta   4 - 8 

Alpha   8 - 13 

Beta   13 - 25 

Gamma   >25 

 



 

where m
kŴ is the output of the DFT process for the kth window 

for sensor m sensor and t
mS is the raw EEG value of sensor m 

at time t data record  

The obtained frequency domain data is then segmented into 
the five frequency bands that exist in brain signals. The 
frequency bands are shown in Table I. Once the segmented 
bands are obtained, the average power of each of the frequency 
band for each sensor is calculated. For instance:  
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where )( k
mP   is the average power of the frequency band 

Alpha for the kth window and mth sensor and )( i
mp  is the 

power of Alpha for record i and sensor m for the kth window. 
Similarly for all the other frequency bands the average powers 
are calculated. Therefore, the set of average powers for are 
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kW for sensor m.  

Further, each of the M sensor value for each window is 
averaged to produce: 
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where kd  is the averaged set of sensor values for window k 

and: 
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Using the power of the frequency ranges and the averaged 

sensor values, the input vector kU  for the SOM is generated: 
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C. Step3: Unsupervised Clustering using SOM 

Thus, for a given window k the input vector kU  consist of 

5M + M elements, making up a 6M dimensional input vector. 
Further, for training, the action label assigned in data collection 
is added to the window. This will act as the class label for the 
method.  

As mentioned in Section II, the SOM finds the BMU for 
each input pattern and for each neuron and saves the number of 
times which a neuron was selected as the BMU for the 

respective class ( jBMUN , from (7)). The labeled training data 

is sent to the SOM and once the specified convergence 

criterion is met and the training process is completed, each 
neuron in the SOM is assigned a class label l. This class label 

is chosen as the largest of the fjBMUN ,, values of the neuron.  

Then for a given, unlabeled input kU , the cluster can be 

extracted as the class label l of the neuron that was selected as 

the BMU for kU . 

D. Step4: Classifcation of Thought Pattern using ANN 

Once the clusters are extracted from the SOM for the 
training data, an ANN is trained for each of the clusters in the 
SOM. This is done by first extracting the cluster label for each 
of the input patterns in the training data, then using each cluster 
to train a separate ANN. Each ANN will classify a given input 
pattern into one of the T actions that the system identifies. 

After each ANN is trained, a given input pattern can be 
classified. Once a given input pattern is pre-processed using 
Steps 1 and 2, it is fed into the trained SOM in Step 3. The 
SOM assigns a label to the input patter according the cluster. 
Then the ANN assigned to that cluster is used to classify the 
input patter. Thus, for a given input patter only one ANN will 
be used for classification. However, since the ANN is trained 
on a clustered sub-set of data, a localized classification is 
performed, thereby improving the classification accuracy. 

IV. IMPLEMENTATION 

This section details the specifics of the implementation of 
the presented SOM based thought pattern identification 
methodology in this paper.  

A. Data Acquisition 

In this paper, EEG data acquisition was carried out using a 
commercial-off-the-shelf, low cost, non invasive, BCI device, 
Emotive EPOC Neuroheadset [16] (See Fig. 2). The Emotive 
EPOC Neuroheadset was chosen because it has been shown 
that it compares well with high grade research level equipment 
and the information retrieved is reliable and sufficient for most 
applications [26], [27], and its price and availability as a 
consumer product. 

The Emotive EPOC measures the brain activity of the 
wearer by utilizing 14 sensors placed on the scalp, which 
sensors are placed according to the international 10-20 system 

 
 

Fig. 2 Emotiv EPOC Neuroheadset [1] 



[27]. Since the Emotive EPOC headset was used for data 
acquisition, M in (8) was equal to 14.  

EEG data acquisition process was assisted by a Graphical 
User Interface (GUI). The GUI provided an interactive 3D 
object that acted as a visual stimulus in the data collecting 
process. Alongside the values of the 14 sensors, an action label 
was recorded for training and validating purposes. 

B. Implementation of Thought Pattern Recognition 

The size of the moving data window n described in Section 
III was set to 100. Data pre-processing Step 2 (see Section III) 
was applied to this window. Since data from 14 sensors were 
recorded, the dimensionality of the input vector to the SOM 
was 84. 

The SOM was implemented as a 2D lattice which consisted 

of 200 neurons arranged in a 1020 matrix. Each of the 

neural networks trained contained 1 input layer consisting of 
84 neurons, 2 hidden layers consisting of 10 and 5 neurons 
each and an output layer consisting of one neuron. 

500 data points (windows with size 100) was used for 
training the SOM and the neural networks, and 300 data points 
were used for testing. 

V. EXPERIMENTAL RESULTS 

The presented methodology was applied to EEG data 
collected from 5 individuals for two thought patterns, “move 
forward” and “rest”. Specific implementation details given in 
Section IV were used.  

Fig. 3 shows the 2D lattice of the trained SOM for user 4, 
along with class labels for each neuron.  

The presented thought pattern recognition method was 
compared to a typical thought pattern identification 

methodology using only ANN without the unsupervised 
learning capability of SOM. Same EEG data were used for 
both methods, while for the ANN only method, only Steps 1 
and 2 were used for pre-processing. Furthermore, the same 
ANN architecture was sued for both methods. The 
performance of each method was measured by utilizing the 
classification accuracy and true positive and true negative rates 
(See Table II).The input patterns which were classified 
correctly as "Move Forward" were considered to be true 
positive and input patterns which were correctly classified as 
"Rest" were considered to be true negatives. False positives 
and false negatives were the patterns which were incorrectly 
classified for the above patterns respectively. The classification 
accuracy was obtained by calculating the percentage of 
correctly classified instances out of all instances.  

Table III shows classification accuracy achieved by each 

method for each user, while Table IV lists the average true 

positive, true negative, false positive and false negative rates 

for each method. The presented method was shown to have a 

higher classification accuracy in all cases while the overall 

percentage improvement was 8% for the testing data.  

 
 

Fig. 3 Labels of the trained SOM for User 4 

TABLE II. CONFUSION MATRIX 

  Classified as 

  “Move Forward” “Rest” 

A
ct

u
al

 

C
la

ss
 “Move 

Forward” 
True Positives (TP) False Negatives (FN) 

“Rest” False Positives (FP) True Negatives (TN) 

 

TABLE III 

COMPARISON OF RESULTS OBTAINED BY SOM BASED ANN 

METHOD AND ONLY ANN BASED METHOD 
 

Users 

Presented SOM based 

ANN 
ANN 

Training 
Accuracy 

Testing 
Accuracy 

Training 
Accuracy 

Testing 
Accuracy 

1 98.60% 95.33% 97.80% 89.67% 

2 98.80% 96.00% 96.80% 88.00% 

3 98.20% 97.00% 95.60% 86.00% 

4 99.40% 98.33% 97.60% 91.33% 

5 98.40% 96.33% 96.80% 87.00% 

Average 98.68% 96.60% 96.92% 88.40% 

 

TABLE IV. AVERAGE CLASSIFICATION RESULTS FOR ALL 

USERS 

Method Train/Test TP TN FP FN 

SOM - ANN 
Training 98.96% 98.40% 1.60% 1.04% 

Testing 96.93% 96.27% 3.73% 3.07% 

ANN 
Training 97.12% 96.72% 3.28% 2.88% 

Testing 89.60% 87.20% 12.80% 10.40% 

 



VI. CONCLUSION 

This paper presented a methodology for identifying thought 
patterns for brain activity based mobile robot control. The 
presented method utilizes the unsupervised learning capability 
of Self-Organizing Maps (SOM) and the classification 
capabilities of Artificial Neural Networks (ANN) to highly 
accurate achieve thought pattern recognition. 

The presented method was implemented using a low-cost 
commercial-consumer grade EEG device and was tested on 5 
different individuals for identifying two thought patterns 
related to mobile robot control. Furthermore, the presented 
method was compared to a typical thought pattern recognition 
method that utilizes ANN. The experimental results showed an 
improvement of 8% over ANN based classification for testing 
data.  

As future work, the presented method will be tested on a 
larger set of thought patterns collected from larger number of 
individuals. The presented method will also be tested on real 
world scenarios of controlling a mobile robot in an 
environment with obstacles. 
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