
 

Abstract— The existing Emergency Communication System 

(ECS) infrastructure is becoming increasingly outdated with 

many members of the pubic moving away from landline based 

telecommunications and broadcast television in favor of cellular 

telephones and internet-based streaming entertainment services. 

Current systems for public services such as E911 and Emergency 

Alert System broadcasts are no longer a reliable means for 

reaching the public. In addition, both wired and wireless 

telecommunications systems can become overwhelmed, as was 

the case following Hurricane Katrina in 2005 and the World 

Trade Center disaster in 2001, and in fact, when communications 

are needed most urgently, the difficulty of maintaining effective 

communication increases exponentially. While the use of Internet 

based alternatives could resolve some of these problems, existing 

Internet infrastructure offers no dedicated or priority bandwidth 

to the user for emergency communications (e.g. E911 or 

Emergency Alert System). The current Internet capacity can also 

be overloaded due to high volume network data streams. Under 

these conditions, emergency communications (e.g. inbound and 

outbound communications reporting catastrophic or emergency 

events) may have their packets dropped resulting in incomplete 

and/or delayed communications. To alleviate these problems, this 

paper presents a novel framework for ECS using network 

virtualization via Software Defined Networks (SDN). A table top 

demonstration of ECS using SDN was developed at the 

University of Idaho, Idaho Falls. This paper details the 

foundational technologies and overviews the steps taken at the 

University of Idaho to develop ECS suing SDN. 
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I. INTRODUCTION 

Reliable and fast Emergency Communication Systems 

(ECS) are an important factor in timely and effective disaster 

response [1], [2]. Fast response is critical in disaster situations 

as a significant portion of fatalities occur in the first few hours 

of the disaster and the first 72 hours after the disaster has been 

identified as the most critical period for surviving victims [1], 

[3]. 

Due to the multitude of disasters that claimed many lives in 

the recent past such as September 11 attacks in the United 

States of America (2001), Tsunami in Asia-Pacific (2004), 

Hurricane Katrina in the United States of America (2005), the 

Fukushima incident in Japan (2011) and numerous 

earthquakes around the world, the limitations of existing ECS 

has been exposed and focus on more reliable ECS 

infrastructure has been increased [4], [5]. 

While there are many issues in the existing ECS 

infrastructure, 3 main problems can be identified [6], [7]. 1) 

Lack of capacity: with a low normal utilization and extremely 

high peak utilization, it is difficult to allocate bandwidth. 

Thus, in disaster situations, communication interruptions due 

to congested networks are often observed. 2) Incompatible 

systems: the systems of different agencies such as law 

enforcement, fire and health are completely different. This is 

also true of users who utilize different networks for 

communication. 3) User operability: as systems become more 

complex and heterogeneous, it becomes difficult for the 

average user to operate effectively. Out of these problems, the 

problem of capacity is especially difficult to handle as 

majority of time (i.e. non-disaster times) the network 

utilization is extremely low. However, in a disaster situation 

the network usage is extremely high. Thus, allocating 

bandwidth required for effective ECS is problematic [7], [8]. 

In addition to these problems, the existing ECS in the USA 

is suitable for landline and broadcast media based 

communication. Thus, the current trend of people moving 

towards cellular communication in favor of landlines and 

streaming entertainment in favor of broadcast media [9] makes 

it difficult to reach the public in a disaster situation. 

Internet based solutions can alleviate some of these 

problems. However, existing Internet infrastructure does not 

provide dedicated bandwidth or priority based 

communications to users such as homes, businesses and public 

buildings. Furthermore, the current Internet capacity can also 

be overloaded due to large downloads; file sharing (e.g. 

Dropbox, Microsoft OneDrive), backups (e.g. Mozy, 

Carbonite), entertainment streaming (e.g. Netflix, Hulu), 

online gaming (e.g. Xbox-live, PlayStation Network), etc. 

Thus, Internet based ECS can experience loss of Quality of 

Service (QoS) or service disruptions due to high volume 

internet traffic. 
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Therefore, this paper presents a novel framework for ECS 

using network virtualization via Software Defined Networking 

(SDN) [10]. The presented framework utilizes OpenFlow [10] 

to decouple the control plane and the physical infrastructure to 

achieve virtualization of the network. This enables control 

changes to be made at the software level, alleviating the need 

for hardware changes to update network configuration. Thus, 

the presented ECS using SDN framework enables dynamic 

bandwidth allocation as well as priority based packet 

forwarding. Isolation of services is achieved by means of 

Virtual LANs (VLANs). Isolation of service and dynamic 

bandwidth allocation ensures QoS even at disaster times. 

Furthermore, virtualization of the network via SDN makes the 

system scalable as new services can be added on-the-fly 

The rest of the paper is organized as follows. Section II 
introduces network virtualization via Software Defined 
Networking. Section III briefly discusses the evolution of the 
current Emergency Communication System. Section IV 
presents the architecture of Emergency Communication 
Systems via Software Defined Networking. Finally, Section V 
provides specific details about implementation and, Section VI 
concludes the paper.  

II. INTRODUCTION TO NETWORK VIRTUALIZATION VIA 

SOFTWARE DEFINED NETWORKING  

Traditional network architectures are becoming 

increasingly inadequate in meeting modern day networking 

requirements [10]. Prevalent architectures are primarily 

hardware centric and as a result, their configurations are 

vendor specific [10], [11]. Thus, it is almost impossible to 

control and update it centrally. As a result, no abstractions 

exist and whenever a networking related problems arise, it is 

resolved by protocols which are built from scratch. Therefore, 

the application programmers should be aware of and should 

adjust to, the infrastructure of the network and its vendor 

specific configurations. 

Software Defined Networking (SDN) is a Networking 

paradigm which decouples the control pane from the data 

plane of the network [10] (see Fig. 1). In other words, SDN 

provides a layer on top of the network infrastructure layer, 

which provides control instructions to the infrastructure (see 

Fig. 2). Thus, the switches in the network become simple 

packet forwarding devices. As a result, the control of the 

network become logically centralized [10], [11] and the need 

to customize control rules for vendor specific configurations 

are alleviated. Further, this results in providing the network 

applications an abstraction over multi vendor network 

infrastructure, which results in easier development and 

evolvement. 

Once the data plane and the control plane is decoupled into 

two layers, the communication between the two layers are 

handled through a Control Data Plane Interface(CDPI) 

[10].The first standard CDPI was OpenFlow and is currently 

used as well [10], [12]-[14]. OpenFlow controller provides 

control instructions to OpenFlow enabled network hardware. 

SDN and OpenFlow make the networks programmable and 

provide centralized control of multi vendor environments. 

Since the networks become programmable, the network can be 

virtualized for better control. In this paper, the following 

consequents of network virtualization which is introduced by 

SDN and OpenFlow are largely used.  

A. Isolation of Service 

Software Defined Networking allows the isolation of 

services or classes of services by making services or classes of 

services reside in their own virtual channels. To the service 

provider, this appears as a private network which is shared 

only with end users who are using that particular application. 

Since the service providers do not have to accommodate 

traffic from other applications, the flow and protocol of the 

dedicated channel can be updated and optimized to the 

application itself, without interfering other services. 

B. Controlled Quality of Service & Optimization of Traffic 

Flow  

The isolation of services also allows for control of the 

network Quality of Service (QoS). By providing high 

bandwidth applications with their own dedicated channel, 

traffic on the virtualized network is restricted to the associated 

application. 

 
 

Fig. 1 Decoupling of the control plane and the data plane via SDN 

 
 

Fig. 2 Abstraction of SDN architecture 



 

Each application or class of applications is provided its 

own channel. Therefore, the traffic flow on the virtual network 

can be optimized based on the needs of the application itself. 

In OpenFlow, this can be done via the “Flowvisor” [15], [16]. 

In the Flowvisor approach, the translation unit acts as a 

protocol proxy and is shared between multiple switches and 

multiple controllers [16]. 

C. Scalability 

SDN separates the control layer from the infrastructure 

layer. Therefore, infrastructure of the network can be scaled 

up without affecting the existing system.  

Furthermore, since the services or applications are 

provided their own channels and they are controlled using 

OpenFlow independently, new services and end users can be 

added on the fly to the system without affecting the existing 

system. As an example, new servers and switches can be 

introduced to the system to accommodate new services and 

end users without affecting the existing system.  

III. EVOLUTION OF EMERGENCY COMMUNICATION SYSTEMS  

This section details the evolution of ECS and the 

drawbacks associated with the prevalent ECS. 

The introduction of the dial tone and direct dial service in 

the 1950s, paved the way for the user to directly connect to the 

emergency responder or an operator to request assistance. To 

further improve the system, in 1968, a three digit emergency 

number; 9-1-1 (911), which worked well with the phone 

systems which in place at that time, was introduced. At this 

point, 911 was a basic service that needed no extra processing, 

but with time, as the usage of the system expanded, the 

vulnerabilities of the system were exposed.  

In 1996, several incidents which showed the inadequacy of 

the prevalent system forced the Federal Communications 

Commission (FCC) to announce a mandate for an enhanced 

911 service [17]. This resulted in the Wireless 

Communications and Public Safety Act of 1999 which 

mandated 911 services to be included for non landline phones 

as well. This service was named Enhanced 9-1-1 (E911) [18].  

With the introduction of E911, wireless devices had the 

ability of placing emergency calls. Therefore, it included 

source location determination of emergency calls. In order to 

keep track of locations, each signal carrier was responsible for 

keeping an Automatic Location Information (ALI) database. 

Different type of carriers had to uses different techniques to 

maintain the ALI database which lead to complexities in the 

system. For instance Voice over Internet Protocol (VoIP) 

providers use a packet switched network as a gateway to the 

Public Telephone Network. Here, the VoIP provider keeps 

track of the subscriber's connected device, not the location.   

Further, with the rapid adoption of cellular wireless 

networks, location determination and information 

dissemination to mobile devices have become complex. 

Currently, ECS are moving towards Short Message Service 

(SMS), Reverse 911 etc. to disseminate information.  

But it is evident that ECS has moved from simple and 

basic services to very complex services which rely on multiple 

databases, a multitude of stakeholders and instantaneous data 

processing and routing to function properly. The multiple 

points of failure that the complexity of these systems has 

introduced have increased the vulnerability of the system.  

IV. GENERAL ARCHITECTURE OF ECS USING SDN 

FRAMEWORK  

This section details the presented framework for ECS using 

network virtualization via SDN. 

The presented framework consists of service providers 

who provide different services, users who use these services, 

and the network through which the user and service provider 

communicate (see Fig. 3). Each service or application is given 

its own virtual “channel”. This channel encapsulates the 

entire service from end-to-end in a completely virtualized 

fashion. This encapsulation isolates the services on the service 

provider end, through the network, and on the user end device 

(see Fig. 3). In the presented framework, SDN is used for 

dynamic, priority based packet switching and virtualization of 

the network while Virtual LANs (VLANs) are used for 

isolation of services. 

The presented framework proposes a methodology for 

isolation and virtualization of the service at each of these three 

levels. The virtualization and isolation enables achieving the 

required QoS, traffic flow control, and scalability. 

A. Network 

As mentioned, each service is given its own channel. These 

channels enable isolation of data flow. In the presented 

framework this is achieved by using Virtual LANs (VLANs) 

for each service [19].  

The virtualization of the network is achieved via SDN. The 

data flow in the presented framework uses OpenFlow to 

determine packet forwarding rules, which separates the 

hardware and the control plane of the network. Separation of 

the control plane and hardware results in adding a 

virtualization layer to the network. Using OpenFlow, it is 

possible to dynamically update packet forwarding rules. Thus, 

packet priority as well as bandwidth can be changed according 

to current requirements. 

B. User End 

 
 

Fig. 3 ECS using SDN basic framework 



 

The User End of the presented framework is depicted in 

Fig. 4. Virtualization on the user end device is accomplished 

through the use of Virtual Machines (VMs). The use of VMs 

that can each run different operating systems will allow each 

application developer to choose whichever environment is 

most appropriate, familiar, or conducive to their own 

application. Also, because VMs share the available resources 

through the use of a hypervisor that virtualizes the hardware, 

hardware emulation can be used to make the applications 

highly flexible with respect to the architecture of the host 

system. 

Isolation on the user end device will also be achieved 

through the use of VMs. Each application will be presented on 

its own VM. This will keep system or software issues from 

one service, from impacting the operation of the other 

services. If an application crashes, or freezes a system, the 

effects will be isolated to the associated VM, which may be 

shut down or restarted without impacting the VMs running the 

other applications. 

C. Provider End 

At the provider end, virtualization and isolation of the 

services is handled in the same way as the end user, using 

VMs. Each application is hosted on its own server and is 

implemented as a VM. This allows multiple application 

servers to be hosted on one or more physical servers. This 

implementation allows for load balancing by dividing the user 

load among the application servers. If demand increases, new 

servers can be easily added. In addition, if a server goes down 

due to malfunction or maintenance requirements, the load can 

be seamlessly offloaded to the other available servers. This 

also allows for isolation of services. If a system error occurs 

on one of the virtual servers, it can be shutdown or restarted 

without disturbing the operation of another. 

D. Overall Architecture 

The proposed overall architecture is shown in Fig. 5 and 

contains three primary components; 1) User End, 2) Provider 

End, and 3) Management Service. The User End is composed 

of Home Devices and, as the name suggests, they are a devices 

that can be placed at a client’s home or workplace, and is 

responsible for displaying the messages or content sent from a 

particular service or application. A Home Device contains a 

VM for each service and a Hypervisor which is responsible for 

controlling VMs such as suspending all the VMs except for 

the one linked with the service that is active. Even though a 

VM for each application resides on the Home Device, the 

content that is displayed resides on the provider end. Thus, the 

applications are virtualized. 

The Provider End is comprised of service providers and 

each service provider is composed of 1) Service Manger and 

2) Service Server. The Service Manager is responsible for 

determining the content of the service that is displayed on the 

Home Devices. The Service Server is responsible for 

communicating with the home device to send the 

aforementioned content. In the proposed architecture, the 

Service Servers are hosted in the form of VMs and each 

service resides in its own virtual network (VLAN). Hence, 

communications of each service is also isolated. When the 

content is updated from the Service Manager, it communicates 

with the Service Server. Then, The Service Server 

communicates with the Home Device to update the content at 

the user end. 

The Management Service is a special purpose service. The 

primary objective of the Management Service is to dictate the 

service or application that is active at a particular point in 

time. Since it too is a service, it resides in its virtual network 

and consists of its own manager and server. The manager of 

the Management Service selects the service that needs to be 

displayed on the Home Devices. Then, the server of the 

Manager Service communicates with the Hypervisor which 

resides in the home devices and specifies which VM should be 

kept active. This enables emergency services to be activated 

and displayed on the User End when needed. 

E. Advantages of the Proposed Architecture 

The communication between Service Servers and Home 

Devices is performed according to rules dictated through 

OpenFlow. Furthermore, VMs that exist on the end user, 

enables each application or service to communicate with and 

send content to a separate VM. Thus, the presented 

architecture performs virtualization of the network from the 

service provider all the way through to the application, past 

the user's network hardware. This enables each service or 

application to reside in its own channel which leads to 

isolation of services.  

 
 

Fig. 5 Overall architecture of the presented framework  

for ECS using SDN 

 
 

Fig. 4 User end of the presented framework 



 

Each application or service, communicating end-to-end via 

its own channel ensures Quality of Service (QoS) for the 

application. Further, it uncovers the possibility of controlling 

parameters for each application or service independently 

without affecting other services such as controlling the 

bandwidth dedicated to each application and packet 

forwarding priorities.  

Since independent channels exist between each service and 

the client, new services and clients can be added to the system 

on the fly making the system scalable. Since OpenFlow is 

used for packet routing, the core of the network need not be 

changed when services and users are added to the system. 

V. ECS USING SDN IMPLEMENTATION 

The architecture stipulated in Section IV was implemented 

as an experimental test bed by the University of Idaho, Idaho 

Falls. Fig. 6 shows the experimental test bed and its’ 

components as related to the presented framework. 

Four services were implemented to test the proposed 

architecture; 1) Management Service, 2) Weather Alert 

Service (WAS) 3) Alternative 911 Service (A911) Emergency 

Calling, and 4) Emergency Alert Service (EAS). Management 

Service was responsible for controlling the Hypervisor in the 

client machine. WAS and EAS were designed to send 

warnings, alerts and news to the users. The 911 service was 

designed so that the client/user could contact the emergency 

responder via a direct channel. 

A. Network Implementation 

The network packet forwarding was carried out using a HP 

E3800 OpenFlow switch. Floodlight OpenFlow controller [20] 

was used to control the OpenFlow switch. Each of the four 

services was designed to reside in their own virtual network 

(VLAN) and the Service Server and Service Manager of each 

 
 

Fig. 6 Implementation of the presented framework for ECS using SDN at University of Idaho, Idaho Falls 

 
 

Fig. 7 Implementation of the network architecture of the presented framework 

 
 

Fig. 8 Implementation of the user end of the presented framework 
 



 

service was contained in the associated VLAN. VLAN tagging 

[19] was used to identify the traffic between different services. 

The flows were specified on the controller depending on the 

VLAN tags of different service. For instance, Weather Alert 

Service was assigned VLAN tag 101 and Alternative 911 was 

assigned VLAN tag 102. Fig. 7 depicts the data flow 

implementation in detail. 

B. User End Implementation 

In the experimental test bed, the user end was implemented 

as four Home Devices. A VM for each service was placed on 

the client machines and a Hypervisor was used to switch 

between the VMs when the Management Service dictated a 

change. Four laptop computers were used as client systems 

which had similar processing power and performance 

capabilities. VirtualBox, which is a virtualization product [21], 

was used to contain the VMs on the clients and VirtualBox 

acted as the Hypervisor as well. When the Manager of the 

Management Service dictates a change, a PXE (Pre-boot 

Execution Environment) boot was utilized to activate the VM 

of the associated service. 

OpenvSwitch, which is an OpenFlow enabled virtual 

switch, was used to perform packet forwarding inside the 

Home Device to send it to the appropriate VM. This again, 

was controlled using OpenFlow rules associated with the 

VLAN tag of the data packet. For instance, a data packet 

arriving at the Home Device with the VLAN tag 101, is sent to 

the VM associated with WAS. 

C. Provider End Implementation 

The Provider End was implemented for the aforementioned 

services using four VMs. The VMs were designed to act as the 

Service Servers. For the implementation purposes, the VMs 

were hosted on a single system. The Service Manager systems 

of services WAS and EAS, were designed to communicate 

with the Service Server using a web interface. For service 

A911, VOIP client which is under the GNU Public License; 

Linphone, was used.  

The Service Server was designed to contain the interface 

shown on the Home Device as well the interface shown on the 

Service Manager. A LTSP server was included in the Service 

Server to enable the VM on the Home Device to view content 

which is on the Service Server.  

Since all Service Servers were hosted in the same system 

in the form if VMs, OpenvSwitch was used for the same 

purpose as it was used in the Home Device implementation. 

D. Documentation 

Implementation details and all necessary documentation 

are provided in the dedicated website [22]. A screen capture of 

the dedicated website is shown in Fig. 10. The website 

provides configuration documents and specific details about 

the implementation and required hardware so that the 

presented framework can be implemented elsewhere. 

Furthermore, a Sourceforge page is also set up so that the 

software can be downloaded and updated [23]. 

VI. CONCLUSION 

This paper presented a novel framework for Emergency 

Communication Systems (ECS) using network virtualization 

via Software Defined Networks (SDN). The presented method 

utilizes SDN to implement dynamic bandwidth allocation and 

priority based packet switching for resilient ECS. 

Furthermore, Virtual LANs (VLANs) are used to isolate 

services. The paper details the framework and specific 

implementation details of the table-top demonstration 

developed at the University of Idaho, Idaho Falls.  

As future work, the presented framework will be migrated 

to GENI for large scale implementation and testing. 

Performance analysis will be done to evaluate the usability of 

the presented framework in a real-world scenario. 

Furthermore, the possibility of utilizing the presented 

framework for other commercial uses that require dynamic 

bandwidth allocation and high quality of service will be 

explored. 

 
 

Fig. 9 Implementation of the provider end of the presented framework 

 

 
 

Fig. 10 The dedicated website providing implementation and configuration 

details of the presented framework (http://nsec.if.uidaho.edu/) 



 

APPENDIX 

A. Software 

Below are the software programs which were utilized in 

the implementation of the SDN based ECS test bed given in 

this paper. 

• Floodlight Controller: 

Floodlight controller is a Open SDN controller which is 

under the Apache-License. Floodlight controller was used to 

provide the open flow rules for packet forwarding. 

 

• VirtualBox: 

Virtual Box is a virtualization software under the GNU 

General Public License. It was used to contain and manage the 

VMs used in the implementation. Further, it was used to act as 

the Hypervisor on the client side. 

 

• LTSP - Linux Terminal Server Project 

 LTSP is a software which is distributed under the GNU 

General Public License which adds thin client support to 

LINUX servers. In the implementation, an LTSP server as 

used in each Service Server to provide the content to the 

Home Device VMs.  

 

• LinPhone: 

LinPhone is a VoIP application which is distributed under 

the GNU General Public License. Linphone was used as the 

calling interface in implementation of the Service A911. 

 

B. Hardware 

Below are the special purpose Hardware Used for the 

implementation of the aforementioned implementation. 

• HP E3800 OpenFlow switch 

HP 3800 is a 24 port OpenFlow switch and it was used for 

packet forwarding using OpenFlow. The OpenFlow controller 

provided the packet forwarding rules. 

 

C. Screen captures of implemented systems. 

Fig 11 depicts the .interface designed for the Manger of the 

Management Service. By pressing the button shown on the 

interface, different service can be made active at the user end.  

Fig 12 depicts the interface of the Service Manager for the 

WAS. Using the interface shown the service provider has the 

ability of updating the content that is being displayed at the 

Home Device when WAS is active. 

Fig 13 illustrates the interface of the Home Device, when 

WAS active and a weather warning is issued.  
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