

Abstract— The existing Emergency Communication System

(ECS) infrastructure is becoming increasingly outdated with

many members of the pubic moving away from landline based

telecommunications and broadcast television in favor of cellular

telephones and internet-based streaming entertainment services.

Current systems for public services such as E911 and Emergency

Alert System broadcasts are no longer a reliable means for

reaching the public. In addition, both wired and wireless

telecommunications systems can become overwhelmed, as was

the case following Hurricane Katrina in 2005 and the World

Trade Center disaster in 2001, and in fact, when communications

are needed most urgently, the difficulty of maintaining effective

communication increases exponentially. While the use of Internet

based alternatives could resolve some of these problems, existing

Internet infrastructure offers no dedicated or priority bandwidth

to the user for emergency communications (e.g. E911 or

Emergency Alert System). The current Internet capacity can also

be overloaded due to high volume network data streams. Under

these conditions, emergency communications (e.g. inbound and

outbound communications reporting catastrophic or emergency

events) may have their packets dropped resulting in incomplete

and/or delayed communications. To alleviate these problems, this

paper presents a novel framework for ECS using network

virtualization via Software Defined Networks (SDN). A table top

demonstration of ECS using SDN was developed at the

University of Idaho, Idaho Falls. This paper details the

foundational technologies and overviews the steps taken at the

University of Idaho to develop ECS suing SDN.

Keywords—Emergency communication systems, software

defined networking, network slicing, OpenFlow, cloud computing.

I. INTRODUCTION

Reliable and fast Emergency Communication Systems

(ECS) are an important factor in timely and effective disaster

response [1], [2]. Fast response is critical in disaster situations

as a significant portion of fatalities occur in the first few hours

of the disaster and the first 72 hours after the disaster has been

identified as the most critical period for surviving victims [1],

[3].

Due to the multitude of disasters that claimed many lives in

the recent past such as September 11 attacks in the United

States of America (2001), Tsunami in Asia-Pacific (2004),

Hurricane Katrina in the United States of America (2005), the

Fukushima incident in Japan (2011) and numerous

earthquakes around the world, the limitations of existing ECS

has been exposed and focus on more reliable ECS

infrastructure has been increased [4], [5].

While there are many issues in the existing ECS

infrastructure, 3 main problems can be identified [6], [7]. 1)

Lack of capacity: with a low normal utilization and extremely

high peak utilization, it is difficult to allocate bandwidth.

Thus, in disaster situations, communication interruptions due

to congested networks are often observed. 2) Incompatible

systems: the systems of different agencies such as law

enforcement, fire and health are completely different. This is

also true of users who utilize different networks for

communication. 3) User operability: as systems become more

complex and heterogeneous, it becomes difficult for the

average user to operate effectively. Out of these problems, the

problem of capacity is especially difficult to handle as

majority of time (i.e. non-disaster times) the network

utilization is extremely low. However, in a disaster situation

the network usage is extremely high. Thus, allocating

bandwidth required for effective ECS is problematic [7], [8].

In addition to these problems, the existing ECS in the USA

is suitable for landline and broadcast media based

communication. Thus, the current trend of people moving

towards cellular communication in favor of landlines and

streaming entertainment in favor of broadcast media [9] makes

it difficult to reach the public in a disaster situation.

Internet based solutions can alleviate some of these

problems. However, existing Internet infrastructure does not

provide dedicated bandwidth or priority based

communications to users such as homes, businesses and public

buildings. Furthermore, the current Internet capacity can also

be overloaded due to large downloads; file sharing (e.g.

Dropbox, Microsoft OneDrive), backups (e.g. Mozy,

Carbonite), entertainment streaming (e.g. Netflix, Hulu),

online gaming (e.g. Xbox-live, PlayStation Network), etc.

Thus, Internet based ECS can experience loss of Quality of

Service (QoS) or service disruptions due to high volume

internet traffic.

Milos Manic
1
, Dumidu Wijayasekara

1
, Kasun Amarasinghe

1
, Joel Hewlett

1
, Kevin Handy

1
,

Christopher Becker
1
, Bruce Patterson

2
, Robert Peterson

3

1
Department of Computer Science,

University of Idaho

Idaho Falls, Idaho, USA

misko@ieee.org

2
City of Ammon,

Technology Dept.

Ammon, Idaho, USA

bpatterson@ci.ammon.id.us

3
 Special Projects,

Albion Telephone Company

Albion, Idaho, USA

ccp@jdcinc.net

Next Generation Emergency Communication

Systems via Software Defined Networks

Therefore, this paper presents a novel framework for ECS

using network virtualization via Software Defined Networking

(SDN) [10]. The presented framework utilizes OpenFlow [10]

to decouple the control plane and the physical infrastructure to

achieve virtualization of the network. This enables control

changes to be made at the software level, alleviating the need

for hardware changes to update network configuration. Thus,

the presented ECS using SDN framework enables dynamic

bandwidth allocation as well as priority based packet

forwarding. Isolation of services is achieved by means of

Virtual LANs (VLANs). Isolation of service and dynamic

bandwidth allocation ensures QoS even at disaster times.

Furthermore, virtualization of the network via SDN makes the

system scalable as new services can be added on-the-fly

The rest of the paper is organized as follows. Section II
introduces network virtualization via Software Defined
Networking. Section III briefly discusses the evolution of the
current Emergency Communication System. Section IV
presents the architecture of Emergency Communication
Systems via Software Defined Networking. Finally, Section V
provides specific details about implementation and, Section VI
concludes the paper.

II. INTRODUCTION TO NETWORK VIRTUALIZATION VIA

SOFTWARE DEFINED NETWORKING

Traditional network architectures are becoming

increasingly inadequate in meeting modern day networking

requirements [10]. Prevalent architectures are primarily

hardware centric and as a result, their configurations are

vendor specific [10], [11]. Thus, it is almost impossible to

control and update it centrally. As a result, no abstractions

exist and whenever a networking related problems arise, it is

resolved by protocols which are built from scratch. Therefore,

the application programmers should be aware of and should

adjust to, the infrastructure of the network and its vendor

specific configurations.

Software Defined Networking (SDN) is a Networking

paradigm which decouples the control pane from the data

plane of the network [10] (see Fig. 1). In other words, SDN

provides a layer on top of the network infrastructure layer,

which provides control instructions to the infrastructure (see

Fig. 2). Thus, the switches in the network become simple

packet forwarding devices. As a result, the control of the

network become logically centralized [10], [11] and the need

to customize control rules for vendor specific configurations

are alleviated. Further, this results in providing the network

applications an abstraction over multi vendor network

infrastructure, which results in easier development and

evolvement.

Once the data plane and the control plane is decoupled into

two layers, the communication between the two layers are

handled through a Control Data Plane Interface(CDPI)

[10].The first standard CDPI was OpenFlow and is currently

used as well [10], [12]-[14]. OpenFlow controller provides

control instructions to OpenFlow enabled network hardware.

SDN and OpenFlow make the networks programmable and

provide centralized control of multi vendor environments.

Since the networks become programmable, the network can be

virtualized for better control. In this paper, the following

consequents of network virtualization which is introduced by

SDN and OpenFlow are largely used.

A. Isolation of Service

Software Defined Networking allows the isolation of

services or classes of services by making services or classes of

services reside in their own virtual channels. To the service

provider, this appears as a private network which is shared

only with end users who are using that particular application.

Since the service providers do not have to accommodate

traffic from other applications, the flow and protocol of the

dedicated channel can be updated and optimized to the

application itself, without interfering other services.

B. Controlled Quality of Service & Optimization of Traffic

Flow

The isolation of services also allows for control of the

network Quality of Service (QoS). By providing high

bandwidth applications with their own dedicated channel,

traffic on the virtualized network is restricted to the associated

application.

Fig. 1 Decoupling of the control plane and the data plane via SDN

Fig. 2 Abstraction of SDN architecture

Each application or class of applications is provided its

own channel. Therefore, the traffic flow on the virtual network

can be optimized based on the needs of the application itself.

In OpenFlow, this can be done via the “Flowvisor” [15], [16].

In the Flowvisor approach, the translation unit acts as a

protocol proxy and is shared between multiple switches and

multiple controllers [16].

C. Scalability

SDN separates the control layer from the infrastructure

layer. Therefore, infrastructure of the network can be scaled

up without affecting the existing system.

Furthermore, since the services or applications are

provided their own channels and they are controlled using

OpenFlow independently, new services and end users can be

added on the fly to the system without affecting the existing

system. As an example, new servers and switches can be

introduced to the system to accommodate new services and

end users without affecting the existing system.

III. EVOLUTION OF EMERGENCY COMMUNICATION SYSTEMS

This section details the evolution of ECS and the

drawbacks associated with the prevalent ECS.

The introduction of the dial tone and direct dial service in

the 1950s, paved the way for the user to directly connect to the

emergency responder or an operator to request assistance. To

further improve the system, in 1968, a three digit emergency

number; 9-1-1 (911), which worked well with the phone

systems which in place at that time, was introduced. At this

point, 911 was a basic service that needed no extra processing,

but with time, as the usage of the system expanded, the

vulnerabilities of the system were exposed.

In 1996, several incidents which showed the inadequacy of

the prevalent system forced the Federal Communications

Commission (FCC) to announce a mandate for an enhanced

911 service [17]. This resulted in the Wireless

Communications and Public Safety Act of 1999 which

mandated 911 services to be included for non landline phones

as well. This service was named Enhanced 9-1-1 (E911) [18].

With the introduction of E911, wireless devices had the

ability of placing emergency calls. Therefore, it included

source location determination of emergency calls. In order to

keep track of locations, each signal carrier was responsible for

keeping an Automatic Location Information (ALI) database.

Different type of carriers had to uses different techniques to

maintain the ALI database which lead to complexities in the

system. For instance Voice over Internet Protocol (VoIP)

providers use a packet switched network as a gateway to the

Public Telephone Network. Here, the VoIP provider keeps

track of the subscriber's connected device, not the location.

Further, with the rapid adoption of cellular wireless

networks, location determination and information

dissemination to mobile devices have become complex.

Currently, ECS are moving towards Short Message Service

(SMS), Reverse 911 etc. to disseminate information.

But it is evident that ECS has moved from simple and

basic services to very complex services which rely on multiple

databases, a multitude of stakeholders and instantaneous data

processing and routing to function properly. The multiple

points of failure that the complexity of these systems has

introduced have increased the vulnerability of the system.

IV. GENERAL ARCHITECTURE OF ECS USING SDN

FRAMEWORK

This section details the presented framework for ECS using

network virtualization via SDN.

The presented framework consists of service providers

who provide different services, users who use these services,

and the network through which the user and service provider

communicate (see Fig. 3). Each service or application is given

its own virtual “channel”. This channel encapsulates the

entire service from end-to-end in a completely virtualized

fashion. This encapsulation isolates the services on the service

provider end, through the network, and on the user end device

(see Fig. 3). In the presented framework, SDN is used for

dynamic, priority based packet switching and virtualization of

the network while Virtual LANs (VLANs) are used for

isolation of services.

The presented framework proposes a methodology for

isolation and virtualization of the service at each of these three

levels. The virtualization and isolation enables achieving the

required QoS, traffic flow control, and scalability.

A. Network

As mentioned, each service is given its own channel. These

channels enable isolation of data flow. In the presented

framework this is achieved by using Virtual LANs (VLANs)

for each service [19].

The virtualization of the network is achieved via SDN. The

data flow in the presented framework uses OpenFlow to

determine packet forwarding rules, which separates the

hardware and the control plane of the network. Separation of

the control plane and hardware results in adding a

virtualization layer to the network. Using OpenFlow, it is

possible to dynamically update packet forwarding rules. Thus,

packet priority as well as bandwidth can be changed according

to current requirements.

B. User End

Fig. 3 ECS using SDN basic framework

The User End of the presented framework is depicted in

Fig. 4. Virtualization on the user end device is accomplished

through the use of Virtual Machines (VMs). The use of VMs

that can each run different operating systems will allow each

application developer to choose whichever environment is

most appropriate, familiar, or conducive to their own

application. Also, because VMs share the available resources

through the use of a hypervisor that virtualizes the hardware,

hardware emulation can be used to make the applications

highly flexible with respect to the architecture of the host

system.

Isolation on the user end device will also be achieved

through the use of VMs. Each application will be presented on

its own VM. This will keep system or software issues from

one service, from impacting the operation of the other

services. If an application crashes, or freezes a system, the

effects will be isolated to the associated VM, which may be

shut down or restarted without impacting the VMs running the

other applications.

C. Provider End

At the provider end, virtualization and isolation of the

services is handled in the same way as the end user, using

VMs. Each application is hosted on its own server and is

implemented as a VM. This allows multiple application

servers to be hosted on one or more physical servers. This

implementation allows for load balancing by dividing the user

load among the application servers. If demand increases, new

servers can be easily added. In addition, if a server goes down

due to malfunction or maintenance requirements, the load can

be seamlessly offloaded to the other available servers. This

also allows for isolation of services. If a system error occurs

on one of the virtual servers, it can be shutdown or restarted

without disturbing the operation of another.

D. Overall Architecture

The proposed overall architecture is shown in Fig. 5 and

contains three primary components; 1) User End, 2) Provider

End, and 3) Management Service. The User End is composed

of Home Devices and, as the name suggests, they are a devices

that can be placed at a client’s home or workplace, and is

responsible for displaying the messages or content sent from a

particular service or application. A Home Device contains a

VM for each service and a Hypervisor which is responsible for

controlling VMs such as suspending all the VMs except for

the one linked with the service that is active. Even though a

VM for each application resides on the Home Device, the

content that is displayed resides on the provider end. Thus, the

applications are virtualized.

The Provider End is comprised of service providers and

each service provider is composed of 1) Service Manger and

2) Service Server. The Service Manager is responsible for

determining the content of the service that is displayed on the

Home Devices. The Service Server is responsible for

communicating with the home device to send the

aforementioned content. In the proposed architecture, the

Service Servers are hosted in the form of VMs and each

service resides in its own virtual network (VLAN). Hence,

communications of each service is also isolated. When the

content is updated from the Service Manager, it communicates

with the Service Server. Then, The Service Server

communicates with the Home Device to update the content at

the user end.

The Management Service is a special purpose service. The

primary objective of the Management Service is to dictate the

service or application that is active at a particular point in

time. Since it too is a service, it resides in its virtual network

and consists of its own manager and server. The manager of

the Management Service selects the service that needs to be

displayed on the Home Devices. Then, the server of the

Manager Service communicates with the Hypervisor which

resides in the home devices and specifies which VM should be

kept active. This enables emergency services to be activated

and displayed on the User End when needed.

E. Advantages of the Proposed Architecture

The communication between Service Servers and Home

Devices is performed according to rules dictated through

OpenFlow. Furthermore, VMs that exist on the end user,

enables each application or service to communicate with and

send content to a separate VM. Thus, the presented

architecture performs virtualization of the network from the

service provider all the way through to the application, past

the user's network hardware. This enables each service or

application to reside in its own channel which leads to

isolation of services.

Fig. 5 Overall architecture of the presented framework

for ECS using SDN

Fig. 4 User end of the presented framework

Each application or service, communicating end-to-end via

its own channel ensures Quality of Service (QoS) for the

application. Further, it uncovers the possibility of controlling

parameters for each application or service independently

without affecting other services such as controlling the

bandwidth dedicated to each application and packet

forwarding priorities.

Since independent channels exist between each service and

the client, new services and clients can be added to the system

on the fly making the system scalable. Since OpenFlow is

used for packet routing, the core of the network need not be

changed when services and users are added to the system.

V. ECS USING SDN IMPLEMENTATION

The architecture stipulated in Section IV was implemented

as an experimental test bed by the University of Idaho, Idaho

Falls. Fig. 6 shows the experimental test bed and its’

components as related to the presented framework.

Four services were implemented to test the proposed

architecture; 1) Management Service, 2) Weather Alert

Service (WAS) 3) Alternative 911 Service (A911) Emergency

Calling, and 4) Emergency Alert Service (EAS). Management

Service was responsible for controlling the Hypervisor in the

client machine. WAS and EAS were designed to send

warnings, alerts and news to the users. The 911 service was

designed so that the client/user could contact the emergency

responder via a direct channel.

A. Network Implementation

The network packet forwarding was carried out using a HP

E3800 OpenFlow switch. Floodlight OpenFlow controller [20]

was used to control the OpenFlow switch. Each of the four

services was designed to reside in their own virtual network

(VLAN) and the Service Server and Service Manager of each

Fig. 6 Implementation of the presented framework for ECS using SDN at University of Idaho, Idaho Falls

Fig. 7 Implementation of the network architecture of the presented framework

Fig. 8 Implementation of the user end of the presented framework

service was contained in the associated VLAN. VLAN tagging

[19] was used to identify the traffic between different services.

The flows were specified on the controller depending on the

VLAN tags of different service. For instance, Weather Alert

Service was assigned VLAN tag 101 and Alternative 911 was

assigned VLAN tag 102. Fig. 7 depicts the data flow

implementation in detail.

B. User End Implementation

In the experimental test bed, the user end was implemented

as four Home Devices. A VM for each service was placed on

the client machines and a Hypervisor was used to switch

between the VMs when the Management Service dictated a

change. Four laptop computers were used as client systems

which had similar processing power and performance

capabilities. VirtualBox, which is a virtualization product [21],

was used to contain the VMs on the clients and VirtualBox

acted as the Hypervisor as well. When the Manager of the

Management Service dictates a change, a PXE (Pre-boot

Execution Environment) boot was utilized to activate the VM

of the associated service.

OpenvSwitch, which is an OpenFlow enabled virtual

switch, was used to perform packet forwarding inside the

Home Device to send it to the appropriate VM. This again,

was controlled using OpenFlow rules associated with the

VLAN tag of the data packet. For instance, a data packet

arriving at the Home Device with the VLAN tag 101, is sent to

the VM associated with WAS.

C. Provider End Implementation

The Provider End was implemented for the aforementioned

services using four VMs. The VMs were designed to act as the

Service Servers. For the implementation purposes, the VMs

were hosted on a single system. The Service Manager systems

of services WAS and EAS, were designed to communicate

with the Service Server using a web interface. For service

A911, VOIP client which is under the GNU Public License;

Linphone, was used.

The Service Server was designed to contain the interface

shown on the Home Device as well the interface shown on the

Service Manager. A LTSP server was included in the Service

Server to enable the VM on the Home Device to view content

which is on the Service Server.

Since all Service Servers were hosted in the same system

in the form if VMs, OpenvSwitch was used for the same

purpose as it was used in the Home Device implementation.

D. Documentation

Implementation details and all necessary documentation

are provided in the dedicated website [22]. A screen capture of

the dedicated website is shown in Fig. 10. The website

provides configuration documents and specific details about

the implementation and required hardware so that the

presented framework can be implemented elsewhere.

Furthermore, a Sourceforge page is also set up so that the

software can be downloaded and updated [23].

VI. CONCLUSION

This paper presented a novel framework for Emergency

Communication Systems (ECS) using network virtualization

via Software Defined Networks (SDN). The presented method

utilizes SDN to implement dynamic bandwidth allocation and

priority based packet switching for resilient ECS.

Furthermore, Virtual LANs (VLANs) are used to isolate

services. The paper details the framework and specific

implementation details of the table-top demonstration

developed at the University of Idaho, Idaho Falls.

As future work, the presented framework will be migrated

to GENI for large scale implementation and testing.

Performance analysis will be done to evaluate the usability of

the presented framework in a real-world scenario.

Furthermore, the possibility of utilizing the presented

framework for other commercial uses that require dynamic

bandwidth allocation and high quality of service will be

explored.

Fig. 9 Implementation of the provider end of the presented framework

Fig. 10 The dedicated website providing implementation and configuration

details of the presented framework (http://nsec.if.uidaho.edu/)

APPENDIX

A. Software

Below are the software programs which were utilized in

the implementation of the SDN based ECS test bed given in

this paper.

• Floodlight Controller:

Floodlight controller is a Open SDN controller which is

under the Apache-License. Floodlight controller was used to

provide the open flow rules for packet forwarding.

• VirtualBox:

Virtual Box is a virtualization software under the GNU

General Public License. It was used to contain and manage the

VMs used in the implementation. Further, it was used to act as

the Hypervisor on the client side.

• LTSP - Linux Terminal Server Project

 LTSP is a software which is distributed under the GNU

General Public License which adds thin client support to

LINUX servers. In the implementation, an LTSP server as

used in each Service Server to provide the content to the

Home Device VMs.

• LinPhone:

LinPhone is a VoIP application which is distributed under

the GNU General Public License. Linphone was used as the

calling interface in implementation of the Service A911.

B. Hardware

Below are the special purpose Hardware Used for the

implementation of the aforementioned implementation.

• HP E3800 OpenFlow switch

HP 3800 is a 24 port OpenFlow switch and it was used for

packet forwarding using OpenFlow. The OpenFlow controller

provided the packet forwarding rules.

C. Screen captures of implemented systems.

Fig 11 depicts the .interface designed for the Manger of the

Management Service. By pressing the button shown on the

interface, different service can be made active at the user end.

Fig 12 depicts the interface of the Service Manager for the

WAS. Using the interface shown the service provider has the

ability of updating the content that is being displayed at the

Home Device when WAS is active.

Fig 13 illustrates the interface of the Home Device, when

WAS active and a weather warning is issued.

ACKNOWLEDGMENTS

This work was supported by the National Science

Foundation (NSF), under EAGER: US Ignite: Network Slicing

for Emergency Communications, NSF Award ID: 1258486.

REFERENCES

[1] Z. Shao, Y. Liu, Y. Wu, L. Shen, “A Rapid and Reliable Disaster

Emergency Mobile Communication System via Aerial Ad Hoc BS
Networks,” in Proc. of Int. Conf. on Wireless Communications,

Networking and Mobile Computing, pp. 1-4, Sept. 2011.

[2] M. Dervin, I. Buret, C. Loisel, “Easy-to-Deploy Emergency
Communication System Based on a Transparent Telecommunication

Satellite,” in Proc. of Int. Conf. on Advances in Satellite and Space
Communications, pp. 168-173, July 2009.

Fig. 11 The interface for the Manager of the Management Service

Fig. 12 The interface of the Service Manager for Weather Alert Service

Fig. 13 The interface for the Home Device when a Weather Warning is

issued using Weather Alert Service

[3] Y.-N. Lien, L.-C. Chi, Y.-S. Shaw, “A Walkie-Talkie-Like Emergency

Communication System for Catastrophic Natural Disasters,” in Proc. of
Int. Conf. on Pervasive Systems, Algorithms, and Networks, pp. 309-314,

Dec. 2009.

[4] T. Li, M. Huang, J. Chang, J. Shi, J. Yang, J. Yu, J. Hu, “A pilot
emergency communication system based on IP and airship,” in Proc. of

Int. Symp. on Antennas Propagation and EM Theory, pp. 1008-1011,

Dec. 2010.
[5] H. Okada, H. Oka, K. Mase, “Network construction management for

emergency communication system SKYMESH in large scale disaster,”

in Proc. of IEEE Globecom Workshops, pp. 875-880, Dec. 2012.
[6] P. Conder, L. Linton, M. Faulkner, “Cognitive radio developments for

emergency communication systems,” in Proc. of IEEE Symp. on New

Frontiers in Dynamic Spectrum Access Networks, pp. 658-659, May
2011.

[7] P. Conder, “Improving interoperability on a National level for Law

Enforcement, Public Safety and Security communications,” Report for
the Law Enforcement & Security Radio Spectrum Committee, Victoria

University, Sept. 2008.

[8] Y.-N. Lien, L.-C. Chi, C.-C. Huang, “A Multi-hop Walkie-Talkie-Like
Emergency Communication System for Catastrophic Natural Disasters,”

in Proc. of Int. Conf. on Parallel Processing Workshops, pp. 527-532,

Sept. 2010.
[9] M. Brown, “Abandoning the news,” in Carnegie Reporter, vol. 3, no. 2,

pp. 2-11, 2005.

[10] Open Networking Foundation, “Software-Defined Networking: The
New Norm for Networks”, ONF White Paper, Apr. 2012.

[11] H. Kim, N. Feamster, “Improving network management with software
defined networking,” in IEEE Communications Magazine, vol. 51, no. 2,

pp. 114-119, 2013.

[12] E. Haleplidis, S. Denazis, O. Koufopavlou, J. Halpern, J. H. Salim,
“Software-Defined Networking: Experimenting with the Control to

Forwarding Plane Interface,” in Proc. of European Workshop Software

Defined Networking, pp. 91-96, Oct. 2012.
[13] J. Crowcroft, H. Oliver, Y. Bar-Geva, “Tearing down the Protocol Wall

with Software Defined Networking,” in Proc. of IEEE SDN for Future

Networks and Services, pp. 1-9, Nov. 2013.
[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S .Shenker, J. Turner, “OpenFlow: enabling innovation in

campus networks,” in ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69-74, 2008.

[15] P. Skoldstrom, K. Yedavalli, “Network virtualization and resource

allocation in OpenFlow-based wide area networks,” in Proc. of IEEE
ICC Workshop on Software Defined Networks, June 2012.

[16] R. Sherwood, G. Gibb, K-K. Yap, G. Appenzeller, M. Casado, N.

McKeown, G. Parulkar. "Flowvisor: A network virtualization layer,"
OpenFlow Switch Consortium, Tech. Rep, 2009.

[17] Reed, Jeffrey H., Kevin J. Krizman, Brian D. Woerner, and Theodore S.

Rappaport. "An overview of the challenges and progress in meeting the
E-911 requirement for location service." Communications Magazine,

IEEE 36, no. 4 (1998): 30-37.

[18] Public Law, “Wireless Communications and Public Safety Act of 1999,”
Communications, 1999.

[19] S. Viswanath, P. Chow, “Multiport data switch having data frame

VLAN tagging and VLAN stripping,” U.S. Patent No. 6,151,322. 21
Nov. 2000.

[20] Project Floodlight, Software Defined Networks [Online] Available:

http://www.projectfloodlight.org/floodlight/
[21] Virtualbox, [Online] Available: https://www.virtualbox.org/

[22] Network slicing for Emergency Communication [Online] Available:
http://nsec.if.uidaho.edu/

[23] Sourceforge, Network slicing for Emergency Communication [Online]

Available: http://sourceforge.net/projects/nsec/

