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Abstract— General Type-2 Fuzzy Logic Systems (GT2 FLSs) 

are an extension to Type-1 (T1) FLS where at least one Fuzzy Set 

(FS) is a GT2 FS. However, due to the high computational 

complexity of operations on GT2 FSs, GT2 FLSs have been 

rarely used in practical applications. Instead, Interval Type-2 

(IT2) FLSs which employ constrained IT2 FSs, have been widely 

used. Despite their superior computational complexity, IT2 FLSs 

lack the expressive power of GT2 FSs when describing various 

sources of uncertainty. Further, it is unclear how to derive an IT2 

FLS from a specific GT2 FLS. To alleviate these issues, this paper 

outlines a novel concept of Shadowed Type-2 Fuzzy Logic 

Systems (ST2 FLS). The ST2 FLS consists of previously proposed 

ST2 FSs, which are T2 FSs with secondary membership functions 

represented as Shadowed Sets (SSs). Because ST2 FSs are 

directly induced by GT2 FSs, the entire design of the ST2 FLS 

can be automatically derived from a specific GT2 FLS. 

Furthermore, the proposed ST2 FLS was shown to approximate 

GT2 FLS more accurately compared to IT2 FLS, while 

maintaining the computational efficiency of IT2 FLS. 

 
Index Terms— General Type-2 Fuzzy Logic Systems, Interval 

Type-2 Fuzzy Logic Systems, Shadowed Sets, Shadowed Type-2 

Fuzzy Sets, Uncertainty Modeling 

I. INTRODUCTION 

ENERAL Type-2 Fuzzy Logic Systems (GT2 FLSs) were 

originally designed as an extension to T1 FLSs [1]. While 

the architecture of GT2 FLS is very similar to Type-1 (T1) 

FLS, they differ in the nature of individual Fuzzy Sets (FSs), 

where GT2 FLSs use GT2 FSs to model the fuzzy rule 

antecedents and consequents. 

The concept of  GT2 FSs was originally proposed by Lotfi 

Zadeh [2] to address the problem of over-specification of the 

real-valued membership degrees of T1 FSs. GT2 FSs use 

membership degrees that are themselves FSs. Despite the 

powerful uncertainty modeling capability of GT2 FSs, the 

high computational complexity of computing with GT2 FSs 

significantly hindered their practical use. As a consequence, 

GT2 FLSs have been rarely applied in practice [3]. Recently, 

there has been a renewed interest in the area of GT2 FSs and 

GT2 FLSs due to the recently introduced representations of 

geometric T2 FSs [4], [5] or the  -planes [6], [7], [8] and the 

zSlices [9], [10] representations. 

The high computational complexity of GT2 FLSs led to a 

wide spread of applications of their constrained version – the 

Interval T2 (IT2) FLSs [11], [12]. The IT2 FLSs consist of IT2 

FSs which restrict the form of the secondary membership 

functions to intervals [13]. This simplification allows the 

development of efficient algorithms for fuzzy inference with 

IT2 FSs [14]. However, the restricted interval secondary 

membership functions can be seen as a significant limitation in 

situations where more complex representation of secondary 

uncertainty is required [15], [16].  

Hence, on one side there are GT2 FLSs with rich 

uncertainty modeling capability but with unfavorable 

computational complexity. On the other side there are IT2 

FLSs which provide efficient computational framework but at 

the price of significantly restricting the options for modeling 

various sources of uncertainty [9]. This paper proposes a new 

class of FLSs, the Shadowed Type-2 Fuzzy Logic Systems 

(ST2 FLSs), which constitute a compromise of both methods. 

The proposed class of ST2 FLS is based on the previously 

proposed concept of ST2 FSs [17]. An ST2 FS is a GT2 FS 

with all secondary membership functions represented as 

Shadowed Sets (SSs) [18], [19], [20], [21], [22]. The 

computational complexity of processing ST2 FSs is 

significantly reduced because it is able to take advantage of 

the efficient fuzzy operations on IT2 FSs. However, at the 

same time, the ST2 FSs offer improved description of 

uncertainty, which is captured using the SSs rather than simple 

interval values for the secondary fuzzy membership functions. 

Similar representation to ST2 FSs, named Shadowed Fuzzy 

Sets was recently outlined in [23], [24]. 

This paper outlines the design of ST2 FLSs, which employs 

ST2 FSs to model the fuzzy rule antecedents and consequents. 

The ST2 FLS design is automatically derived from an original 

GT2 FLS so as to preserve the uncertainty modeled by the 

original GT2 FSs. ST2 FLSs can thus offer improved 

modeling of uncertainty when compared to IT2 FLS while 

also providing efficient computational framework since the 

secondary membership grades can only attain three values of 

0, 1, or completely uncertain (shadowed) grade of [0, 1]. 

Similarly, as demonstrated in the experimental results section, 

ST2 FLSs are also computationally efficient since they apply 

the efficient fuzzy inference mechanisms of IT2 FLSs. 

The rest of the paper is organized as follows. Section II 

reviews the previously published concept of ST2 FSs. The 

novel architecture and the design of ST2 FLS are outlined in 

Section III. Several examples of ST2 FLSs are presented in 

Section IV and the paper is concluded in Section V. 
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II. SHADOWED TYPE-2 FUZZY SETS 

This section provides an overview of the concept of ST2 

FSs which was previously proposed in [17]. The concept of 

Shadowed Sets (SSs) was originally developed to improve the 

observability and interpretability of T1 FSs and to alleviate the 

issues of excessive precision in describing imprecise concepts 

using T1 fuzzy membership functions [18]-[21]. An SS is 

directly induced by a T1 FS. Based on the T1 fuzzy 

membership grades, the SS can be divided into three regions: 

exclusion, core and shadow [18]-[21].  

An ST2 FS is directly induced by a GT2 FS by transforming 

all the T1 fuzzy secondary membership functions into their SS 

forms [17]. In this paper all secondary membership function of 

the respective GT2 FSs are assumed to be convex fuzzy sets. 

Hence, the secondary membership functions )(uf x
 can be 

described as: 
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where )(ug x
and )(uhx

are monotonically non-decreasing and 

monotonically non-increasing functions in their respective 

domains.  

A. Representation of ST2 FSs 

An ST2 FS A
~

is induced by a GT2 FS A
~

. The process of 

constructing A
~

 constraints all the secondary membership 

functions of A
~

 to be SSs. The ST2 FS A
~

 can be seen as 

functional mapping: 
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Here, the secondary membership of 1 corresponds to the 

core of the ST2 FSs, secondary membership of 0 corresponds 

to the exclusion region and the absolutely uncertain grade of 

[0, 1] corresponds to the shadow. The ST2 FS membership 

function can be expressed as follows: 

 

}}]1,0[,1,0{),(],1,0[,),(),,{(
~

~~  uxuXxuxuxA
AA

  (3) 

 

The process of constructing an ST2 FS A
~

based on a GT2 

FS A
~

 includes elevation, reduction and balancing of the 

membership grades. The ST2 FS A
~

 is constructed using a 

suitable threshold 
~

. The core )
~

(Acore of ST2 FS A
~

 can be 

described as a footprint of A
~

 where all secondary 

membership degrees are greater than 
~

1 . 
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The exclusion region )
~

(Aexcl of ST2 FS A
~

 can be defined 

as a footprint of A
~

 where all secondary memberships are less 

than threshold 
~

: 
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Finally, The shadow region )
~

(Ash of ST2 FS A
~

 can be 

constructed as a footprint of A
~

 where all secondary 

memberships are between thresholds values 
~

 and 
~

1 : 
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The process of locating the optimal value of threshold 
~

 

consists of finding a pair of  -planes at levels 
~

and 
~

1 , 

which optimize a fitness function )
~

(V . The objective 

function is composed of three components, which express the 

amount of uncertainty in regions that were reduced ( )
~

(RV ), 

elevated ( )
~

(EV ) or balanced ( )
~

(BV ). Using the notation 

depicted in Fig. 1(a) the individual components can be 

expressed as: 

 

     
 (a) (b) 

Fig. 1 Secondary membership function of GT2 FS A
~

 and its segmentation using two selected  -planes (b) and the optimization function )
~

(V (b). 
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By combining all three components the optimization 

function )
~

(V can be constructed as: 
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In practical cases where the GT2 FS A
~

is represented in the 

 -plane framework with a finite number of  -planes, the 

solution can be obtained as: 
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An example of the optimization function )
~

(V is depicted 

in Fig. 1(b). 

An ST2 FS A
~

 can be completely described using its inner 

and outer boundaries 
IA

~
 and 

OA
~

. Each boundary is composed 

of two T1 fuzzy membership functions, the lower ( )(~ x
IA

 ,

)(~ x
OA

 ) and the upper ( )(~ x
IA

 , )(~ x
OA

 ) membership 

functions. The outer boundary marks the boundary between 

the exclusion and the shadow region. Similarly, the inner 

boundary marks the transition from the shadow to the core 

region. This is depicted in Fig. 3, which shows a GT2 FS A
~

and its derived ST2 FS A
~

. This simplified view offers a 

convenient way to fully describe the ST2 FS A
~

as: 
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Here, both 
IA

~
and 

OA
~

are IT2 FSs.  

B. Set theoretic operations with ST2 FSs 

Here, the three elementary operations of intersection, union 

and complement on ST2 FSs are reviewed.  

The intersection (meet) of two ST2 FSs A
~

and B
~

 can be 

defined as follows: 
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The method for intersection of two IT2 FSs described in 

[15] can be used to calculate individual components. 

The union (join) of two ST2 FSs A
~

and B
~

can be defined as 

follows: 
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The method for union of two IT2 FSs can be used to 

calculate individual components in (14).  

Finally, the complement of a ST2 FSs A
~

 can then be 

obtained as follows: 
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The method for computing the complement an IT2 FS can 

be used to calculate individual components in (15). An 

example demonstrating the application of ST2 FS operations is 

depicted in Fig. 3. 

 
(a) 

 
(b) 

Fig. 2 GT2 FS A
~

(a) and its induced ST2 FS A
~

(b). 

 

 
 (a) (b) (c) (d) 

Fig. 3 Two ST2 FSs A
~

 and B
~

 (a), the results of the set theoretic operations of meet BA
~~

  (b), join BA
~~

  (c) and complement A
~

 (d). 



C. Type-reduction of ST2 FSs 

Similar to the basic set theoretic operations, the type-

reduction of ST2 FSs also takes advantage of the well-

established and computationally efficient algorithms of IT2 

FSs. The centroid of an ST2 FS A
~

 denoted as 
A

C ~ can be 

described using two interval T1 FSs describing the inner and 

the outer centroids 
I

A
C ~ and 

O

A
C ~ : 
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The inner and the outer centroid can be computed by 

independently type-reducing the inner and the outer boundary 

sets IA
~

and OA
~

. Hence: 
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The outer centroid 
O

A
C ~ marks the boundary between the 

exclusion region and the shadowed region of the centroid. 

Similarly, the inner centroid 
I

A
C ~ creates a boundary between 

the shadowed boundary and the core region. An example of 

the centroid of ST2 FS is depicted in Fig. 4. 

D. Defuzzification of ST2 FSs 

Previously, three methods for defuzzification of the centroid 

of ST2 FSs were proposed, namely the optimistic, pessimistic 

and weighted defuzzification methods. The output values y
O
, 

y
P
 and y

W
 of each method can be expressed as follows: 
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Here, w(xi) is a specific weighting function, e.g. a 

trapezoidal weighting function (see Fig. 4). 

III. SHADOWED TYPE-2 FUZZY LOGIC SYSTEMS 

This Section describes first the architecture and inference of 

the proposed ST2 FLSs. Next, the design of the ST2 FLS 

based on a specific GT2 FLS is outlined. 

A. ST2 FLS Architecture and Inference 

An FLS is a rule based system with individual rule 

antecedents and consequents represented as FSs. While many 

different types of FLS can be found in literature (e.g. 

Mamdani or Takagi-Sugeno), this paper focuses on the 

Mamdani type of FLS. The architecture of the Mamdani FLS 

can be decomposed into four major parts: input fuzzification, 

fuzzy inference engine, fuzzy rule base and output 

defuzzification or processing, as shown in Fig. 5. For the case 

of the proposed ST2 FLS the fuzzy rule base is populated with 

linguistic implicative fuzzy rules in the following form: 

 

Rule Rk: IF x1 is
k

A1

~
AND … AND xn is 

k

nA
~

  

THEN y is 
k

B
~

 (21) 

 

Each input xi is first fuzzified by computing the membership 

to the respective antecedent ST2 FS. The membership grade of 

input xi with respect to ST2 FSs 
k

iA
~

is equal to the secondary 

membership function at of 
k

iA
~

at coordinate xi, which can be 

denoted as )(~ i
A

xk

i

 . 

The output of rule Rk can be expressed as a ST2 fuzzy 

membership function ),( yx
kR


 , which can be computed by 

applying the fuzzy meet operations to the rule antecedents and 

the consequents: 

 
 

Fig. 4 Centroid of the ST2 FS A
~

 from Fig. 3(b) 

  

 
 

Fig. 5 Architecture of a Mamdani FLS 

  

 
 

Fig. 6 Parallel processing inner and outer boundaries of the ST2 FLS 
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The ST2 FSs meet operation  can be computed according 

to the description provided in (13). For completeness sake, 

(22) can be simplified into: 
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Assuming that there are K distinct fuzzy rules, the output 

ST2 FSs )(
~

yB  can be computed by aggregating the individual 

rule outputs via the join operation: 
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The ST2 FSs meet operation  can be computed according 

to the description provided in (14). 

Finally, the output ST2 FS )(
~

yB is first type-reduced in the 

first phase of output processing and subsequently defuzzified 

into a terminal real-valued output in the second phase. As 

previously discussed, by applying the IT2 FSs type-reduction 

algorithms such as the Enhanced Karnik Mendel algorithm 

[25], [26] individually to the inner and the outer boundaries of 

the output ST2 FSs )(
~

yB  its centroid 
B

C ~ can be obtained. 

This centroid can then be defuzzified using any of the 

previously discussed defuzzification techniques for ST2 FSs 

from Section II. D.  

By following the described operations of meet, join and 

type-reduction on ST2 FSs, the entire fuzzy inference process 

with ST2 FLS can be thought of as a parallel processing of 

two IT2 FLSs, one for the inner and one for the outer 

boundary IT2 FSs of the ST2 FSs. The two results are then 

merged during the defuzzification stage. This interpretation is 

depicted in Fig. 6. 

 
(a) 

 

 
(b) 

Fig. 7 GT2 FS for the inputs (a) and the output (b) 

 
(a) 

 

 
(b) 

Fig. 8 ST2 FS for the inputs (a) and the output (b) (induced by the GT2 FS in Fig. 7) 



B. ST2 FLS Design 

When compared to IT2 FLS, one of the major advantages of 

the proposed ST2 FLS is that its design is directly induced 

from a GT2 FLS. As a consequence of the design process the 

ST2 FLS preserves the uncertainty modeled by the original 

GT2 FLS. The design process of obtaining an ST2 FLS based 

on a GT2 FLS can be described in several steps as follows: 

 

Step 1: For all antecedent and consequent GT2 FSs find the 

optimal splitting  -planes 
~

by minimizing function )
~

(V

according to (10).  

 

Step 2: Convert all antecedent and consequent GT2 FSs 

into ST2 FSs using the identified splitting  -planes 
~

. 

 

Step 3: Preserve the fuzzy rule base of the GT2 FLS. 

 

Step 4: Modify the fuzzy inference process to implement 

the fuzzy inference operation on ST2 FSs as described in (22) 

and (24). 

 

 
 

Fig. 9 Output surface of the ST2 FLS 

  

 
 

Fig. 10 Output surface of the GT2 FLS 

  

 
(a) 

 

 
(b) 

Fig. 11 IT2 FS for the inputs (a) and the output (b) (using the FOU of the GT2 FS in Fig. 7) 

TABLE I. FUZZY RULE BASE 

  Input 2 

  Low Medium High 

In
p
u

t 
1
 

Low Low Low Medium 

Medium Low Medium High 

High Medium High High 

 

TABLE II. COMPARISON RESULTS BETWEEN IT2 FLS AND ST2 FLS 

Method MSE 
Average 
Runtime 

GT2 - 1.98 110  

IT2 3.23 410  2.27 310  

ST2 (Optimistic) 1.70 510  2.34 310  

ST2 (Pessimistic) 1.12 510  2.34 310  

ST2 (Weighted) 3.10 710  2.34 310  

 



Step 5: Modify the output processing to implement the 

type-reduction and defuzzification operation on ST2 FSs as 

described in Sections II.C and II.D. 

IV. EXPERIMENTAL RESULTS 

This section demonstrates the fuzzy inference process with 

the proposed ST2 FLS on a simple use case. The constructed 

FLS is composed of two inputs and a single output, all 

partitioned using three antecedent and consequent FSs, 

respectively. First, an initial GT2 FLS was created. The 

antecedent and consequent GT2 FSs were constructed using 

triangular primary membership function with symmetrically 

positioned Gaussian secondary membership function as shown 

in Fig. 7(a) and Fig. 7(b). For the inference process the GT2-

FSs shown were decomposed into 200  -planes. The fuzzy 

rule base used is depicted in Table I.  

Second, the GT2 FLS was transformed into a ST2 FLS 

using the method outlined in Section III.B. The optimal values 

of 
~

 values were calculated and used to identify splitting  -

planes of each GT2 FS (Step 2). The ST2 FSs that were 

directly induced by the GT2 FSs are shown Fig. 8(a) and Fig. 

8(b), respectively.  

Using the inference and defuzzification process detailed in 

Section III.A, the output surface for the ST2 FLS can be 

constructed. This ST2 FLS output surface computed using the 

weighted defuzzification method is shown in Fig. 9. For 

comparison, the output surface for the original GT2 FLS is 

depicted in Fig. 10. It can be observed, that both control 

surfaces are very similar. 

To further investigate the modeling capability of the ST2 

FLS it was compared to an IT2 FLS. The respective IT2 FLSs 

was constructed based on the original GT2 FLS, where 

individual IT2 FSs were implemented as the Footprint-Of-

Uncertainty of the GT2 FSs. The IT2 FSs are shown in Fig. 

11. The IT2 FLS output surface and ST2 FLS output surface 

were then compared to the original GT2 FLS output surface. 

This comparison was performed by calculating the squared 

error between the output of the IT2 FLS and ST2 FLS and the 

output of the GT2 FLS. In addition, the average computational 

time of the fuzzy inference process for a single input-output 

pair achieved by each method was also measured. Table II 

shows the mean squared error (MSE), and the computation 

time of each method. Fig. 12(a) and Fig. 12(b) show the 

squared error for each input value for IT2 FLS and ST2 FLS 

(weighted defuzzification), respectively (note the different 

scales used in Fig. 12).  

The results show that the ST2 FLS is capable of modeling 

the GT2 FLS better than IT2 FLS while maintaining the 

computational efficiency of an IT2 FLS. 

V.  CONCLUSION 

This paper presented a novel concept of Shadowed Type-2 

Fuzzy Logic Systems. The ST2 FLS is an FLS using ST2 FSs 

for its antecedents and consequents. Since the ST2 FSs are 

directly induced by GT2 FSs, the entire design of the ST2 FLS 

can be automatically derived from a specific GT2 FLS. The 

ST2 FLSs can thus offer improved modeling of uncertainty 

when compared to IT2 FLS while also providing efficient 

computational framework. The experimental results 

demonstrated the feasibility of the proposed concept of ST2 

FLS and its comparison to both IT2 FLS and GT2 FLS in 

terms of both modeling accuracy and computational 

complexity. 

As future work the advantages of ST2 FLS compared to IT2 

FLS will be further investigated by applying the presented 

methodology to real world problems. 
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