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Abstract—Significant portion of world energy production is 

consumed by building Heating, Ventilation and Air Conditioning 

(HVAC) units. Thus along with occupant comfort, energy 

efficiency is also an important factor in HVAC control. Modern 

buildings use advanced Multiple Input Multiple Output (MIMO) 

control schemes to realize these goals. However, since the 

performance of HVAC units is dependent on many criteria 

including uncertainties in weather, number of occupants, and 

thermal state, the performance of current state of the art systems 

are sub-optimal. Furthermore, because of the large number of 

sensors in buildings, and the high frequency of data collection, 

large amount of information is available. Therefore, important 

behavior of buildings that compromise energy efficiency or 

occupant comfort is difficult to identify. This paper presents an 

easy to use and understandable framework for identifying such 

behavior. The presented framework uses human understandable 

knowledge-base to extract important behavior of buildings and 

present it to users via a graphical user interface. The presented 

framework was tested on a building in the Pacific Northwest and 

was shown to be able to identify important behavior that relates 

to energy efficiency and occupant comfort. 
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I. INTRODUCTION (Heading 1) 

Buildings worldwide consume more than 20% of total 
energy produced [1]. In the US around 40% of the energy 
production is consumed by buildings [1], [2]. This means that 
in the US more than 70% of the electricity production and over 
50% of the natural gas production is consumed by buildings 
[3]. This also leads to buildings being one of the major causes 
of greenhouse gas production [4]. Buildings around the world 
account for more than 30% of greenhouse gas production [5] 
and the number is close to 40% in the US [3]. In many 
countries energy usage in buildings surpasses that of industry 
and transportation sectors [2]. 

Due to economic growth and the expansion of the building 
sector the energy usage in buildings has been steadily growing 
[2]. In 2008 the energy usage of buildings in North America 
has increased at an average rate of 1.9%, and this number has 
been projected to further increase [1], [6]. This increase in 
energy usage has especially been attributed to Heating, 
Ventilation and Air Conditioning (HVAC) in buildings [1].  

The largest energy consumer in buildings is HVAC systems 
[8]. Recent research have shown 30-50% of energy consumed 

in buildings is consumed by HVAC systems [2], [5], [8], [9]. 
Thus increasing energy efficiency in HVAC systems is an 
attractive proposition [10]. Recent research have shown that 
energy efficiency in HVAC systems can be improved more 
than 5% by implementing very low cost building management 
strategies [5]. Furthermore, it has been shown that the energy 
efficiency can be improved by up to 40% by closely 
monitoring the state of the building and improving control 
strategies [11], [12]. 

Since humans spend significant amount of time (nearly 
90%) indoors [13] human occupant comfort is also an 
important requirement of building HVAC. Furthermore, a 
comfortable work environment can improve productivity [14]. 
Human occupant comfort in buildings has been attributed to 
many factors such as temperature, humidity CO2 levels, etc. 
[15]. However, thermal comfort has been identified as the 
driving factor of overall comfort within buildings [15].  

Therefore, building HVAC control is a multi criteria 
optimization problem that tries to maintain human occupant 
comfort while increasing the energy efficiency [16], [17]. In 
order to achieve these goals, modern buildings use advanced 
control systems known as Building Energy Management 
Systems (BEMSs). BEMSs are responsible for HVAC as well 
as lighting and other control aspects of buildings [16]. In order 
to achieve the goals of comfort and energy efficiency, BEMSs 
contain a large number of sensors throughout buildings and Air 
Handling Units (AHUs) and occupant zones [16], [18]. Using 
this gathered information BEMSs control an array of fans, 
dampers, and heating and cooling units. Thus, BEMSs are 
highly complex Multiple Input Multiple Output (MIMO) 
systems, and therefore are difficult to model [18]-[20]. 

Recently, large amount of research has been done on 
increasing the efficiency of BEMS while maintaining occupant 
comfort levels [12], [15]-[18], [21]-[25]. However, recent 
research is more focused on either increasing the efficiency of 
equipment or increasing the efficiency via control [26]. Very 
little work has been done in the area of situational awareness 
for building managers, and identifying sub-optimal behavior in 
existing BEMS [16], [27], [28].  

Thus, this paper presents an easy to use framework for 
identifying important behavior of buildings that can be used to 
evaluate building performance. The presented framework 
utilizes expert provided fuzzy logic based linguistic rules to 



describe important behaviors of buildings. Using this 
knowledge-base, the current behavior of the building at a given 
time can be identified. The use of multiple rules enables the 
description of complex behavior of the building accurately. 
Fuzzy logic enables the description of behavior using human 
understandable rules that fuse information from multiple data 
sources. Furthermore, the use of fuzzy sets enables 
generalization of the rules for different types of buildings. An 
interactive Graphical User Interface (GUI) was created that 
presents the identified building behavior users in an easy to 
understand manner. The presented framework was tested on an 
office building in the Pacific Northwest, and was shown to be 
able to extract key information regarding occupant comfort as 
well as energy efficient building behavior.  

The rest of the paper is organized as follows. Section II 
describes the presented framework in detail. Section III 
describes the implementation of the presented framework. 
Section IV presents experimental results and Section V 
concludes the paper. 

II. LINGUISTIC RULE BASED BEHAVIOR EXTRACTION  

The highly complex MIMO nature of BEMSs leads to 
highly non-linear system states [18]. Furthermore, other highly 
uncertain sources as weather, thermal capacity of building, 
occupancy level, etc. have a high impact on the performance of 
BEMSs [19], [21], [22], [29]. Therefore, modeling BEMS 
performance using traditional methods is difficult [18]-[20]. 
However, it has been shown that fuzzy modeling is suited to 
model the non-linearity and interrelationships between 
different data sources existing in BEMSs [15], [17]. Similarly, 
human occupant comfort is also highly subjective, and also 
relies on a large number of factors [14], [20]. Fuzzy logic has 
been successfully used to model and describe building control 
as well as occupant comfort related aspects of BEMS [15], 
[18], [19]. 

The presented linguistic rule based behavior extraction 
framework utilizes a linguistic knowledge-base that consists of 
expert provided fuzzy rules. The fuzzy rules take form of 
Mamdani rules where outputs themselves are described in 
terms of fuzzy sets [30]. The framework is based on the three 
main steps of fuzzy inference: 1) fuzzification, 2) fuzzy 
inference, and 3) defuzzification [30]. Using the knowledge-
base and sensor input, the framework can identify system 
behavior via the fuzzy inference process. Fig. 1 shows a block 

diagram of the framework process. Next each step of the 
process is discussed in detail. 

The inputs to the behavior extraction framework are 
gathered sensor data from throughout the building. Thus for a 
building with s number of sensors a single data point at time t 
is a vector taking the form: 

 )}(),...,(),({)( 21 txtxtxtD s
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Where )(tD


 is the data point at time t, xi(t) is the value for 

the i
th
 sensor input Xi at time t. 

In the fuzzification step, the real valued sensor data is 
converted in to a linguistic fuzzy term. Fig. 2 shows the 
fuzzification of an input sensor Xi for the value xi(t). The 
domain of Xi is divided into 2 fuzzy sets Fi and Gi. These fuzzy 
sets represent human understandable terms describing the input 
domain such as Low and High. The degree of belonging of the 

value x to the fuzzy set Fi is represented as ))(( txiFi
 . Thus: 
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Each input dimension can be decomposed in to multiple 
fuzzy sets and fuzzy sets can take different shapes. Similarly, 
all input dimensions can be fuzzified and these fuzzified inputs 
are used in the next steps. 

The expert provided knowledge-base consists of linguistic 
implicative fuzzy rules. An implicative fuzzy rule with m 
number of antecedents takes the form: 

Rule Rk: IF 1X  is kA1 AND … AND mX  is k
mA  

 THEN Behavior Y is kB   (4) 

Where Xi are antecedents of the rule and the consequent is 

Y. k
iA  and kB  are fuzzy sets defined for each dimension. The 

antecedents of a behavior extraction rule are various sensors 
inputs and the consequent is a specific behavior of the building 
induced by the sensor values described in the rule. The number 
of antecedents for a rule is bound by the number of sensors in 
the building s: 

 
 

 
Fig. 1 Linguistic Knowledge-Based behavior extraction process 

 

 
 

Fig. 2 Fuzzification of input parameter Xi 
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Each significant behavior in the knowledge-base can have 
multiple rules in order to describe the behavior more 
thoroughly. 

The fuzzy inference step takes the rules in the knowledge-
base and fuzzified inputs to identify current building behavior. 
In order to identify the correct behavior given by the sensor 
values, the firing strength of each rule is calculated using: 
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  is the firing strength of rule k of 

behavior Y for the data point )(tD


 at time t. m is the number 

of antecedents in rule k and ))(( tx jAk
j

  is the fuzzified output 

of value xj(t) for sensor Xj. 

Once the firing strengths of all the rules have been 
calculated, the aggregate output for each behavior is calculated. 
Assuming there are K distinct rules for behavior Y, the 
aggregate output is calculated using: 
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Where C(Y) is the aggregate output for behavior Y and   
is the union operator for fuzzy sets. 

The final step of the fuzzy rule based behavior extraction is 
defuzzification. In the defuzzification step the aggregate fuzzy 
output of the fuzzy inference process is converted to a real 
valued output. This is done by calculating the center of gravity 
(COG) of the aggregate output. The defuzzification step yields 
an output that relates the current building behavior to the 
behaviors explained in the knowledge-base. Using these values 
the current performance of the building can be evaluated by 
building managers. 

III. IMPLEMETED FRAMEWORK 

The fuzzy knowledge based behavior extraction framework 
was implemented for an office building in the Pacific 

Northwest. The building consists of 11 floors, where each floor 
has between 10 and 60 different measured occupant zones. 
Various sensors are available throughout the building 
measuring attributes related to individual occupants’ zones, 
entire floors or the entire building. 

For the purpose of experimental demonstration, 11 
attributes were identified. The extracted attributes cover the 
scope of the building, specific Air Handling Units (AHUs) and 
occupant zones. These attributes together with their scope are 
listed in Table I.  

A. Fuzzy Logic Systems 

All attribute values were first normalized into a unit 
interval between 0 and 1. Next the domain of the input 
attributes was represented using 5 triangular and trapezoidal 
fuzzy sets as denoted in Fig. 3(a) with the exception of the time 
attribute, which was represented using 6 fuzzy sets as denoted 
in Fig. 3(b). These fuzzy partitions represent a suitable 
decomposition of the respective domains established with 
respect to the targeted application. 

As mentioned, the two main requirements of BEMS are 
energy efficiency and occupant comfort. Therefore, in this 
paper, energy efficiency and comfort related behaviors of the 
building were extracted using two linguistic rule sets. The 
energy efficiency and occupant comfort was described using 
the fuzzy sets shown in Fig. 4(a) and Fig. 4(b) respectively. 
Thus a “Low” efficiency or comfort will result in a negative 
output and a “High” output will result in a positive output. If 
none of the rules for a specific behavior is fired the output for 
that behavior will be 0, which is the “Normal” behavior. 

 

 
(a) 

 

 
(b) 

 

Fig. 3Representation of input domain in fuzzy linguistic terms (a) sensor 

input, (b) time attribute  

TABLE I 
LIST OF EXTRACTED ATTRIBUTES AND THEIR SCOPE 

Attribute Scope 

Time Building 

Outside Air Temperature Building 

Chiller Temperature Floor 

Mixed Air Temperature Floor 

Return Air Temperature Floor 

Damper Position Floor 

Exhaust Fan Load Floor 

Exhaust Fan Current Floor 

Supply Fan Load Floor 

Supply Fan Current Floor 

Zone Temperature Zone 

 



B. Graphical User Interface 

In order to present the identified behavior in an 
understandable manner, a Graphical User Interface (GUI) was 
developed. Fig. 5 depicts the Graphical User Interface (GUI) 
developed for the framework.  

The GUI contains three main information views: the 
building view (Fig. 5(a)), the floor view (Fig. 5(b)) and the data 
view (Fig. 5(c)). The building view provides a summary view 
of all floors in the building, where color can be assigned to 
depict various information, such as average floor temperature 
or the existence of important performance related information.  

The floor view (Fig. 5(b)) shows the floor plan of the 
selected floor. The color of each zone depicts either the 
average temperature or energy efficiency or comfort levels. 
Low energy efficiency and comfort is encoded in red and high 
energy efficiency and comfort is encoded in blue. Normal 
energy efficiency and comfort levels are depicted in green 
color.  

Finally, the user can select a specific zone for the given 
floor and observe the source data plotted over time. The 
building manager can plot multiple sources of data in the data 
view (Fig. 5(c)). 

IV. EXPERIMENTAL RESULTS 

As mentioned, the presented framework was first tested on 
an office building in the Pacific Northwest. The behavior 
identification framework was used to identify energy efficiency 
and occupant comfort related behavior. For demonstration 
purposes and for the sake of simplicity, energy efficiency and 
occupant comfort were described using 4 rules each. This 
simplified linguistic knowledge-base of rules is shown in Table 
II. If none of the rules in Table II are fired, then the output of 
the fuzzy system is 0, which correlates to normal behavior (see 
Fig. 4). 

Three scenarios of behaviors extracted related to efficiency 
are shown in Fig. 6. Fig. 6 (a) shows a low efficiency behavior 
occurring at night where the zone temperature was high (81

o
F) 

when the chiller temperature was low (54
o
F). Clearly this 

indicates a low efficiency behavior since the chiller does not 
seem to be cooling the zone. Similar behavior is shown in Fig. 
6 (b) where the zone temperature was high (77

o
F) during the 

night when the outside air temperature was low (59
o
F). Both 

the behaviors may be indicating unnecessary heating taking 
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Fig. 4 Representation of the output domain using fuzzy linguistic labels: (a) 

energy efficiency, (b) occupant comfort 

 

 
 

Fig. 5 Implemented Graphical User Interface (GUI) with the building (a), 

floor (b), and data views (c)  

TABLE II 

LINGUISTIC KNOWLEDGE-BASE FOR BEHAVIOR EXTRACTION 

Building Behavior Linguistic Rule 

Energy Efficiency 

IF Zone Temperature IS High AND Outside Air Temperature IS Low AND Time IS Night THEN Efficiency IS Low 

IF Chiller Temperature IS Low AND Zone Temperature IS High THEN Efficiency IS Low 

IF Outside Air Temperature IS High AND Zone Temperature IS Low THEN Efficiency IS Low 

IF Outside Air Temperature IS Low AND Zone Temperature IS High THEN Efficiency IS Low 

Comfort 

IF Zone Temperature IS Medium THEN Comfort IS High 

IF Time IS Morning AND Outside Air Temperature IS Low AND Zone Temperature IS Low THEN Comfort IS Low 

IF Time IS Noon AND Zone Temperature IS Low THEN Comfort IS Low 

IF Time IS Noon AND Zone Temperature IS High THEN Comfort IS Low 

 



place at night when the building is closed. Fig. 6 (c) shows a 
behavior where the BEMS was not utilizing the outside air to 
cool a zone. Here the zone temperature was 79

o
F while the 

outside air temperature was 61
o
F. 

Similarly, three scenarios where the presented framework 
extracted occupant comfort related behavior is shown in Fig. 7. 
Fig 7 (a) and Fig 7 (b) show behavior where the occupant 
comfort was low because the zone temperature was low. Fig. 7 
(a) shows two areas with zone temperatures below 62

o
F during 

the day. Several other zones were also marked as lower 
comfort. Similarly Fig 7 (b) shows several areas with zone 
temperatures below 65

o
F in the morning. Fig 7 (c) shows 

behavior relating to high occupant comfort (marked in blue), 
normal occupant comfort (marked in green) and low occupant 
comfort (marked in red) occurring during the day. 

Thus, the presented framework was capable of extracting 
important building performance related behavior of buildings. 
This information can be used by the building managers to 
identify and eliminate low efficiency and low comfort behavior 
to realize the performance goals of BEMSs.  

V. CONCLUSIONS 

This paper presented an easy to use, understandable 
framework for identifying important building behavior. The 
presented framework utilizes a linguistic knowledge-base 
comprised of implicative fuzzy rules to describe complex 

behavior of the building, and is capable of fusing multiple 
sources of data to correctly identify important building 
behavior. 

The presented system was tested on an office building in 
the Pacific Northwest and was shown to be able to identify 
important building behavior related to energy efficiency and 
human comfort. Furthermore, the framework uses an easy to 
understand GUI to present the identified behavior to building 
managers. 

Future work includes testing the generalizability of the 
presented framework by applying the same knowledge-base to 
a different building. The complexity of the rule sets can be 
increased in the future to be applicable to a larger array of 
buildings. The GUI will be updated so that users can select 
distinct rules for behavior extraction. Furthermore, the 
behaviors extracted from the presented framework can be used 
to evaluate the performance of the building automatically.  
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Fig. 6 Efficiency related behavior extracted: (a) High zone temperature at when chiller temperature was low, (b) High zone temperature at night when outside air 

temperature was low (c) High zone temperature when outside air was low during the day 
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Fig. 7 Occupant comfort related behavior extracted: (a) Very low zone temperatures during the day, (b) Low zone temperatures in the morning (c) High and low 
comfort levels during the day 

 



Control, and Intelligent Systems (ICIS) Distinctive Signature 
of Idaho National Laboratory. 

REFERENCES 

[1] L.P. Lombard, J. Ortiz, C. Pout, “A review on buildings energy 
consumption information,” Energy and Buildings, vol. 40, pp. 394–398, 
2008. 

[2] T. Kalamees, K. Jylhä, H. Tietäväinen, J. Jokisalo, S. Ilomets, R. 
Hyvönen, S. Saku, “Development of weighting factors for climate 
variables for selecting the energy reference year according to the EN 
ISO 15927-4 standard,” Energy and Buildings, vol. 47, pp. 53-60, Apr. 
2012.  

[3] Buildings Energy Data Book, U.S. Dept. Energy, Washington, DC, 
2009. [Online]. Available: http://buildingsdatabook.eren.doe.gov/. 

[4] J. Lausten, “Energy Efficiency Requirements in Building Codes,” 
Energy Efficiency Policies for New Buildings. Paris, France: 
International Energy Agency, 2008. 

[5] A. Costa, M. M. Keane, J. I. Torrens, E .Corry, “Building operation and 
energy performance: Monitoring, analysis and optimisation toolkit,” 
Applied Energy, vol. 101, pp. 310-316, Jan. 2013. 

[6] T. Weng, Y. Agarwal, “From Buildings to Smart Buildings—Sensing 
and Actuation to Improve Energy Efficiency,” IEEE Design & Test of 
Computers, vol.29, no.4, pp. 36-44, Aug. 2012. 

[7] B. Sun, P. B. Luh, Q. Jia, Z. O'Neill, F. Song, “Building Energy 
Doctors: An SPC and Kalman Filter-Based Method for System-Level 
Fault Detection in HVAC Systems,” IEEE Trans. On Automation 
Science and Engineering, in press. 

[8] K. W. Roth, D. Westphalen, J. Dieckmann, S. D. Hamilton, W. Goetzler, 
“Energy Consumption Characteristics of Commercial Building HVAC 
Systems: Volume III, Energy Savings Potential,” TIAX LLC Report for 
US Department of Energy Building Technologies Program, 2002. 

[9] B. Sun, P. B. Luh, Q. Jia, Z. Jiang, F. Wang, C. Song, “Building Energy 
Management: Integrated Control of Active and Passive Heating, 
Cooling, Lighting, Shading, and Ventilation Systems,” IEEE Trans. on 
Automation Science and Engineering, in press. 

[10] A. Aswani, N. Master, J. Taneja, D. Culler, C. Tomlin, “Reducing 
Transient and Steady State Electricity Consumption in HVAC Using 
Learning-Based Model-Predictive Control,” Proceedings of the IEEE , 
vol. 100, no. 1, pp. 240-253, Jan. 2012. 

[11] N. Motegi, M. A. Piettem S. K. Kinney, J. Dewey, “Case studies of 
energy information systems and related technology: operational 
practices, costs and benefits,” in Proc. of International Conference for 
Enhanced Building Operators, Oct. 2003. 

[12] K. Whitehouse, J. Ranjan; J. Lu, T. Sookoor, M. Saadat, C. M. Burke, 
G. Staengl, A. Canfora, H. Haj-Hariri, “Towards Occupancy-Driven 
Heating and Cooling,” IEEE Design & Test of Computers, vol. 29,  no. 
4, pp. 17-25, Aug. 2012. 

[13] S. Bhattacharya, S. Sridevi, R. Pitchiah, “Indoor air quality monitoring 
using wireless sensor network,” in Proc. of Sixth International 
Conference on Sensing Technology, pp. 422-427, Dec. 2012. 

[14] I. J. Aucamp, L. J. Grobler, “Heating, ventilation and air conditioning 
management by means of indoor temperature measurements,” in Proc. of 
Industrial and Commercial Use of Energy Conference (ICUE),  pp.1-4, 
Aug. 2012. 

[15] P. Bermejo, L. Redondo, L. de la Ossa, D. Rodríguez, J. Flores, C. Urea, 
J. A. Gámez, J. M. Puerta, “Design and simulation of a thermal comfort 

adaptive system based on fuzzy logic and on-line learning,” Energy and 
Buildings, vol. 49, pp. 367-379, Jun. 2012. 

[16] O. Linda, D. Wijayasekara, M. Manic, C. Rieger, "Computational 
Intelligence based Anomaly Detection for Building Energy Management 
Systems," in Proc. of IEEE Symposium on Resilience Control Systems, 
Aug. 2012. 

[17] H. Mirinejad, K. Welch, L. Spicer, “A review of intelligent control 
techniques in HVAC systems,” in Proc. of IEEE Energytech, pp. 1-5, 
May 2012. 

[18] Z. Raad, K. S. M. S. Homod, A. F. Haider F. Almurib, “Gradient auto-
tuned Takagi–Sugeno Fuzzy Forward control of a HVAC system using 
predicted mean vote index,” Energy and Buildings, vol. 49, pp. 254-267, 
Jun. 2012.  

[19] Z. Raad, K. S. M. S. Homod, A. F. Haider F. Almurib, “RLF and TS 
fuzzy model identification of indoor thermal comfort based on 
PMV/PPD,” Building and Environment, vol. 49, pp. 141-153, Mar. 
2012.  

[20] Y. Cheng, J. Niu, N. Gao, “Thermal comfort models: A review and 
numerical investigation,” Building and Environment, vol. 47, pp. 13-22, 
Jan. 2013.  

[21] K. Macek, K. Mařík, “A methodology for quantitative comparison of 
control solutions and its application to HVAC (heating, ventilation and 
air conditioning) systems,” Energy, vol. 44, no. 1, pp. 117-125, Aug. 
2012. 

[22] F. Oldewurtel, D. Sturzenegger, M. Morari, “Importance of occupancy 
information for building climate control,” Applied Energy, vol. 101, pp. 
521-532, Jan. 2013. 

[23] A. Kusiak, G. Xu, “Modeling and optimization of HVAC systems using 
a dynamic neural network,” Energy, vol. 42, no. 1, pp. 241-250, Jun. 
2012. 

[24] P. M. Ferreira, A. E. Ruano, S. Silva, E. Z. E. Conceição, “Neural 
networks based predictive control for thermal comfort and energy 
savings in public buildings,” Energy and Buildings, vol. 55, pp. 238-
251, Dec. 2012 

[25] M. Maasoumy, A. Sangiovanni-Vincentelli, “Total and Peak Energy 
Consumption Minimization of Building HVAC Systems Using Model 
Predictive Control,” IEEE Design & Test of Computers, vol. 29, no. 4, 
pp. 26-35, Aug. 2012. 

[26] A. Aswani, N. Master, J. Taneja, V. Smith, A. Krioukov, D. Culler, C. 
Tomlin, “Identifying models of HVAC systems using semiparametric 
regression,” in Proc. of American Control Conference (ACC), pp. 3675-
3680, Jun. 2012. 

[27] L. Pérez-Lombard, J. Ortiz, I. R. Maestre, J. F. Coronel, “Constructing 
HVAC energy efficiency indicators,” Energy and Buildings, vol. 47, pp. 
619-629, Apr. 2012. 

[28] G. Escrivá-Escrivá, O. Santamaria-Orts, F. Mugarra-Llopis, 
“Continuous assessment of energy efficiency in commercial buildings 
using energy rating factors,” Energy and Buildings, vol. 49, pp. 78-84, 
Jun. 2012. 

[29] S. Goyal, H. A. Ingley, P. Barooah, “Effect of various uncertainties on 
the performance of occupancy-based optimal control of HVAC zones,” 
in Proc. of IEEE Conf. on Decision and Control (CDC), pp. 7565-7570, 
Dec. 2012. 

[30] L. A. Zadeh, “Fuzzy logic,” Computer, vol. 21, no. 4, pp. 83-93, Apr. 
1988. 

 


