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Abstract— In this paper, a multi-criteria based two step 

method for Optimal PMU Placement (OPP) using Fuzzy 

Weighted Average (FWA) is proposed. In the first step, a Genetic 

Algorithm is used to compute the OPP solution based on the 

requirement of full system observability and maximum 

measurement redundancy. In the second step, PMU installation 

criteria are modeled as Fuzzy Sets (FSs) and the FWA is applied 

to rank the selected PMU installation sites. The criteria of 

observability, cost, importance, and security are used here for the 

multi-criteria decision making. It is shown that the proposed 

method using the FWA can handle a mixture of criteria types 

(real values, intervals and fuzzy sets) and produce a suitable 

staging strategy for the PMU installation. 

Keywords— Fuzzy Sets, Fuzzy Weighted Average, Genetic 

Algorithm, Optimal PMU Placement, Power Grid, Phasor 

Measurement Units, Staging 

I. INTRODUCTION 

Phasor Measurement Units (PMUs) have recently become the 

focus of work for many researchers primarily due to their 

potential to become one of the major enablers of Wide Area 

Monitoring, Protection, And Control (WAMPAC) for power 

network systems [1]. WAMPAC can be seen as one of the 

fundamental components of the envisioned smart grid concept. 

WAMPAC technology offers improvements in stability, 

reliability, and security of power production, transmission, and 

distribution systems [1], [2].  

In general, PMUs can be considered the most advanced 

synchronized measurement technology for the power grid. 

When compared to traditional power measurements, the 

PMUs offer the following major capabilities: 1) location 

independent measurement synchronization using the Global 

Positioning System (GPS), 2) direct measurements of voltage 

and current phase angles and 3) increased accuracy, 

frequency, reliability, and security of the state measurements 

[3]. The installation of PMUs in the power grid can be seen as 

a major contribution to the overall resiliency of this critical 

infrastructure [4], [5]. 

A PMU is capable of observing the voltage and current 

phasors from all power network branches incident to the given 

bus on which it is installed [6]. The possibility of using a 

relatively small number of PMUs, combined with the high 

cost of both PMUs and their associated communication 

infrastructure, is the main reason for recent significant 

research effort in designing methods for optimal PMU 

placement. 

One of the most widely used approaches is the Integer 

Linear Programming framework where the topology of the 

network can be modeled and solved using linear constraints 

[7], [8]. A probabilistic approach to the OPP was suggested in 

[9]. Various computational intelligence approaches such as 

Particle Swarm Optimization (PSO) [10], Binary PSO [11], 

Genetic Algorithms (GAs) [12], Nondominated Sorting GA 

[13], Immunity GA [14], Bacterial Foraging Algorithm [15], 

Adaptive Clonal Algorithm [16], Tabu Search [17] or 

Simulated Annealing (SA) [6] have also been tried. A 

distinctly different method of using an exhaustive binary 

search and sequential adding or removing of PMUs was 

proposed in [18], [19]. Several authors also considered the 

task of placing PMUs with a limited number of measurements 

channels [20], or combining the PMU measurements with 

standard power flow measurements [21].  

It is unrealistic to expect that the selected optimal set of 

PMUs will be installed all at once. Rather, the PMU 

placement will have to be scheduled into multiple stages 

possibly over several years to cope with year-to-year financial 

constraints. The prioritization of PMU placement is a function 

of various criteria, each with different weight. In real world 

applications, some criteria and weights are difficult to model 

using discrete numerical values (e.g. it is difficult to precisely 

express the weight of different criteria or the relative 

importance of a power bus using single real values) [22]. 

Previously, the prioritization of different PMU placement 

configurations based on multi-criteria decision making 

schemes such as analytic hierarchy processing or a simple 



weighted averages was discussed in [23], [24] and several 

authors also considered the task of staging in the PMU 

placement [7], [9], [24], [25]. However, all of the previous 

method considered only real valued and precisely known 

PMU placement criteria. 

To alleviate this issue a multi-criteria based staging method 

for optimal PMU placement using Fuzzy Weighted Average 

(FWA) is proposed in this paper. The method is composed of 

two steps. In the first step, a Genetic Algorithm (GA) is used 

to compute the OPP solution based on the requirement of full 

system observability and a desire for maximum measurement 

redundancy. In the second step, PMU installation criteria and 

their weights are modeled as Fuzzy Sets (FSs) and the FWA is 

applied to rank the selected PMU installation sites. The 

criteria of observability, cost, importance, and security are 

used here for the multi-criteria decision making. The FWA 

provides a convenient and flexible framework where various 

decision making criteria and their weights can be modeled as a 

mixture of real values, interval values, or fuzzy values. The 

proposed method was applied to the IEEE 30-bus data set. 

The rest of the paper is organized as follows. Section II 

reviews the optimal PMU placement problem. The OPP 

solution using GA is outlined in Section III. Section IV 

discusses the FWA and its application to multi-criteria 

decision making. The FWA application to staging of PMU 

placement is outlined in Section V. Finally, the experimental 

results are demonstrated in Section VI and the paper is 

concluded in Section VII. 

II. OPTIMAL PMU PLACEMENT PROBLEM 

This Section provides an overview of the PMU placement 

problem. 

A. Problem Definition 

A power grid is composed of power buses and power lines 

between individual buses. An example of a power grid, the 

IEEE 14-bus test data set, is depicted in Fig. 1. The 

topological representation can be encoded using a connectivity 

matrix A as: 
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The PMU placement configuration in the power grid is 

expressed in a vector x defined as:  
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Using the introduced notation, the task of optimal PMU 

placement can be defined as: 

 

 xwTmin  (3) 

 

Subject to: bxA  (4) 

 

Here, w is a vector, which expresses the relative cost of 

installing a PMU at particular bus and Tb ]11...111[  is an 

observability constraint vector, which ensures that all buses 

are directly or indirectly covered by PMU measurements. For 

simplicity sake, and without loss of generality, in this paper 

the relative cost of all buses is considered equal for the OPP, 

hence Tw ]11...111[ .  

Certain problem domain knowledge can be utilized to 

simplify the solution to the OPP problem. A radial bus is a 

power bus, which is connected to the rest of the grid via a 

single power line. An example of a radial bus is bus 8 in Fig. 

1. The set of radial buses can be excluded from the set of 

candidate buses for PMU placement since placing a PMU at 

radial bus will always lead to requiring at least as many PMUs 

than when the PMU is placed on the single neighboring power 

bus of the radial bus.  

Some power buses are only used as transfer buses and do 

not contain any power injection (e.g. load or generator) into 

the grid. Such buses are called Zero-Injection (ZI) buses and 

they can potentially be used to further reduce the minimal set 

of installed PMUs in order to ensure full system observability. 

This reduction can be accomplished by using Kirchhoff’s 

Current Law (KCL) to indirectly infer the electrical 

measurements in specific configurations. Consider a zero-

injection bus with n connected power lines (e.g. bus 7 in Fig. 

1). When the current measurements are known on n-1 power 

lines, the current on the remaining power line can be 

computed.  

III. SOLVING OPP USING GENETIC ALGORITHM 

This Section describes the use of Genetic Algorithms for 

solving the OPP problem. 

A. Genetic Algorithm 

Genetic Algorithms are part of the field of evolutionary 

algorithms that use the paradigm of simulated evolution. This 

paradigm is based on Darwin’s theory of evolution that is 

translated into an effective tool for global optimization [26]. 

The common underlying idea is that the algorithm maintains a 

 
 

Fig. 1 IEEE 14-bus test data set (arrows and circles represent loads and 

generators). 



population of individuals that are forced to compete for 

limited resources. The goodness of each individual can be 

evaluated using a fitness function. Parents for the next 

generation are selected using selection operators. New 

offspring are produced by recombination operators and 

randomly altered by mutation operators. The main cycle is 

repeated for a specified number of iterations or until another 

convergence criterion is met, such as the desired level of the 

best fitness value or the standard deviation of the fitness value 

within the population. The general pseudo-code of GA is 

given in Fig. 2. Further details on GA can be found in [26]. 

B. Genetic Algorithm for OPP 

A GA was applied to the problem of optimal placement of 

PMUs in the power grid. GA and its modifications have been 

previously used for OPP in [12]-[14]. 

The gene of the GA individual is represented as a binary 

vector similar to the vector x described in (2). A value of 1 

means that a PMU will be installed at the power bus and a 

value of 0 represents a power bus without an installed PMU. 

The knowledge of radial buses is used to reduce the 

dimensionality of the search space. Here, the radial buses are 

excluded from the gene of the GA. The GA uses tournament 

offspring selection, two-point cross-over operation, and 

random bit flip mutation. 

The fitness of each candidate solution, which is to be 

minimized, is evaluated with respect to ensuring the desired 

full observability of the power grid and with respect to 

minimizing the number of required PMUs. The fitness value 

F(x) of each particular solution x is calculated as follows: 
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Here, NPMU stands for the number of installed PMUs, NBUS 

is the number of power buses in the grid, NObserv expresses the 

number of power buses that are currently observed, and RI is 

the measurement redundancy index of the current PMU 

placement configuration. The RI value can be computed as 

follows: 
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Here, the operator | | denotes a vector norm computing the 

sum of vector elements. As an example, consider a simple 

power grid depicted in Fig. 3 with two PMU placement 

configurations. The RI for these two configurations is 1.33 and 

1.00, respectively. Hence, despite using 2 PMUs and 

providing full-network observability in both cases, the 

configuration in Fig. 3(a) should be preferred during the 

design process since it offers increased measurement 

redundancy. It is important to note that the value of RI will 

always be greater than 0 and for a majority of tested data sets 

it was also found to be less than 1.  

The calculation of the fitness function can be explained as 

follows. When a solution provides full network observability 

the fitness value is governed by the number of PMUs 

installed. When two solutions with identical number of PMUs 

are obtained, the solution providing a maximum degree of 

measurement redundancy is preferred. The higher the RI value 

the more information about the state of the power grid can be 

retained should a PMU malfunction. 

Failure to provide full network observability is penalized by 

adding the number of power buses to the fitness value. Hence, 

any solution which does not guarantee full grid observability 

will be worse than any solution that does provide full 

observability. To further guide the search algorithm towards 

the desired solution, the PMU configurations that do not 

provide full observability but cover larger portions of the 

power grid are preferred. 

IV. FUZZY WEIGHTED AVERAGE FOR MULTI-CRITERIA 

DECISION MAKING 

This Section reviews the fundamentals of fuzzy logic and 

Fuzzy Weighted Average.  

Fuzzy Sets 

Fuzzy Set (FS) theory can be seen as a generalization of 

crisp set theory. The degree of belonging of element x to a 

particular FS A is determined by a membership grade )(xA  

taking on a value from the unit interval [0, 1]. The fuzzy set A 

in the universe of discourse X can be defined as a set of 

ordered pairs of element x and its degree of 

membership )(xA [22]:  

 

   XxxxA A  )(,  (7) 

 

For the special case when the universe of discourse X is a 

continuous space of real numbers the membership function 

A  
for the fuzzy set A can be described as: 

Genetic Algorithm 
1:  Initialize the population with random solutions 
2:  Evaluate population 
3: Repeat until population converged 
 3.1:   Select parents 
 3.2:   Recombine pairs of parents 
 3.3:   Mutate offspring 
 3.4:   Evaluate new population 
 3.5:   Select individuals for new population 

 
Fig. 2 Pseudo-code of a Genetic Algorithm.    

 (a) (b) 

Fig. 3 Demonstration of measurements redundancy index. 
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An important concept in the FS theory is the concept of an 

 -cut. An  -cut )(A can be expressed as an interval: 

 

 )](),([})({)(  baxxA A   (9) 

 

An example of FS A and its  -cut )(A  is illustrated in 

Fig. 4. 

A. Fuzzy Weighted Average 

As denoted in [27] the Arithmetical Weighted Average 

(AWA) is probably the most common type of aggregation 

operator. Recall that for a decision making problem with n 

criteria  xi  and associated weights wi the output of AWA can 

be computed as: 
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 The task of the FWA is to compute the weighted 

average in situation when criteria and weights are modeled as 

FSs Xi and Wi, hence [27], [28]: 
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The first step in computing the FWA is to construct k  -

cuts of the criteria and the fuzzy valued weights expressed as 

follows: 

 nibaX iii ...1)](),([)(    (12) 

 

 nidcW iii ...1)](),([)(    (13) 

 

Next, since each -cut is composed of a set of intervals, the 

Interval Weighted Average can be used to compute an  -cut 

of the result FW Ay  where: 
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Using the  -cut obtained in (12) and (13) the solution to 

(14) can be expressed as shown in [27]: 
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The values of )(Ly and )(Ry can be computed for 

example using the Enhanced Karnik Mendel algorithm [29]. 

The FWA method is demonstrated in Fig. 5 for three criteria 

C1, C2, C3 and their weights W1, W2 and W3. Further details on 

the computation of FWA can be found in [27], [28]. 

V. STAGING OF PMU PLACEMENT USING FWA 

This section applies the FWA to the problem of staging 

PMU placements. First the PMU placement criteria used in 

this paper are described. Next, the application of the FWA to 

ranking the selected power buses for PMU placement is 

outlined. 

A. PMU Placement Criteria 

When staging the placement of individual PMUs on the 

selected power buses, multiple diverse criteria can come into 

play. These criteria are typically defined by the different stake 

holders involved, and their respective incentives and 

constraints. It should be noted here that the presented paper 

does not attempt to identify or enumerate all of the important 

criteria for PMU placement. Rather, it attempts to present a 

general methodology for fusing an arbitrary set of criteria 

irrespective of whether the criteria are represented as real-

values, interval values, or linguistic terms modeled as FSs. For 

the specific implementation presented in this paper the criteria 

of Observability, Cost, Importance, and Security have been 

considered. 

The Observability criterion C
O
 is related to the fact that 

installing a PMU on a specific bus also allows an indirect 

measurement of additional parameters in the local 

neighborhood of the bus. Despite the fact that full system 

 
Fig. 4 Fuzzy Set A and its  -cut. 

 
 (a) (b) (c) 

Fig. 5 Criteria values (a), weights (b) and the product of the FWA (c). 



observability will be achieved only after all PMUs in the 

optimal set are installed, it is still desirable to install PMUs 

with more incident buses first. Installation of these PMUs 

upfront will ensure a higher level of system observability in 

the initial stages of the placement. The actual value of the 

observability criterion C
O
 for a bus can be computed as the 

number of incident power lines to that bus. Typically, the 

value of C
O
 can be expressed as a discrete integral value. 

The Cost criterion C
C
 expresses the different cost associated 

with installation of each PMU. This cost might constitute an 

aggregate of individual costs required on the communication 

infrastructure, the PMU hardware, or the actual installation 

(e.g. existence of PMU-ready equipment [23]). The placement 

of a PMU with associated lower cost should be preferable at 

the early stages of the placement, since more PMUs could be 

installed with the constrained budget. Typically, a precise cost 

value might be difficult to estimate a priori. Instead, it might 

be more suitable to express the cost of PMU installment as an 

interval value. 

The Importance criterion C
I
 expresses the subjective 

importance of each power bus in the given context. For 

example, this criterion might express the spatial closeness of 

important assets (e.g. military base, critical infrastructure, 

critical cyber assets), existence of critical regional corridors or 

the existence of major generators and loads. The notion of 

relative importance is difficult to express using precise 

numerical values. Rather, a linguistic description of 

importance using terms such as “low” or “medium” modeled 

as a FS may be more appropriate. 

The Security criterion C
S
 captures the vulnerability of each 

power bus to potential cyber attack. Since the resiliency and 

cyber-security of the power distribution network is becoming 

a major concern for the smart grid concept, the PMUs can also 

be utilized as counter-measures for possible cyber attacks on 

the power distribution grid. For this paper the assessment of 

the vulnerability of each power bus is based on the potential 

presence of sparse data integrity attacks on the given bus or its 

incident power lines. The notion of these sparse attacks and 

the algorithm for their detection can be found in the work of 

Giani et al. [2]. 

Finally, each criterion might have different significance for 

various stakeholders, and this can be expressed using different 

criteria weights. Again, it seems counter-intuitive to express 

these subjective weights using precise real values. Instead, the 

method proposed in this paper allows for using linguistic 

terms such “very low” or “high” modeled as FSs. 

B. Placement Staging using FWA 

It is assumed that the GA algorithm computes the solution 

to the OPP problem, which consists of installing exactly K 

PMUs into the power grid. The desired full system 

observability will be achieved only after all K PMUs have 

been installed. The task of the proposed placement staging 

method is to rank the selected K PMU placement locations 

based on a specified utility function. Given the PMU 

installation constraints such as financial or time constraints, 

the K PMU placement locations can then be divided into 

consecutive stages based on the computed ranks. 

The utility function must account for multiple diverse 

criteria that need to be simultaneously optimized. The 

proposed method utilizes the FWA to compute the utility 

value. The result of the FWA for the i
th

 candidate power bus 

can be denoted as i

FWAy , which itself is a FS. The proposed 

ranking method is based on the defuzzified value )(
i

F W Ayc  of 

the FWA result. Hence: 
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For completeness, the defuzzified value of the fuzzy set 
i

FWAy can be computed as: 
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Here, M denotes the number of samples in the output 

domain and yj is the j
th

 sample in the domain of output 

variable y. 

VI. EXPERIMENTAL RESULTS 

This section first describes the experimental test case. Next, 

the result of the optimal PMU placement and the FWA based 

staging of the placement are demonstrated. 

A. Test Data Set 

The proposed method for multi-criteria based staging of 

OPP was applied to the IEEE 30-bus data set. For solving the 

OPP the Zero-Injection (ZI) buses were considered. The 

location of the ZI buses was adapted from [30] and for clarity 

it is summarized in Table I. 

As described above the four criteria of observability, cost, 

importance, and security were considered. The observability 

criterion was calculated as the number of incident power lines. 

Due to the lack of available information, the values of the cost 

 
(a) 

 
(b) 

Fig. 6 Fuzzy membership of the importance criteria (a) and of the criteria 

weights (b). 



criterion were randomly initialized as interval values. Note, 

that since smaller cost is more desirable, the actual value of 

the cost criterion is inversely proportional to the cost. The 

importance of each bus for PMU placement was also 

randomly initialized for this experimental demonstration of 

the proposed methodology. Five triangular FSs were used to 

express the importance value as depicted in Fig. 6(a)  

The security measure is proportional to the number of 

sparse data integrity attacks that involve a particular power 

bus or its incident line. Lists of possible 3 and 5 sparse attacks 

(attacks including 3 or 5 buses and power lines) is provided in 

Table II [2]. The more attacks which could be executed using 

a specific bus the higher the value of the security criterion for 

that bus.  

The criteria selection weights have been modeled using 5 

trapezoidal and triangular fuzzy sets as depicted in Fig. 6(b). It 

is important to note here that all criteria values have been 

normalized into a unit interval between 0 and 1. Table III 

provides a list of the used criteria for the IEEE 30-bus system.  

In order to visualize the distribution of different criteria 

values in the power grid, a novel method using the Voronoi 

Diagram (VD) was used. The VD constitutes a space 

decomposition, where each individual cell constitutes a set of 

points for which the specific cell object is the nearest 

neighbor. In the implemented VD, the power buses were used 

as the cell objects. The color of each cell then represents the 

value of specific criteria. It should be noted that the size of 

different cells is not important and it is determined by the 

spatial topology of the grid. The VD allows simple visual 

assessment of the distribution of different criteria values for 

each bus in the network. Fig. 7 shows the values of the four 

criteria used for the IEEE 30-bus data set visualized using the 

VD method. Note that for the interval and the fuzzy values the 

defuzzified value was used in the figure. The darker the color 

the higher the value is. 

Optimum PMU Placement Using Genetic Algorithm 

First, the GA was used to calculate the optimum placement 

of PMUs in the power grid. The implementation details of the 

GA are as follows. The population consisted of 100 

individuals and the optimization was terminated after 100 

iterations. The two-point cross-over and a random bit-flip 

mutation operators were used with a mutation rate set at 0.2. 

Tournament selection was used for parent selection with 

tournament size of 4. The above mentioned algorithm 

parameters were empirically selected based on extensive 

TABLE III 
LIST OF CRITERIA VALUES FOR THE IEEE 30-BUS DATA SET 

Bus
 

CO CC CI CS  Bus
 

CO CC CI CS 

1 0.17 [0.70 0.90] Medium 0.00  16 0.17 [0.09, 0.19] High 0.00 

2 0.50 [0.09, 0.19] Medium 0.00  17 0.17 [0.32, 0.52] Medium 0.00 

3 0.17 [0.32, 0.52] Low 0.00  18 0.17 [0.82, 1.00] Low 0.00 

4 0.50 [0.82, 1.00] High 0.00  19 0.17 [0.69, 0.89] High 0.00 

5 0.17 [0.69, 0.89] Very Low 0.00  20 0.17 [0.02, 0.22] Very Low 0.00 

6 1.0 [0.02, 0.22] Medium 0.00  21 0.17 [0.61, 0.71] Low 0.00 

7 0.17 [0.61, 0.71] High 0.00  22 0.33 [0.04, 0.14] High 0.00 

8 0.17 [0.04, 0.14] Medium 0.00  23 0.17 [0.75, 0.95] Very High 0.00 

9 0.33 [0.75, 0.95] Low 0.00  24 0.33 [0.88, 0.98] Very High 0.00 

10 0.83 [0.28, 0.48] Very High 0.00  25 0.33 [0.58, 0.78] Low 0.00 

11 0.00 [0.58, 0.78] High 0.00  26 0.00 [0.66, 0.86] High 0.00 

12 0.66 [0.66, 0.86] Medium 0.25  27 0.50 [0.64, 0.84] Medium 1.00 

13 0.00 [0.64, 0.84] Very Low 0.25  28 0.33 [0.34, 0.44] Very Low 0.00 

14 0.17 [0.34, 0.44] Low 0.00  29 0.17 [0.34, 0.44] High 1.00 

15 0.50 [0.70, 0.90] Very High 0.00  30 0.17 [0.34, 0.44] Low 1.00 

 

TABLE I 

DATA SET DESCRIPTION FOR THE IEEE 30-BUS TEST CASE 

Test Case
 Number 

of Lines 

Number of 

ZI buses 
Location of ZI buses 

30-bus 41 5 6, 9, 25, 27, 28 

 
TABLE II 

LIST OF SPARSE ATTACKS PRESENT IN THE IEEE 30-BUS DATA SET 

Attack 

Number
 

Attack 

Type 
Attacked Buses Attacked Lines 

1 3-Sparse 12, 13 12-13 

2 5-Sparse 27, 29  27-29, 27-30, 29-30 

3 5-Sparse 27, 30 27-29, 27-30, 29-30 

4 5-Sparse 29, 30 27-29, 27-30, 29-30 

 

 
 (a) (b) (c) (d) 

Fig. 7 Voronoi Diagram visualization of the observability (a), cost (b), importance (c) and the security criteria (d). 



experimental testing. The initial population was randomly 

initialized in the solution space. 

The selected buses for PMU placement are buses: 2, 4, 10, 

12, 15, 19 and 27. The buses are circled in the grid topology 

visualized in Fig. 8(a). 

Staging PMU Placement Using FWA 

In order to demonstrate the staging of the PMU placement, 

two scenarios with different criteria weights were 

implemented. The criteria weight assignment is listed in Table 

IV. It can be seen that in the first scenario the maximum 

weight has been assigned to observability followed by 

importance. In the second scenario, security was the most 

important criterion followed by the cost. The result of the 

PMU staging in both scenarios is listed in Table V. The VD 

views of the grid with aggregated utility values computed 

using the FWA are shown in Fig. 8(b) and Fig 8(c). 

The results demonstrate the proposed method reasonably 

ranks the candidate PMU buses according to the utility 

function based on the mixture of provided criteria values. For 

example, buses 27 and 12 have the highest values of the 

security criterion. However, since the weight of this criterion 

was selected as very low in the first scenario it takes 4 PMU 

installations before both buses 12 and 27 (and all their 

possible sparse data integrity attacks) are covered. On the 

other hand, in the second scenario where the security criterion 

was assigned very high weight the PMUs on buses 27 and 12 

will be installed as the first two PMUs in the power grid. 

Fig. 9 shows the number of observed buses and the number 

of uncovered sparse data integrity attacks in the grid as a 

function of the installed PMUs. It can be verified that the 

number of observed buses increases faster in the first scenario 

where observation is highly important, while the number of 

uncovered sparse attacks drops quickly in the second scenario 

where security is considered more important. 

CONCLUSION 

This paper proposed a multi-criteria based two step method 

for optimal PMU placement using a GA followed by Fuzzy 

  

   
 (a) (b) 

Fig. 9 The number of observed buses (a) and the number of uncovered sparse attacks (b) as a function of installed PMUs in two test scenarios. 

 
 (a) (b) (c) 

Fig. 8 Computed OPP solution (a) and the utility function for scenario 1 (b) and for scenario 2 (c). 

TABLE IV 
FUZZY CRITERIA WEIGHTS FOR THE TESTING SCENARIOS 

Scenario
 

WO WC WI WS 

1 Very High Very Low Low Very Low 

2 Very Low Medium Low Very High 

 
TABLE V 

PHASING OF THE PMU INSTALLATION FOR THE TESTING SCENARIOS 

Bus 
Rank

 
Scenario 1 Scenario 2 

Bus No. Utility Bus No. Utility 

1 10 0.75 27 0.83 

2 12 0.61 12 0.45 

3 15 0.56 4 0.37 

4 27 0.54 15 0.36 

5 4 0.53 19 0.34 

6 2 0.45 10 0.26 

7 19 0.30 2 0.13 

 



Weighted Average. In the first step of the method, the Genetic 

Algorithm was used to compute the OPP solution. In the 

second step, the PMU installation criteria were modeled as 

Fuzzy Sets (FSs) and the FWA was applied to rank the 

selected PMU installation sites for use in partitioning the 

PMU installments into multiple stages. The criteria of 

observability, cost, importance, and security were used here 

for the multi-criteria decision making. The proposed method 

was applied to the IEEE 30-bus data sets. It was demonstrated 

that the proposed method can handle a mixture of criteria 

types (real values, intervals and fuzzy sets) and produce 

appropriate staging strategy for the PMU installation. 
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