

Abstract— Fuzzy logic, Type-1 and Type-2, are well suited for

human systems interactions because they provides a natural way

of implementing linguistic terms from human experts. Existing

fuzzy frameworks, however, provide limited support for Type-2.

They also tend to be fairly complicated and/or have limited

portability. This paper introduces a fuzzy framework for building

a Type-1 or Type-2 fuzzy controller. A “wizard” application and

modeling language are supported to provide an easy-to-use

interface for creating a fuzzy inference system. The benefits of this

framework are: 1) Increased understanding of fuzzy systems

implementation via easy-to-use visual tools; 2) Reduced

development time; 3) A standardized and portable codebase; 4)

Easy configuration via XML; 5) Support for both Type-1 and

Type-2 fuzzy sets and rules. The framework is tested and solves a

maze problem using both Type-1 and Type-2 implementations.

I. INTRODUCTION

Complex systems, such as robots, frequently incorporate a

multitude of diverse inputs in order to perform a given task.

Each input may or may not influence a system’s behavior

depending upon other inputs and/or system states. For example,

a robot that senses a wall nearby will behave differently

depending upon its speed, direction of motion, goals, other

walls, etc. Due to the potential wide variety of possible

conditions and responses, fuzzy logic, in the form of a Fuzzy

Inference System (FIS) provides an excellent implementation

option. The FIS provides the foundation for Type-1 Fuzzy

Logic Controllers (T1-FLCs) or Type-2 Fuzzy Logic

Controllers (T2-FLCs), used to control a complex system and

is desirable for the following reasons:

1. Fuzzy logic describes both input and output behaviors in

human understandable terms.

2. Because real-world factors such as sensor noise, actuator

variations and environmental factors add elements of

uncertainly to the interpretation, T1-FLCs and T2-FLCs

are often the most practical approaches available to

describe and deal with the uncertainty.

3. Fuzzy logic often provides a much simpler way to

describe and approximate complex behaviors than

polynomial functions.

Based upon the concept of Fuzzy Logic introduced by Zadeh

[1], T1-FLCs operate on the principal that inputs and outputs

can be “fuzzified”; that is, defined not as a specific number or

boundary, but instead as a range of values defining varying

degrees of membership between 0 and 1 [2]. Type-1 fuzzy logic

does have its limitations, such as managing input noise and

outliers. Zadeh recognized this and introduced Type-2 fuzzy

logic [3, 4] in response.

Type-2 fuzzy logic, while more computationally complex

than its Type-1 cousin, has certain advantages in that Type-2

sets employ membership degrees that are themselves fuzzy sets,

1 The authors are with the Department of Computer Science, University of

Idaho at Idaho Falls, Idaho Falls, ID 83402. Email: kmccarty@ieee.org,

misko@ieee.org, allan.gagnon@nettryx.net

allowing for an additional degree of computational freedom for

modeling uncertainties [4]. T2-FLCs have advantages over T1-

FLCs in handling noise and data outliers and are shown to

outperform T1-FLCs under certain situations [5]. While T1-

FLCs have been in use in numerous applications for over 4

decades, use of T2-FLCs is still relatively rare. However,

interest in Type-2 fuzzy logic is growing among engineers and

computer scientists, particularly as the growing computational

power of recent computers makes Type-2 Fuzzy Logic

Controllers (T2 FLCs) more cost-effective [5].

Clearly, practical applications of T1-FLCs and T2-FLCs are

everywhere. Despite this, there has been only limited progress

in using FLCs for mainstream, commercial applications.

Programmers often have little to no appreciation for, or even

understanding of, fuzzy techniques and how they might be

applied to solve common problems.

One way to address this problem is through the use of a

software framework designed to support creation and

maintenance of an FIS - a fuzzy framework. Software

engineering methods rely on the use of frameworks to improve

the quality of software while also reducing complexity and

development costs [6-8]. Software frameworks, usually in the

form of software class libraries, DLLs or other reusable

software, allow developers to focus on solving a specific

problem rather than spending time writing generic routines [7].

Fuzzy frameworks do exist and are available as commercial

offerings from sources such as Matlab and LabView. These

offerings provide very sophisticated functionality as add-on

toolkits to their core product line. Open source frameworks

such as AForge.Net [9], Sourceforge.net [10] and CodeProject

[11] provide another option for developers interested in creating

their own custom solutions. Despite the availability of both

commercial and non-commercial frameworks, limitations of

both continue to inhibit more widespread use and adoption of

FLCs in general and T2-FLCs in particular. Among these

limitations is the difficulty for novices in trying to

understanding the various fuzzy objects and how they relate and

how to implementing a working FIS in code [12]. Applications

wizards can help with this, along with a suitable modeling

language for configuring FLCs dynamically [13].

This paper introduces a novel framework extending open

source work done for a Type-1 fuzzy library [9]. This

framework is designed to provide an open source alternative to

other solutions while addressing some of the existing

limitations of both commercial and noncommercial options.

The framework is then used to build a Type-1 based FIS for

a T1-FLC and a Type-2 based FIS for a T2-FLC. Each FLC is

implemented in order to solve a sample navigation problem.

This paper is organized as follows: Section II presents the

problem statement. Section III describes the framework in

A Fuzzy Framework with Modeling Language

for Type 1 and Type 2 Application Development
Kevin McCarty, Member IEEE, Milos Manic, Sr. Member IEEE, Allan Gagnon 1

detail and how to use it to implement a working FIS. Section

IV applies the framework to solve a simple navigation problem

using a T1 FLC and T2 FLC. Section V presents conclusions

and discusses future work.

II. PROBLEM STATEMENT

Commercial products, such as Matlab, have limited

portability to other languages. Their frameworks require

purchase of the core product, often at an extra cost of thousands

of dollars, and may involve a steep learning curve for use.

Furthermore, portability issues make adding a Matlab Fuzzy

Toolkit FIS to a generic web application based upon a language

such as Visual Basic.NET a significant undertaking. Open

source solutions, on the other hand, provide few, if any, useful

tools for configuration and implementation. None of these tools

mentioned has yet to provide support for fuzzy Type-2 as part

of their framework. Support for Type-2 fuzzy logic in a

portable framework does exist [14] but neither source code nor

binaries are available for evaluation.

Hence, anyone attempting to use fuzzy logic for applications,

training, or just for understanding faces a number of obstacles

regardless of whether they opt for a commercial or open source

option. In summary, each of the available frameworks

mentioned above suffers from one of more of the following

limitations: 1) High Cost; 2) High degree of difficulty for

implementation; 3) Limited portability; 4) Limited availability;

5) Limited fuzzy type-2 support.

A further difficulty limits the usefulness of many existing

frameworks – the inability to easily configure, save and

maintain framework configurations. A framework that can’t be

customized to solve a specific problem is of no use at all while

one that requires a substantial learning curve is likely to remain

unused outside of highly specialized circles in engineering and

academia [5].

Finally, the development and use of a XML-based, Fuzzy

Systems Modeling Language (FSXML) would greatly enhance

the usability of any fuzzy framework [13]. Any language could

be used to develop a Wizard application to serve as a

configuration tool and dynamically implement a FIS on the fly.

The framework proposed in this paper attempts to resolve

each of these issues. It addresses (1) by providing an open

source solution, extending the original open source, type-1

library from [9]. It addresses (2) by providing a Wizard

application in C#.NET that provides a visual interface to step a

user through the process of creating all of the necessary fuzzy

objects for a fully functional FIS. For (3), the framework is a

.NET assembly/dll usable by any language capable of calling

.NET assemblies. It is written in C#, a variant of C which has

wide adoption in the computer science community. The

University of Idaho will make the framework, Wizard and

samples available as complete source projects on its website

addressing (4) and providing educators with simple visual tools

as aids for a basic course on fuzzy logic. Finally the framework

extends the original open source, type-1 library to support type-

2 fuzzy objects and operations with minimal changes to the

original design, satisfying issue (5).

Addressing the final point and taking the requirements one

step further, the framework implements an XML-based fuzzy

modeling language, built and maintained by the Wizard, to

allow for an almost code-free implementation of the framework

for use by an external application.

III. FRAMEWORK ARCHITECTURE

Object-oriented techniques have long been recognized as a

way to reduce the complexity of software [7]. The framework

consists of a number of objects in support of an FIS, most

notably: 1) Membership Functions; 2) Fuzzy Sets; 3) Fuzzy

Variables; 4) Fuzzy Rules; 5) Rules Database; 6) Defuzzifier.

The following pseudo code the 8 steps necessary to implement

the framework in order to create a functioning FIS.

function CreateFIS() returns FuzzyInferenceSystem BEGIN

 MembershipFunctions[] mf

 FuzzySets[] fs

 FuzzyVariables[] fv

 FuzzyRules[] fr

 Defuzzifier d

 FuzzyDatabase fd

 FuzzyInferenceSystem fis

 // step 1

 DefineMembershipFunctions(mf)

 // step 2

 DefineFuzzySets(fs)

 // step 3

 DefineFuzzyVariables(fv)

 // step 4

 AssignVariableInputsOutpus(fv)

 // step 5

 DefineFuzzyRules(fr)

 // step 6

 DefineDefuzzifier(d)

 // step 7

 AssignRulesToDB(fr, fd)

 // step 8

 DefineFIS(fd, fis)

 return fis

END

Implementing steps 1-8 can be done strictly in code as calls

to the framework, but it is not a trivial process. Human systems

interactions benefit when the interaction is as simple as

possible. To help a user define a fuzzy inference system, with

its corresponding fuzzy objects, the framework implements a

Fuzzy Modeling language. Previous work [13] demonstrates

how useful an XML-based modeling language is in supporting

dynamic configuration of FISs and fuzzy objects in general.

However, XML is difficult to create by hand so the framework

provides the Wizard utility to allow a user to generate and

maintain the underlying XML-based model. Wizards of

various types provide a mechanism for enhanced human

systems interactions with the underlying software and are quite

effective at reducing the time required to understand and

implement software at both low and high levels.

A traditional “wizard” application, presents a predefined

sequence of steps as pages in a program window. With the

Wizard, each page presents a user interface that allows a user to

“step” through each necessary configuration element in the

proper sequence. It is also a way to break down a complex

overall process into a series of simpler steps. As a result, the

Wizard application can serve both as a developer’s tool and a

training tool for the novice learning to use fuzzy logic.

Currently, the Wizard application only supports fuzzy Type-1

configuration, although Type-2 support is in development

stage. The Wizard application, is shown in fig 1.

Fig. 1. Fuzzy Wizard – Variables Page

Step 1 implementation requires specifying a convex shape for

a membership function µ. µ is a function over a domain D such

that for each x in D, µ(x) is a number between 0 and 1.

µ(x) → [0, 1], 𝑥 ∈ 𝐷 (1)

Zadeh’s rules for fuzzy sets require the functions take the

form of a convex shape such as a triangle, trapezoid, Gaussian

or other convex curve. The resulting shape serves as the

membership function µ. In the framework, each shape, fshape is

defined with one or more boundary points Pbk and one or more

apex points Pak.

µ = fshape(Pb1..Pbn, Pa1..Pan) (2)

For each P, the X value specifies a specific value x in the

domain while the Y value specifies the corresponding

membership value between 0 and 1 at that value, µ(x).

𝑓𝑠ℎ𝑎𝑝𝑒(𝑃𝑏1, . . , 𝑃𝑏𝑛 , 𝑃𝑎1, . . 𝑃𝑎𝑛) = 𝜇(𝑥), 𝑥𝜖𝐷 (3)

The modeling language, produced by the Wizard provides

textual representations of the Fuzzy Function and all other

fuzzy objects. The Wizard application handles step 1 as a

Membership Functions page. Using the Wizard, the developer

specifies the type of fuzzy set and each of the corresponding

boundary and apex points. The Wizard interface is

demonstrated in fig 2. The resulting FSXML is shown in fig 3.

Fig. 2. Defining a Membership Function using the Wizard

Fig. 3. A Fuzzy Function Definition in XML

In the framework, a fuzzy set fs is defined by a membership

function and a linguistic “term” which describes its purpose in

a more easily understandable way. Giving the fuzzy set a

“linguistic term” allows use of more intuitive language when

describing subsequent rules in the FIS. For instance, a fuzzy

set that determines tallness might be called “Tall”. Later fuzzy

rules will reference that particular fuzzy set with the word Tall.

This actually adds a certain level of precision to the fuzzy set

that is very difficult to emulate using crisp sets or numbers and

is one of the major advantages to using fuzzy logic [1, 2].

Step 2 simply requires applying the function defined in step

1 to a linguistic term to generate a fuzzy set fs.

fs = µ + linguistic term (4)

The Wizard application provides a Fuzzy Sets page to allow

a user to do this procedure. The resulting XML is shown in fig

4. The interface demonstrated in fig 5.

Fig. 4. Combining a Term and Fuzzy Function to Create a Fuzzy Set

Fig. 5. Using the Wizard to create a Fuzzy Set

In step 3, users create one or more fuzzy variables. Each

Fuzzy Variable must have a “name”, a linguistic term to

appropriately describe the variable’s purpose or function.

Variable names should make sense within the FIS, describing

in easily understood terms what that variable represents. Next,

the user defines the boundary of the domain of a particular

variable. The domain should be large enough to encompass all

of the fuzzy sets to be assigned. Finally, the user designates

whether the variable represents input (the antecedent) or output

(consequent) when used to build fuzzy rules.

In step 4, once the domain is defined and the variable

“termed”, the variable then is associated with one or more of

the fuzzy sets defined in step 2. These associations are used to

determine which fuzzy sets are represented in the

fuzzifcation/defuzzification process. The corresponding XML

is shown in fig. 6 and the Wizard Fuzzy Variables step detailing

this process is demonstrated in fig 7.

During the fuzzification process, the fuzzy sets assigned to

the fuzzy variable are evaluated using the underlying fuzzy

function assigned to the corresponding fuzzy set

Fig. 6. Defining a Fuzzy Variable in XML

Fig. 7. Defining a Fuzzy Variable using the Wizard

 Step 5 specifies the fuzzy rules that constitute the FIS. Each

fuzzy rule consists of an antecedent which is a statement of the

form:

IF <fuzzy variable> IS <fuzzy variable or fuzzy set>

The antecedent specifies a testable condition similar to a crisp

IF statement, except instead of a true or false result, the fuzzy

result consists of a value between 0 and 1 inclusive, dependent

upon the input value and the various membership or fuzzy

functions underlying the corresponding fuzzy sets shown in

Eq.3. Antecedents can be combined using AND/OR and

parenthetical operators. For example, to test the distance of a

barrier to the front of an obstacle the antecedent might take the

form of:

IF FrontalDistance IS Far

“FrontalDistance” can consist of multiple fuzzy sets, for

example: “Near”, “Medium” and “Far”. The antecedent “IF

FrontalDistance IS Far” looks at the membership function of

the fuzzy set “Far” assigned to the fuzzy variable

“FrontalDistance”. Note again the use of linguistic terms that

are easily understandable even to laypersons. A parser within

the framework turns the text into its corresponding fuzzy sets

and fuzzy variables.

The fuzzy rule also requires a consequent, which is

constructed similarly to the antecedent but uses output variables

and sets. The Wizard application contains a simple text builder

a user can employ to construct the both the antecedent and

consequent.

In step 6, the user defines the number of fuzzy intervals used

for defuzzification. The framework currently supports

traditional Zadeh rules for fuzzification of fuzzy Type-1 where

membership of a fuzzy variable is equal to the minimum

membership of the corresponding fuzzy sets. This is also

referred to as a fuzzy intersection of fuzzy sets.

∩ 𝜇𝐶𝑖 = min (𝜇𝐶1 , 𝜇𝐶2 , .., 𝜇𝐶𝑛) (5)

Defuzzication is achieved by then taking a fuzzy union across

all intervals in the domain. This is accomplished by taking the

maximum across the sets of intervals and their corresponding

memberships.

∪ 𝜇𝐶𝑖 = max(𝜇𝐶1 , 𝜇𝐶2 , .., 𝜇𝐶𝑛) (6)

A centroid, of center of gravity is then calculated by

determining a weighted mean across the fuzzy region [2]. The

fuzzy solution region A is calculated by the following:

ℜ =
∑ 𝑑𝑖𝜇𝐴(𝑑𝑖)𝑛

𝑖=0

∑ 𝜇𝐴(𝑑𝑖)
𝑛
𝑖=0

 (7)

where d is the ith domain value and µ(d) is the membership

value returned the corresponding fuzzy function defined in step

1. Fuzzy Type-2 defuzzification uses the Karnik-Mendel

Interval Technique described in [15] which is a variation on the

centroid technique involving a calculation of multiple centroids

over the footprint of uncertainty.

In step 7, the user creates a database of the fuzzy rules defined

to use in the FLC. Depending upon which rules are input and

which are output, the FIS will attempt to evaluate all relevant

rules during the fuzzification/defuzzification process.

Step 8 is performed by the framework. The resulting FIS then

consists of the database repository of all the relevant fuzzy

objects as well the domain space and fuzzy operators used. The

XML defining the final FIS is listed in fig 8

Fig. 8. Defining an FIS Using the Fuzzy Modeling Language

Note that the reference to SQL is currently not supported but

detailed in future work. Pseudocode for constructing the FIS

from the model language is as follows:

Procedure Init(XMLFile filename) returns FIS

 FIS fis = GetInfModel(filename)

 FuzzyDatabase database

 FuzzyVariable[] fuzzyVariables = GetVariables(filename)

 For Each variable in fuzzyVariables

 FuzzySets[] fuzzySets = GetSets(variable, filename)

 For Each set in fuzzySets

 FuzzyFunction ff = GetFunction(set, filename)

 set.Function = ff

 variable.Add(set)

 Next

 database.Add(variable)

 Next

 fis.Add(database)

 fuzzyRules rules = GetRules(filename)

 For Each rule in rules

 IF fis.ruleUsed = rule THEN

 fis.AddRule(rule)

 END IF

 Next

 return fis

END

IV. TEST EXAMPLES

An application validates both the configuration and

underlying framework. Consider a simple software robot

pictured in the maze in fig 9. In order to navigate successfully,

the robot must adjust its angle of motion the appropriate amount

at the appropriate time under the appropriate conditions. Fuzzy

logic has been demonstrated to be very effective for navigation

[16] and as such is widely used for directing robots, hence,

robot navigation serves as a very useful test of the framework.

Suppose the task is simply to be able to navigate through the

maze without encountering any walls. To meet its goal the

robot needs to perform the following functions:

1. Measure the distance to each of the possible barriers

(front, right, left).

2. Determine a direction that will allow the robot to

continue forward motion without hitting any of the

barriers of the maze.

Fig. 9. Robot in a Maze

 Ideally, the robot should try to position itself as far away

from each barrier as possible while maintaining forward

motion. In order to do this, it must constantly reevaluate its

position as it moves around the maze and adjust its angle of

motion in order to maintain maximum distance from each

wall. Thus, the following factors have to be accounted for:

1. Frontal Distance

2. Distance to the Right Wall

3. Distance to the Left Wall

4. Angle of forward movement

The first 3 factors constitute the inputs and the last one is the

resulting output. Both inputs and outputs are necessary for

the fuzzy inference system (FIS).

Example1: Robot uses T1 FLC to navigate the maze.

A routine to turn the completed XML into a working T1 FLC

was incorporated into the framework and used to help a

software robot navigate the maze described in the problem

statement. Pseudo code to describe the final process is as

follows

Procedure StartNavigation

 ConfigureFIS(XmlFile)

 While(true)

 Navigate()

End

Procedure Navigate

 FIS.Input(GetFrontDistance())

 FIS.Input(GetLeftDistance())

 FIS.Input(GetRightDistance())

 FIS.Fuzzify(Inputs)

 FIS.Defuzzify(OutputAngleDelta)

 Robot.Angle = Robot.Angle + OutputAngleDelta

 MoveRobot()

End

Using the T1 FLC, the robot was able to successfully

navigate the maze without hitting any barriers or halting its

forward progress. Its path was tracked and shown in fig 10.

Fig. 10. Robot Navigating Maze Using Framework-Based T1 FLC

Example 2: Robot uses T2 FLC to navigate the maze.

In the second case, the framework was used to create a Type-

2 Fuzzy Logic Controller. Without the use of XML, this

requires simply coding the various fuzzy objects and FIS. With

the Type-2 based FIS, the software robot T2-FLC was able to

successfully navigate the same maze. Its path was tracked and

shown in fig 11.

Fig. 11. Robot Navigating Maze Using Framework-Based T2 FLC

V. CONCLUSION AND FUTURE WORK

The fuzzy framework is a necessary first step in the creation

of an easy-to-use, flexible, standalone utility able to create

usable, sophisticated T1-FLCs and T2-FLCs. A simple

software robot, relying upon the framework, is able to cleanly

and correctly navigate a maze under both a Type-1 and Type-2

controller.

The fuzzy Wizard application generated a standard XML file

used to successfully configure the T1-FLC for the robot on-the-

fly without additional code. The Wizard allowed for complete

configuration of the T1-FLC to solve the maze problem in a few

minutes and dynamic configuration of the framework in a

separate application. Changing the behavior of the T1-FLC is

now simply a matter of modifying the configuration file without

the need for recompilation any of the related binaries. As an

added benefit, the Wizard application provides a nice visual

interface able to serve as a training aid in a classroom

environment. As a series of standalone .NET assemblies

combined with the Wizard application the framework

demonstrates an easier and/or cost-effective way to implement

a working, callable FLC when compared other frameworks and

with fuzzy Type-2 support.

Future work is ongoing in order to broaden both the

functionality and applicability of the framework. Among the

planned extensions are a Wizard for configuring a FIS based

upon fuzzy Type-2 objects, additional unary and binary fuzzy

operators, discrete fuzzy sets and fuzzy numbers, complex rules

and database extensions as well as improvements to the Wizard

interface in general. Also in progress are the addition of

genetic, memetic and local search algorithms and data mining

techniques into the framework. We believe these additions will

allow the creation of a framework that is “trainable” and self-

optimizing. Finally, extending the framework to support

contextual fuzzy constructs provides a comprehensive tool to

support an even wider range of uses. Upon completion the

University of Idaho hopes to make this framework available as

an open source project and further collaborative effort.

VI REFERENCES

[1] Zadeh, L. A. (1965) Fuzzy Sets, Information and Control 8(3), 338-353

[2] Cox (1994) The fuzzy systems handbook; Academic Press

[3] Masaharu Mizumoto, Kokichi Tanaka, Some properties of fuzzy sets of

type 2, Information and Control, Volume 31, Issue 4, August 1976,

Pages 312-340

[4] Mendel, J.M.; John, R.I.B.; , "Type-2 fuzzy sets made simple," Fuzzy

Systems, IEEE Transactions on , vol.10, no.2, pp.117-127, Apr 2002

[5] Hagras, H.; Wagner, C.; , "Towards the Wide Spread Use of Type-2

Fuzzy Logic Systems in Real World Applications," Computational

Intelligence Magazine, IEEE , vol.7, no.3, pp.14-24, Aug. 2012

[6] Limbu, D.K.; Yeow Kee Tan; Ridong Jiang; Tran Ang Dung; , "A

software architecture framework for service robots," Robotics and

Biomimetics (ROBIO), 2011 IEEE International Conference on , vol.,

no., pp.1736-1741, 7-11 Dec. 2011

[7] Pressman RS (2005) Software engineering, a practitioner's approach, 6th

Ed., McGraw Hill

[8] Buschmann, F.; , "Introducing the Pragmatic Architect," Software, IEEE

, vol.26, no.5, pp.10-11, Sept.-Oct. 2009

[9] AForge.NET Framework (n.d.); URL from Jan.2013:
http://www.aforgenet.com/aforge/framework/

[10] Sourceforge.NET Framework (n.d.); URL from Jan.2013:
http://www.sourceforgenet.com/projects/octave-fuzzy/

[11] CodeProject Fuzzy Framework (n.d.); URL from Jan.2013:
http://www.codeproject.com/Articles/151161/Fuzzy-Framework/

[12] Wyne, M.F.; , "SOOD: A simulation tool for OODB," Global

Engineering Education Conference (EDUCON), 2012 IEEE , vol., no.,

pp.1-9, 17-20 April 2012

[13] Moreno-Velo, F.J.; Barriga, A.; Sanchez-Solano, S.; Baturone, I.; ,

"XFSML: An XML-based modeling language for fuzzy systems," Fuzzy

Systems (FUZZ-IEEE), 2012 IEEE International Conference on , vol.,

no., pp.1-8, 10-15 June 2012

[14] Trivedi JA, Sajja PS (2011) Framework for automatic development of

type-2 fuzzy, neuro and neuro-fuzzy systems, International Journal of

Advanced Computer Science and Applications, vol. 2, No. 1, Jan 2011

[15] Nilesh N. Karnik, Jerry M. Mendel, Centroid of a type-2 fuzzy set,

Information Sciences, Volume 132, Issues 1–4, February 2001, Pages

195-220

[16] McCarty, K.; Manic, M.; , "Line-of-sight tracking based upon Manic,

M.; , "Line-of-sight tracking based upon modern heuristics approach,"

Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE

Conference on , vol., no., pp.40-45, 3-5 June 2008

