
 

 

Abstract— Type-2 Fuzzy Logic Systems (T2 FLSs) have been 

commonly attributed with the capability to model various sources 

of data uncertainties. The input uncertainties of an FLS were 

modeled using T2 Fuzzy Sets (FSs) and the type-reduced centroid 

of the output FS was interpreted as a measure of uncertainty 

associated with the terminal real-valued output. However, the 

accuracy of this input-output uncertainty modeling has been 

rarely studied. It is well established that T2 FSs can be 

understood as a composition of a large number of embedded T1 

FSs and thus model the uncertainty of selecting a specific T1 FSs. 

However, whether the same can be achieved with T2 FLSs can be 

considered an open question. This paper contributes by 

presenting a study of the input-output uncertainty modeling 

capability of Interval T2 (IT2) FLSs. First, the Monte Carlo 

simulation technique is used to simulate linguistic uncertainties 

and to compute the aggregated output result. This simulation is 

then compared to the output bounds provided by the interval 

centroid computed with IT2 FLS. It is demonstrated that the 

interval output of the IT2 FLS overestimates the output 

uncertainty range when compared to the results of the Monte 

Carlo simulation. To further understand this problem the 

concept of Equivalent Type-1 FSs is used. Finally, a detailed 

example is presented to demonstrate why the IT2 fuzzy inference 

process overestimates the output uncertainty. 

 
Index Terms— Interval Type-2 Fuzzy Sets, Fuzzy Logic 

Systems, Centroid, Type-Reduction, Uncertainty Modeling 

I. INTRODUCTION 

YPE-2 Fuzzy Logic Systems (T2 FLSs) have been studied 

by many researchers in recent years [1]-[4]. T2 FLSs are 

based on the concepts of T2 Fuzzy Sets (FSs) originally 

proposed by Lofti Zadeh [5], The major difference between 

T1 and T2 FLSs is in the model of individual FSs, where T2 

FSs use membership degrees that are themselves FSs. It has 

been shown that T2 FLSs can improve the performance of T1 

FLSs, especially when applied to problems with various data 

uncertainties [6]-[9]. The various sources of uncertainty are 

commonly identified as follows: i) uncertainty in the linguistic 

knowledge used to construct the FLS, ii) uncertainty about the 

correct outputs of the system, iii) uncertainty associated with 

noisy inputs, and iv) uncertainty about the data that were used 

to tune the parameters of the control system. This paper 

focuses on modeling of the linguistic uncertainty. 
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 The most widely used kind of T2 FLSs is the Interval T2 

(IT2) FLS, which uses IT2 FSs with constrained interval 

membership degrees [10]. Many researchers argue in favor of 

IT2 FLSs because of their potential to model and minimize the 

effects of uncertainties, while providing computationally 

efficient framework when compared to General T2 FLS [3], 

[6], [10]. Typically, the performance of the IT2 FLSs is 

compared to their T1 counterparts demonstrating 

improvements when noise and other types of uncertainties are 

introduced into the system. The improved performance can be 

attributed to the Footprint of Uncertainty (FOU) of the IT2 

FSs, which allows for improved modeling of the input 

uncertainties.  

 The results of the IT2 fuzzy inference process is an output 

IT2 FS. This IT2 FS must be first type-reduced into its interval 

centroid, which can then be defuzzified into the terminal real-

valued output [11]. Frequently, the geometric properties of the 

output interval centroid are associated with the uncertainty 

about the system’s real-valued output [12]-[24]. For instance, 

Wu and Mendel state in [12] that: “…the length of the type-

reduced set can therefore be used to measure the extent of the 

output’s uncertainty.” In addition, the concept of embedded 

T1 FLS is defined in [12] and a T2 FLS is interpreted as a 

collection of its embedded T1 FLSs. Ren et al. used the 

interval output of IT2 FLS to model and predict the variations 

of micro milling cutting forces [13]-[15]. The variations of the 

width of the interval centroid as a result of various FOUs for 

the input IT2 FSs was studied by Ozen, Garibaldi and others 

[16]-[18]. In [19], the interval centroid was used to establish 

an uncertainty band around the output of perceptual computer 

and to guide the process of choosing optimal location for 

international logistics centers. Other researchers used the 

interval centroid to establish an uncertainty measure on the 

output of a system in applications such as stock price analysis, 

short-term traffic forecasting or modeling of photovoltaic 

arrays [20]-[23]. In these examples, the IT2 FLS is assumed to 

perform an input-output uncertainty mapping. The uncertainty 

modeled by the IT2 FSs is thus assumed to be reflected in a 

specific uncertainty measure associated with the interval 

output [24].  

However, the accuracy of this input-output uncertainty 

mapping has been rarely studied. It is well established that IT2 

Fuzzy Sets can be understand as a composition of a large 

number of embedded T1 FSs. IT2 FSs thus model the 

uncertainty associated with selecting a specific T1 FS from 

within the FOU [24]. It has been previously shown that the 

interval centroid of an IT2 FS accurately captures the range of 
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possible defuzzified values given the uncertain selection of 

specific T1 membership function. This paper investigates 

whether the same can be claimed about IT2 Fuzzy Logic 

Systems. The main contribution lies in the analysis of the 

input-output uncertainty modeling capability of IT2 FLSs. 

First, a Monte-Carlo (MC) technique is used to calculate an 

interval output of a perturbed T1 FLSs simulating the effects 

of linguistic uncertainties. This result is then compared to the 

output interval centroid of an IT2 FLS, which uses IT2 FSs 

that model identical linguistic uncertainty. The experiment 

identifies inconsistencies between the MC uncertainty 

simulation and the IT2 FLS interval output. The IT2 FLS is 

found to overestimate the output uncertainty in specific 

scenarios. 

To further understand this problem the concept of 

Equivalent Type-1 FS (ET1 FS) is utilized [25]. The ET1 FS 

method searches for a T1 membership grade for a selected IT2 

FS, which would ensure that the output value of the original 

IT2 FLS and the newly created T1 FLS remain the same. It is 

shown that the IT2 FLS overestimates the output uncertainty 

because the ET1 FSs are often located outside the FOU of the 

original IT2 FSs. Finally, a detailed example is presented to 

identify some of the causes for the overestimation of the 

output IT2 FLS uncertainty. 

The rest of the paper is organized as follows. Section II 

briefly reviews the fundamentals of IT2 FLSs and defines the 

experimental IT2 FLS used. Section III presents the 

comparison of input-output linguistic uncertainty modeling 

using MC simulation and IT2 FLS. The concept of ET1 FS is 

explained and used for further analysis in Section IV. Section 

V presents a detailed example and the paper is concluded in 

Section VI.  

II. INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS 

 This section provides brief overview of IT2 FLS. Next, an 

exemplary IT2 FLS used in the rest of this paper is described.  

A. Interval Type-2 Fuzzy Logic Systems 

An IT2 FS A
~

 can be expressed as [3]: 
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 Here, x and u are the primary and secondary variables, X is 

the domain of variable x and Jx is the primary membership of 

x. In the special case of IT2 FSs, all secondary grades of fuzzy 

set A
~

 are equal to 1. The domain of the primary memberships 

Jx defines the FOU of A
~

. The FOU of an IT2 FS A
~

 can be 

bounded by its upper and lower membership functions (see 

Fig. 1(a)): 
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 The IT2 FS A
~

 can be type-reduced into its centroid
A

C ~ , 

which itself is an interval T1 FSs bounded by its left and right 

boundaries ],[~ rlA
ccC  . It has been shown that these 

boundaries can be obtained by solving the following 

optimization problems [11]: 
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 Here, symbol  denotes an auxiliary variable that is used to 

select a specific membership grade from within the primary 

membership. Hence, the interval centroid captures the 

uncertainty associated with the terminal output value for a 

random selection of an embedded T1 FS from within the FOU 

[24]. The boundary embedded fuzzy sets cl and cr and the final 

interval centroid are depicted in Fig. 1. 

 The IT2 FLS is composed of four major parts: input 

fuzzifier, fuzzy inference engine, fuzzy rule base and output 

processor, as depicted in Fig. 2 [4]. The IT2 FLS works 

similarly when compared to T1 FLS, with the exception that at 

least one fuzzy set must be an IT2 FS. Fuzzy interval meet and 

join operations are then used to calculate the firing strengths 

and to aggregate the outputs of individual fuzzy rules encoded 

in an implicative form as follows: 

 

 IF x1 is kA1

~
AND … AND xn is k

nA
~

THEN yk is
kB

~
 (5)

 

 
(a) (b) (c) (d) 

Fig. 1 FOU of an IT2 FS A
~

(a), its left (b) and right (c) boundary embedded T1 FSs and the interval centroid ],[ rl ccC   (d). 

 
 

Fig. 2 IT2 FLS [4]. 



 

 Here, symbol k

jA
~

and kB
~

 denote the j
th

 input IT2 FS and 

the output IT2 FS, n is the dimensionality of the input vector 

x


, and yk is the associated output variable. 

 The output processor first performs type-reduction 

operation, which reduces the output IT2 FSs into its T1 

interval centroid [11]. The centroid can then be defuzzified to 

produce the terminal real-valued output. 

B. IT2 Fuzzy PI controller 

In the rest of this paper an exemplary IT2 FLS is used. The 

structure of this IT2 FLS is consistent with the IT2 fuzzy 

Proportional-Integral controller presented in [25]. The 

implemented PI control law can be stated as 


t

PP deKteKtu
0

)()()(  . The IT2 FLS has two inputs, the 

error signal e and the rate of error change e . The output is the 

control signal change u . Each input domain is characterized 

using three input FS parametrized by points },,{
321 eee PPP and 

},,{
321 eee PPP  as depicted in Fig. 3. In this specific 

implementation all input fuzzy sets are of type-1 except for 

IT2 FS 
2

~e as shown in Fig. 3(a). Parameter de controls the 

width of the FOU of IT2 FS 
2

~e . This specific design was 

selected for its suitability for the demonstration of input-

output uncertainty mapping using the equivalent fuzzy sets as 

described later in Section IV. 

The fuzzy rule base contains nine fuzzy rules, one for each 

combination of the input FS. The consequents are singleton 

values computed as follows: 

 

 3,2,1,  jiPKPKu
jePieIji 

  (6) 

Here, KI and KP are the gain coefficients of the fuzzy PI 

controller. The fuzzy rule base is summarized in Table I. 

The inference process uses product t-norm to calculate the 

rule firing strength. The iterative KM algorithm is used to 

compute the interval centroid of the output IT2 FS [26]. An 

example of a control surface for the described IT2 FLS with 

parameters KI = 0.5, KP=1.0 and de = 0.5 and its slice at input 

value 0.0e is shown in Fig. 4. 

III. IT2 FLS UNCERTAINTY MODELING ANALYSIS USING 

MONTE CARLO SIMULATION 

This section first outlines two approaches for input-output 

linguistic uncertainty modeling of FLS using Monte Carlo 

(MC) simulation and using IT2 fuzzy logic. Next, an 

experimental comparison of both approaches is presented and 

analyzed. 

A. Uncertainty modeling using MC simulation and T1 FLS 

It is well established that T2 FSs can be understood as a 

composition of a large number of embedded T1 FSs [24]. T2 

FSs model the uncertainty associated with the selection of a 

specific embedded T1 FS. In a similar manner, it is commonly 

assumed that IT2 FLS act as a composition of a large number 

of T1 FLS, each with different T1 FSs selected from within 

the FOUs of the original IT2 FSs [12], [27]. The interval 

output computed as the interval centroid is then interpreted as 

the uncertainty associated with the output value due to the 

uncertain choice of specific T1 fuzzy membership functions. 

Previously, the sensitivity and robustness due to input 

uncertainties of T1 FLSs was analyzed using MC simulations 

[28], [29]. In the presented paper, the MC simulation is 

utilized to model the effects of linguistic uncertainty and to 

compute the range of output values given an uncertain choice 

of specific input T1 FSs. At each iteration, a random 

embedded T1 FS is selected from within the FOU of the input 

IT2 FSs and the output value for the obtained T1 FLS is 

calculated. The results from a large number of iterations are 

aggregated and the minimum and the maximum output values 

are computed resulting in an output uncertainty interval. This 

process is illustrated in Fig. 5(a). 

 
 (a) (b) 

Fig. 3 Inputs of the IT2 FLS e (a) and e (b). 

 
 (a) (b) 

Fig. 4 Output surface of the IT2 FLS (a) and a slice of the output surface for 

0.0e (b). 

TABLE I 
FUZZY RULE TABLE 

ee /  
1e  

2e  
3e  

1e  11u  
21u  

31u  

2

~e  12u  
22u  

23u  

3e  13u  
23u  

33u  

 

 
(a) 

 
(b) 

Fig. 5 Modeling linguistic uncertainties with Monte-Carlo simulation and T1 

FLS (a) and with IT2 FLS (b). 



 

B. Uncertainty modeling using IT2 FLS 

The IT2 FLS models the uncertainty associated with 

selecting a specific membership grade using the FOU of the 

input IT2 FSs. The interval arithmetic used by the fuzzy 

inference process computes the output IT2 FS. During the 

output processing stage, the output IT2 FS is type-reduced into 

an interval centroid C described using its left and right 

boundaries as ],[ rl ccC  . As discussed previously, the 

centroid boundaries are commonly assumed to express the 

uncertainty associated with the terminal output value. This 

input-output uncertainty modeling is depicted in Fig. 5(b). 

C. Comparison 

The implemented IT2 fuzzy PI controller described in 

Section II.B was used for the experimental comparison of the 

two distinct approaches to input-output uncertainty modeling 

of FLS. The MC simulation was run with the number of 

samples N=1000. For each iteration, a random embedded T1 

FS was uniformly selected from within the FOU of the IT2 FS 

2

~e , as shown in Fig. 3(a). Different configurations of the FLS 

were used in the study with the following parameters: 
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 First, the IT2 FLS with KI = 0.2 and de = 0.3 was tested. Fig. 

6(a) shows the output surface. Fig. 6(b) and Fig. 6(c) depict 

the comparison of the interval output produced by IT2 FLS 

and the interval output produced by MC simulation for two 

slices of the output surface at 6.0e and 0.0e . It can be 

observed that for the surface slice at 6.0e there is a 

significant inconsistency between the two methods for 

computing the output intervals. Namely, the IT2 FLS 

overestimates the range of output uncertainty. On the other 

hand, for the surface slice at 0.0e both uncertainty models 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

 
 (g) (h) (i) 

Fig. 6 Output surface and the output uncertainty for output surface slices at 6.0e and 0.0e for IT2 FLS with KI = 0.2 and de = 0.3 (a)-(c), KI = 0.5 and  

de = 0.5 (d)-(f), and for KI = 1.0 and de = 0.7 (g)-(i). 



 

correspond very well and the IT2 FLS correctly matches the 

MC simulation. 

Next, the IT2 FLS with KI = 0.5 and de = 0.5 was tested. Fig. 

6(d) shows the output surface and the control surface slices at 

values 6.0e and 0.0e are depicted in Fig. 6(e) and Fig. 

6(f). Again, it can be observed that the IT2 FLS overestimates 

the range of output uncertainty for 6.0e . 

Finally, identical observations can be made by analyzing the 

output surface and the surface slices for IT2 FLS with KI = 1.0 

and de = 0.7 depicted in Fig. 6(g)-(i). 

IV. IT2 FLS UNCERTAINTY MODELING ANALYSIS USING 

EQUIVALENT TYPE-1 FUZZY SETS 

This section first reviews the concept of Equivalent Type-1 

(ET1) FSs proposed by Wu and Tan [25]. Next, the ET1 FSs 

method is used to further analyze the input-output uncertainty 

modeling of IT2 FLSs. 

A. Equivalent Type-1 Fuzzy Sets 

The concept of ET1 FSs was originally proposed by Wu and 

Tan and used to perform the IT2 FLS modeling capability 

analysis [25]. The key idea of ET1 FSs is that the IT2 FSs of 

an IT2 FLS can be reduced to a group of T1 FSs without 

affecting the output of the IT2 FLS. In other words, for a 

specific input values, the ET1 FSs method seeks to find such a 

T1 fuzzy membership grades, which when substituted for the 

IT2 fuzzy membership result in an unchanged output value. 

The existence and uniqueness of ET1 FSs has been proven in 

[25]. 

Consider, the IT2 fuzzy PI controller introduced in Section 

II.B. Assume that the firing strengths for the T1 FSs e1, e2, 1e

2e  and 
3e  are denoted as 

1e
f , 

3ef , 
1e

f  , 
2ef   and 

3ef   and the 

interval firing strength of IT2 FS 
2

~e  is denoted as 
2

~ef  as 

labeled in Fig. 3. Then the firing strength R
ij
 of individual 

rules obtained using the product t-norm can be expressed as: 
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The IT2 fuzzy inference can be used to compute the output 

value u. Consequently, the ET1 FS membership grade feq is to 

be found so that an identical output value is produced when feq 

is used in place of the interval firing strength 
2

~ef . The 

equivalent output of the resulting T1 FLS can be expressed as 

in (11). Finally, the membership degree of the ET1 FS can be 

 
Fig. 7 ET1 FS for 

2

~e for different slices of the output surface. 

 

\  

 (a) (b) (c) 

 
 (d) (e) (f) 

 
 (g) (h) (i) 

Fig. 8 ET1 FS for the output value u and the centroid boundary values cl and cr for IT2 FLS with KI = 0.2 and de = 0.3 (a)-(c), KI = 0.5 and  

de = 0.5 (d)-(f), and for KI = 1.0 and de = 0.7 (g)-(i). 



 

computed as in (12) upon rearranging (11). 

As an example, the ET1 FSs for different slices of the 

output control surface are depicted in Fig. 7. It can be 

observed that for input values 8.0e and 2.0e some 

membership grades lie outside the FOU of the IT2 FS 
2

~e . 

B. Uncertainty Modeling Analysis using ET1 FS 

The concept of ET1 FS was originally developed to 

investigate the differences in input-output modeling between 

T1 and IT2 FLS. In this paper, the ET1 FS method is applied 

to the analysis of the input-output uncertainty modeling 

performed by IT2 FLS. As demonstrated in Section III.C the 

interval output of the IT2 FLS appears to overestimate the 

output uncertainty obtained with the MC simulation. The ET1 

FS method is used here to provide further evidence of these 

phenomena. 

To investigate the input-output uncertainty mapping, it is of 

interest to map the interval centroid back to an equivalent T1 

input FSs. Assuming that the IT2 FLS accurately models the 

uncertainties associated with selecting specific T1 input FSs 

from within the FOUs, it can be expected that the bounds of 

the interval centroid should map back into a pair of embedded 

T1 FSs located within the original FOUs. Hence, the ET1 

fuzzy membership grades l

eqf and r

eqf are computed for the left 

and right interval centroid bounds cl and cr  in (13) and (14).  

Fig. 8 depicts the ET1 FSs for the output values u and the 

interval centroids bounds cl and cr for the test cases considered 

in Fig. 6. Two important observations can be made. First, in 

many cases the calculated ET1 FSs l

eqf and r

eqf  lie outside the 

FOUs of the original IT2 FSs. This observation verifies that 

the interval centroid overestimates the output uncertainty, 

because it represents uncertainty associated with wider FOU 

than the one actually used. Second, the ET1 FS membership 

grades in many cases are greater than 1, which contradicts the 

basic definition of fuzzy sets. This second observation 

suggests that the boundaries of the interval centroid are not 

computable by any possible instantiation of the T1 FLSs. This 

last observation is consistent with a recent analysis presented 

in [30]. 

V. UNDERSTANDING THE IT2 FLS INPUT-OUTPUT 

UNCERTAINTY MODELING 

This section contains a detailed example that demonstrates 

the output uncertainty overestimation of IT2 FLS. Consider a 

controller with parameters as in (7) and (8) and 

3.0,2.0,1  eIP dKK  with control surface depicted in Fig. 

6(a). For an input value pair 5.0e  and 5.0e the non-zero 

membership degrees will be as follows: 
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The four fired rules with their firing strengths obtained 

using the product t-norm can be summarized as: 

 
Rule Firing Strength Consequent 

21R  ]3077.0,1429.0[  -1.0 

22R  ]3077.0,1429.0[  0.0 
31R  0.25 -0.8 
32R  0.25 0.2 

 

The iterative KM algorithm can be used to find the switch 

points and to compute the left and right centroid boundaries: 

 

 25.025.01429.03077.0

2.025.08.025.00.01429.00.13077.0




lc (16) 

 

 25.025.03077.01429.0

2.025.08.025.00.03077.00.11429.0




rc (17) 

 

Finally, the interval centroid [cl, cr] can be calculated as 

]3081.0,4815.0[  . 

The equation for the left centroid boundary cl expressed 

in (16) can be rewritten using the rule firing strengths as 

follows: 
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 Next, the right and left firing levels of the used rules R
21

 

and R
22

 can be expanded using the original membership 

grades: 
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 Both firing levels 21

rR and 22

lR are used to compute the left 

centroid boundary cl. However, as shown in (19), 21

rR  uses 

the upper membership grade r

ef
2

~  while 22

lR uses the lower 

membership grade l

ef
2

~  of the FOU of the input IT2 FS 2

~e . 

For the ET1 FSs presented in the previous section, no 

 
332313321312111

333332233113233222211133112211111

eeeeeeeeqeeqeeqeeeeee

eeeeeeeeqeeqeeqeeeeee

ffffffffffffffffff

uffuffuffuffuffuffuffuffuff
u










  (11) 

 

 
)(

)()())((

321233222211

3333223113133122111132131

eeeeee

eeeeeeeeeeeee

eq
fffuufufuf

ufufuffufufufffffffu
f












  (12) 

 

 
)(

)()())((

321233222211

3333223113133122111132131

eeeleee

eeeeeeeeeeeeell

eq
fffcufufuf

ufufuffufufufffffffc
f












  (13) 

 

 
)(

)()())((

321233222211

3333223113133122111132131

eeereee

eeeeeeeeeeeeerr

eq
fffcufufuf

ufufuffufufufffffffc
f












  (14) 

 



 

selected embedded T1 FSs from within the FOU can result 

in the interval bounds on the output of the IT2 FLS, because 

both the upper and the lower membership functions 

simultaneously contribute to the final results. Similar 

analysis has been recently presented in [30], where the 

adaptiveness and novelty properties of IT2 FLSs have been 

determined as the fundamental differences between IT2 and 

T1 FLSs. 

This property can be seen as a strong advantage of IT2 

FLS when analyzing their modeling capability as it was 

done in [25]. However, it should be noted that this behavior 

also causes the IT2 FLS to overestimate the range of the 

output uncertainty in specific scenarios. Hence, special care 

should be taken when the output centroid is interpreted as a 

measure of output uncertainty. 

VI. CONCLUSION 

This paper presented a study of the input-output 

uncertainty modeling capability of IT2 FLSs. First, the 

Monte Carlo simulation technique was used to simulate the 

effects of linguistic uncertainties and to compute the 

aggregated output result. This result was then compared to 

the interval centroid obtained with classical IT2 FLS. The 

IT2 FLS was found to overestimate the output uncertainty 

interval provided by the MC method.  

To further investigate this behavior the concept of ET1 

FSs was used to visualize the pair of embedded T1 FSs 

responsible for the interval centroid. The analysis revealed 

that the ET1 FSs frequently lie outside the FOU of the 

original IT2 FS and have membership grades greater than 

one. Finally, it was demonstrated that the cause for this 

phenomena is the simultaneous use of both the upper and 

lower membership grades of the input IT2 FSs when 

computing the interval centroid. 

This property can be seen as a strong advantage of IT2 

FLS when analyzing their modeling capability, however, it 

should be noted that this same property also causes the IT2 

FLS to overestimate the range of the output uncertainty. In 

summary, a special attention should be paid to analyzing the 

interval output of the IT2 FLS when it is interpreted as a 

measure of output uncertainty. 
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