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Abstract—General Type-2 Fuzzy Sets (GT2 FSs) have been 

originally proposed to allow for modeling uncertainty associated 

with the membership grades of Type-1 (T1) FSs. However, 

because of the computational complexity associated with the 

processing of GT2 FSs, only their constrained version, the 

Interval T2 (IT2) FSs, have been widely used. While IT2 FSs 

allow for fast processing, they lack the expressive power of GT2 

FSs when modeling various kinds of uncertainties. In order to 

combine the best of both types, this paper proposes a novel class 

of T2 FSs – the Shadowed Type-2 (ST2) FSs. The ST2 FS is a T2 

FS with secondary membership functions represented as 

Shadowed Sets (SSs). Shadowed sets, originally proposed by 

Pedrycz, are directly induced by the T1 fuzzy membership 

functions and they are designed to conserve the amount of 

uncertainty in the original T1 FS. In a similar manner, an ST2 

FS is directly induced by a GT2 FS via transforming all the T1 

fuzzy secondary membership functions into Shadowed Sets. The 

resulting ST2 FSs can thus better capture the uncertainty in the 

original GT2 FSs when compared to the constrained IT2 FSs. 

Additionally, ST2 FSs offer very efficient computational 

framework since the secondary membership grades can only 

attain three values of 0, 1, or completely uncertain (shadowed) 

grade of [0,1]. This paper introduces the representation, the 

elementary set-theoretic operations and several methods for type-

reduction and defuzzification of ST2 FSs. The modeling 

capability of ST2 SS was demonstrated on several examples.  

 
Index Terms— General Type-2 Fuzzy Sets, Interval Type-2 

Fuzzy Sets, Shadowed Sets, Uncertainty Modeling 

 

I. INTRODUCTION 

YPE-2 Fuzzy Sets (T2 FSs) were originally proposed by 

Lofti Zadeh [1] to address the problem of over-

specification of the real-valued membership degrees of Type-1 

(T1) FSs. T2 FSs use membership degrees that are themselves 

FSs. Despite the powerful modeling capability of General T2 

(GT2) FSs, the high computational complexity associated with 

processing and computing with GT2 FSs significantly 

hindered their practical use. Only very recently several novel 

representations of GT2 FSs such as geometric T2 FSs [2], [3] 

or the  -planes [4], [5] and the zSlices [6] representations 

allowed the emergence of novel applications of GT2 FSs [7]-

[9]. 
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 The computational overhead associated with computing 

with GT2 FSs led to a wide spread of applications of their 

constrained version – the Interval T2 (IT2) FSs [10], [11]. The 

IT2 FSs restrict the form of the secondary membership 

functions to intervals. This simplification allows for 

representing an IT2 FS using its Footprint Of Uncertainty 

(FOU). The FOU can be conveniently expressed using its 

upper and lower membership functions, which are T1 FSs. 

This fact allowed the development of efficient algorithms for 

processing IT2 FSs based on the interval arithmetic [12]. 

Many successful applications of IT2 FSs as well as IT2 Fuzzy 

Logic Systems (FLSs) can be found in literature [13]-[16]. 

Nevertheless, the imposed restriction of the interval secondary 

membership functions, where all secondary membership are 

only allowed to attain certain values of 0 or 1, can be seen as a 

significant limitation in situations where smoother (“fuzzier”) 

representation of secondary uncertainty is required [7], [8]. 

 To alleviate this issue and to combine the best of both 

worlds, a new class of T2 FSs is proposed in this paper – the 

Shadowed Type-2 (ST2) FSs. The ST2 FSs are T2 FSs with 

secondary membership functions represented as Shadowed 

Sets (SSs). The concept of SS was originally proposed by 

Pedrycz and it was developed to improve the observability and 

interpretability of T1 FSs and to alleviate the issues of 

excessive precision in describing imprecise concepts using T1 

fuzzy membership functions [17]-[21]. An SS is directly 

induced by a T1 FS, which is divided into three regions of 

exclusion, core and shadow based on the T1 fuzzy 

membership grades. The optimal threshold value is 

automatically found by solving a simple optimization problem 

to conserve the overall amount of uncertainty modeled by the 

original T1 FS. 

 This paper outlines the novel concept of ST2 FSs. An ST2 

FS is directly induced by a GT2 FS by transforming all the T1 

fuzzy secondary membership functions into their SS forms. 

This transformation is performed by searching for an optimal 

pair of  -planes, which lead to a conservation of the amount 

of uncertainty modeled by the original GT2 FSs. Interestingly, 

the ST2 FSs can be completely described by a pair of IT2 FSs, 

the inner and the outer bounds. Hence, the set-theoretic 

operations and the type-reduction algorithms can be 

implemented using the established methods of IT2 FSs. The 

ST2 FSs offer improved uncertainty modeling, which is 

manifested in the structure of the type-reduced centroid that is 

itself represented as an SS. Three different defuzzification 

approaches are proposed, the optimistic, the pessimistic and 

the weighted defuzzification method. Finally, the construction 
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of ST2 FSs is demonstrated on several simple examples. 

The rest of the paper is organized as follows. Section II 

reviews the concept of SSs. For the sake of completeness, the 

theory of GT2 FSs including the  -plane representation is 

discussed in Section III. Section IV introduces the proposed 

class of ST2 FSs. Several examples of ST2 FSs are presented 

in Section V and the paper is concluded in Section VI. 

II. SHADOWED SETS 

The concept of Shadowed Sets was originally proposed by 

Pedrycz [17]-[21]. This concept alleviates the issues of 

excessive precision in describing imprecise concepts using T1 

FSs. The central idea of SS is that people can easily assign 

membership values close to 0 or 1 but have significant 

difficulties assigning uncertain membership grades around the 

value 0.5. According to Pedrycz, the concept of SS was 

developed to improve the observability and interpretability of 

T1 FSs [17]. 

Consider a T1 FS A in the universe of discourse X defined 

using its membership function )(xA  for Xx , as depicted 

in Fig 1(a). This T1 FS can be seen as a functional mapping 

between the input domain and the membership grade: 

 

 ]1,0[: XA  (1) 

 

This T1 FS A induces a SS A
1
.The process of obtaining A  

contains the reduction of the functional mapping in (1) into a 

three valued logic. In order to preserve the uncertainty 

encapsulated by the original T1 FS A, this process is achieved 

via elevating, reducing and balancing the fuzzy membership 

grades [17]. 

The SS A
 
is induced by applying a threshold   to the T1 

fuzzy membership function )(xA . All membership grades 

above value 1 are elevated into a core with certain 

membership degree of 1. All membership grades below value 

 are reduced into an exclusion region with certain 

membership degree of 0. All membership values between 

values  and 1 are transformed into a completely uncertain 

shadow region with membership degree spanning the entire 

domain of [0, 1]. Hence, the SS A  can be seen as a special 

case of a three-valued logic: 

 

 
1 Because no consistent notation was found in the available literature, 

symbol A was introduced by the authors for denoting a Shadow Set. 

 ]}1,0[,1,0{: XA  (2) 

 

The thresholding operation that is applied during the 

construction of SSs does not require any user-specified 

threshold value. Instead, a suitable value of the threshold 

can be automatically obtained by solving a simple 

optimization problem. The basic idea is that the uncertainty 

retained in the shadow region should balance the uncertainty 

lost due to elevating and reducing the membership grades in 

the core and the exclusion regions. For a continuous domain, 

this optimization function )(V can be specified as: 

 

  


ShxCorexExclx

dxdxxdxxV ))(1()()(   (3) 

 

Here, the terms Excl, Core and Sh denote the regions of the 

primary domain X of the exclusion, core and shadow as 

denoted in Fig. 1(a). Note that ]5.0,0[ and that for the 

optimal value of 
opt it holds that 0)( optV  . In practical 

implementations the fuzzy membership function )(x is 

typically discretized. Hence, the solution to (3) can be 

obtained as: 

 )(minarg i

i

opti V 


  (4) 

 

The final SS A is depicted in Fig. 1(a) and Fig. 1(b) shows 

the function )(V for various values of threshold  .  

III. GENERAL TYPE-2 FUZZY SETS 

 This section first reviews the concept of GT2 FSs. Next, the 

recently developed  -planes representation for GT2 FSs is 

discussed. 

A. General Type-2 Fuzzy Sets 

A GT2 FS A
~

 can be expressed on the universe of discourse 

X using its T2 fuzzy membership function ),(~ ux
A

 , where 

Xx and 
xJu  [10]: 

 

   


Xx xJu

xA
JuxuxA ]1,0[),(/),(

~
~  (5) 

 

 Here, variable x and u are the primary and the secondary 

variables and Jx denotes the support of the secondary 

membership function also called the primary membership. 

Operator   denotes union over all possible values of x and 

u, and ]1,0[),(~ ux
A

 .  

 By instantiating a specific value for xx  , a vertical slice 

),(~ ux
A

 of the fuzzy membership function ),(~ ux
A

 can be 

obtained. This vertical slice defines a secondary membership 

function ),(~ uxx
A

 for Xx  and ]1,0[ xJu : 

 

 


 
xJu

xxAA
Juufxuxx ]1,0[/)()(),( ~~   (6) 

 

 
 (a) (b) 

Fig. 1 Shadowed set A induced by a Gaussian T1 FS A (a) and the 

optimization function )(V . 



 

 Here, )(uf x
denotes the secondary grade or the amplitude of 

the secondary membership function and ]1,0[)(  uf x
. 

Assuming that the domain of primary variable x is discretized 

using N samples, the GT2 FS A
~

 can be represented as a 

composition of all its vertical slices: 

 

 
i

N

i ixJu
ix xuufA  














1

/)(
~

 (7) 

B.  -Planes Representation of GT2 FSs 

 The following notation for the  -plane representation was 

adopted from [4], [5]. The  -plane representation constitutes 

a horizontal slice representation for GT2 FSs that was 

independently developed by several authors [4]-[6], [23].  

 An  -plane A
~

 of a GT2 Fs A
~

 can be defined as the 

union of all primary memberships of A
~

 with secondary 

membership grades that are greater or equal to : 

 

    


Xx xJu

x ufuxA  )(|),(
~

 (8) 

 

 An  -cut of the secondary membership function )(~ x
A

  

can be denoted as )|(~ xS
A

 and expressed as: 

 

  )|(),|()|(~  xsxsxS RLA
  (9) 

 

 Hence, an  -plane A
~

can be seen as a composition of all 

individual  -cuts of all of its secondary membership 

functions: 

 

 
    











Xx xRsxLsuXx
A

xuxSA
)|(),|(

~ )|(
~


   (10) 

 

 It is apparent that the FOU of the GT2 FS A
~

 can now be 

denoted as: 

 0

~
)

~
( AAFOU   (11) 

 

 Each  -plane
 A

~
is bounded from above by its upper 

membership function )|(~  x
A

and from below by its lower 

membership function )|(~  x
A

. Using the  -cuts boundaries 

of each vertical slice (9), these bounds can be expressed as: 

 

  


Xx

RA
xsx )|()|(~   (12) 

 

  


Xx

LA
xsx )|()|(~   (13) 

 

 By raising the  -plane A
~

to the level of  , a special IT2 

FS is created. This FS was called  -level T2 FS ),(~ uxR
A

in 

[23] and expressed as follows: 

 

 xA
JuXxAuxR  ,,

~
/),(~ 

  (14) 

 

 Finally, according to Liu’s representation theorem, the GT2 

FS A
~

 can be constructed as a composition of all of its 

individual  -level T2 FSs [4]: 

 

 
 


1,0

~~






 AA  (15) 

 

 It should be noted here, that the  sign denotes the union 

set-theoretic operations, which for each point computes the 

maximum membership grade for all -planes. For 

comparison, a GT2 FSs, an IT2 FSs and a GT2 FSs 

represented using three  -planes are depicted in Fig. 2. 

IV. SHADOWED TYPE-2 FUZZY SETS  

This section introduces the new class of T2 FS – the 

Shadowed T2 FSs. First, the representation of ST2 FSs is 

considered followed by description of the elementary set 

theoretic operations. Finally, the important operations of type-

reduction and defuzzification are defined. 

A. Assumption of Convex Secondary Membership Functions 

In the rest of this paper it is assumed that all secondary 

membership functions )(uf x
 of the GT2 FS A

~
are convex T1 

FSs with the following properties: 
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 (a) (b) (c) 

Fig. 2 General T2 fuzzy set A
~

(a), its IT2 variant
IT2A

~
(b) and its  -plane representation A

~
(c). 

  



 

where )(ug x
and )(uhx

are monotonically non-decreasing and 

monotonically non-increasing functions in their respective 

domains. 

 This assumption on the nature of secondary membership 

does not impose a major limitation to the applicability of the 

proposed concept of ST2 FSs. Examples of convex T1 FS FSs 

are triangular, trapezoidal and Gaussian T1 FSs, which are the 

most commonly used types of secondary membership 

functions for GT2 FSs.  

B. Representation of Shadowed T2 FSs 

An ST2 FS A
~

is induced by a GT2 FS A
~

. The process of 

constructing A
~

 constraints all the secondary membership 

functions of A
~

 to be SSs. By doing so, the computational 

complexity associated with working with GT2 FSs is 

significantly reduced because ST2 FS can take advantage of 

the efficient algorithms of IT2 FSs. At the same time, the ST2 

FSs offer improved description of uncertainty, which is 

captured using the SSs rather than simple interval values for 

the secondary membership functions. 

The ST2 FS A
~

 can be seen as functional mapping: 

 

 ]}1,0[,1,0{]1,0[:
~

XA  (17) 

 

Its membership function can be expressed as follows: 

 

}}]1,0[,1,0{),(],1,0[,),(),,{(
~

~~  uxuXxuxuxA
AA

 (18) 

 

Similarly to the T1 FSs case, the process of constructing an 

ST2 FS A
~

based on a GT2 FS A
~

 includes elevation, 

reduction and balancing of the membership grades. Recall, 

that an SS A was constructed from a T1 FS A using threshold 

 , where all membership grades below value   and above 

value 1  are reduced or elevated into an exclusion and core 

regions and all membership values between values  and 1

are transformed into a maximally uncertain shadow region 

with membership degree spanning the entire domain of [0, 1]. 

Hence, the process of computing the optimal value of 

threshold  consisted of finding such levels of  and 1 of 

the  -cuts that would minimize cost function )( V expressed 

in (3). 

The ST2 FS A
~

 is constructed using a suitable threshold 
~

. 

The core )
~

(Acore of ST2 FS A
~

 can be described as a footprint 

of A
~

 where all secondary membership degrees are greater 

than  
~

1 . 

 

)}
~

1(),(],1,0[,),,(|,{)
~

( ~~   uxuXxuxuxAcore
AA

 (19) 

 

The exclusion region )
~

(Aexcl of ST2 FS A
~

 can be defined 

as a footprint of A
~

 where all secondary memberships are less 

than threshold 
~

: 

 

 }
~

),(],1,0[,),,(|,{)
~

( ~~   uxuXxuxuxAexcl
AA

 (20) 

 

The shadow region )
~

(Ash of ST2 FS A
~

 can be constructed 

as a footprint of A
~

 where all secondary memberships are 

between thresholds values 
~

 and 
~

1 : 

 

)}
~

1(),(
~

],1,0[,),,(|,{)
~

( ~~   uxuXxuxuxAsh
AA

 (21) 

 

 The process of locating the optimal value of threshold 
~

 is 

automated and does not require any user input. It consists of 

finding a pair of  -planes at levels 
~

and 
~

1 , which 

optimize a fitness function )
~

(V similar to the one in (3). The 

objective function is composed of three components, which 

express the amount of uncertainty in regions that were reduced 

( )
~

(RV ), elevated ( )
~

(EV ) or balanced ( )
~

(BV ). Based on 

the notation depicted in Fig. 3(a) the reduction component can 

be expressed as: 

 

    
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1

)
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~

)
~

|(

0
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(




  (22) 

 

 The elevation component is then calculated as: 

 

  




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Xx
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xLs
A
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)

~
1|(

)
~

1|(
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~

(




  (23) 

  

 Finally, the balance component can be obtained as: 
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
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)
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 (a) (b) 

Fig. 3 Secondary membership function of GT2 FS A
~

 and its segmentation using two selected  -planes (b) and the optimization function )
~

(V (b). 



 

 

 By combining all three components the optimization 

function )
~

(V can be constructed as: 

 

 )
~

()
~

()
~

()
~

(  BER VVVV   (25)  

 

 For the continuous case, the optimal value of the threshold 

opt
~

would result in 0)
~

( optV  . However, in practical 

implementations when the domains of the primary and 

secondary variables are discretized and the GT2 FS A
~

is 

represented in the  -plane framework with a finite number of 

 -planes the solution can be obtained as: 

 

 )
~

(minarg
~~

~ i

i

opti V 


  (26) 

 

An example of the optimization function )
~

(V is depicted in 

Fig. 3(b).  

An ST2 FS A
~

 induced by a GT2 FS A
~

 with Gaussian 

secondary membership functions is depicted in Fig. 4. As it 

can be clearly seen in the figure, for the GT2 FS with convex 

secondary membership functions (e.g. triangular, trapezoidal 

or Gaussian) the ST2 FS A
~

 can be completely described 

using its inner and outer boundaries 
IA

~
 and 

OA
~

. Each 

boundary is composed of two T1 fuzzy membership functions, 

the lower ( )(~ x
IA

 , )(~ x
OA

 ) and the upper ( )(~ x
IA

 , )(~ x
OA

 ) 

membership functions as depicted in Fig. 4(b). The outer 

boundary marks the boundary between the exclusion and the 

shadow region. Similarly, the inner boundary marks the 

transition from the shadow to the core region. 

This simplified view offers a convenient way to fully 

describe the ST2 FS A
~

as: 

 

 }
~

,
~

{
~

OI AAA   (27) 

 

Here, both 
IA

~
and 

OA
~

are IT2 FSs. As shown in the 

remainder of this section, all operations with ST2 FSs can be 

performed solely using this simplified representation with the 

help of the computationally efficient interval arithmetic. It is 

interesting to note that the inner boundary 
IA

~
and the outer 

boundary 
OA

~
 can be directly obtained as the boundaries of 

two  -planes at levels 
~

and 
~

1 . 

 

Property 1: Inclusion of Boundaries: 

 

 
OI AA

~~
  (28) 

 

The proof of Property 1 is trivial and it is based on the 

containment of  -planes property and the fact that by 

definition )
~

1(
~

  . 

C. Set theoretic operations with ST2 FSs 

Here, the three elementary operations of intersection, union 

and complement on ST2 FSs are defined. Recall that for two 

IT2 FSs A
~

and B
~

the intersection (also known as the meet) 

operation is performed as follows [10]: 

 

 
XxxxxxBA

BABA
 )]()(),()([1

~~
~~~~    (29) 

 

Here, symbol   denotes a t-norm operation, e.g. the 

minimum or product. The intersection of two ST2 FSs A
~

and 

B
~

 (depicted in Fig. 5(a)) can be defined as follows: 

 

 }
~~

,
~~

{}
~

,
~

{}
~

,
~

{
~~

OOIIOIOI BABABBAABA   (30) 

 

The method for intersection of two IT2 FSs described in 

(29) can be used to calculate individual components in (30). 

An example of the result of the meet operation on two ST2 FS 

A
~

 and B
~

is depicted in Fig. 5(b). 

Next, the union (also known as the join) operation of two 

IT2 FSs can be performed as follows [10]: 

 

 
XxxxxxBA

BABA
 )]()(),()([1

~~
~~~~    (31) 

 

Here, symbol   denotes a t-conorm operation, e.g. the 

maximum. The union of two ST2 FSs A
~

and B
~

can be defined 

as follows: 

 

 }
~~

,
~~

{}
~

,
~

{}
~

,
~

{
~~

OOIIOIOI BABABBAABA   (32) 

 

     
 (a) (b) 

Fig. 4 GT2 FS A
~

(a) and its induced ST2 FS A
~

(b). 



 

The method for union of two IT2 FSs described in (31) can 

be used to calculate individual components in (32). An 

example of the results of the join operation on two ST2 FS A
~

 

and B
~

is depicted in Fig. 5(c). 

Finally, the complement of an IT2 FSs A
~

 can be computed 

as follows [10]: 

 

 
XxxxA

AA
 )](1),(1[1

~
~~ 

 
 (33) 

 

The complement of a ST2 FSs A
~

 can then be obtained as 

follows: 

 
XxAAAAA OIOI  }

~
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~
{}

~
,

~
{

~

 
 (34) 

 

The method for computing the complement an IT2 FS 

provided in (33) can be used to calculate individual 

components in (34). An example of the results of the 

complement operation of ST2 FS A
~

 is depicted in Fig. 5(d). 

D. Type-reduction of ST2 FSs 

Similarly to the basic set theoretic operations, the type-

reduction of ST2 FSs also takes advantage of the well-

established and computationally efficient algorithms of IT2 

FSs. Recall that the interval centroid 
A

C ~ of an IT2 FS A
~

can be 

fully described using its left and right boundaries ],[ rl cc , 

which can be computed as follows [12]: 
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 The switch points L and R can be calculated using one of 

the available algorithms, for example the Enhanced Karnik 

Mendel (EKM) iterative algorithm [24]. 

The centroid of an ST2 FS A
~

 denoted as 
A

C ~ can be 

described using two interval T1 FSs describing the inner and 

the outer centroids I

A
C ~ and O

A
C ~ : 
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The inner and the outer centroid can be computed by 

independently type-reducing the inner and the outer boundary 

sets IA
~

and OA
~

. Hence: 
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 (a) (b) 

    
 (c) (d) 

Fig. 5 Two ST2 FSs A
~

 and B
~

 (a), the results of the set theoretic operations of meet BA
~~

  (b), join BA
~~

  (c) and complement A
~

 (d). 

 

Fig. 6 Centroid of the ST2 FS A
~

 from Fig. 3(b). 

  



 

The outer centroid O

A
C ~ marks the boundary between the 

exclusion region and the shadowed region of the centroid. 

Similarly, the inner centroid I

A
C ~ creates a boundary between 

the shadowed boundary and the core region. The centroid of 

the ST2 FSs is depicted in Fig. 6. 

E. Defuzzification of ST2 FSs 

One of the advantages of ST2 FSs is the improved 

description of uncertainty, when compared to IT2 FSs. This 

fact can be apparent when inspecting the centroid of the ST2 

FS depicted in Fig. 6, which is composed of core, shadow and 

exclusion regions. This more complex centroid structure 

allows for improved modeling of various uncertainties. In this 

paper, three possible defuzzification methods are proposed, 

namely the optimistic, the pessimistic and the weighted 

defuzzification methods. 

The optimistic defuzzification method is optimistic in the 

sense that the output value is optimistically assumed to be 

located in the core region. Hence, the system is optimistic that 

the amount of present uncertainty is low. The output value Oy

produced by the optimistic defuzzifier can be computed as: 
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The pessimistic defuzzification method pessimistically 

assumes the largest amount of uncertainty. Hence, the output 

value Py  is expected to be located anywhere within the 

shadowed and the core region:  
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Finally, the weighted defuzzification computes the output 

value Wy by combining the pessimistic and optimistic 

defuzzification method through a weighted process. Different 

weighting functions could be applied. The trapezoidal 

weighting function )(xw  is proposed here as an example: 
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The defuzzification output can then be computed as 

follows: 
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The trapezoidal weighting function w(x) and the final 

defuzzified value for the weighted defuzzification method are 

depicted in Fig. 6. 

V. EXAMPLES OF SHADOWED TYPE-2 FUZZY SETS 

This Section demonstrates the construction of ST2 FSs from 

a GT2 FSs with different shapes of secondary membership 

functions. An example of ST2 FS induced by a GT2 FS with 

Gaussian secondary membership functions was previously 

shown in Fig. 4. In this Section a trapezoidal secondary 

membership functions are considered. 

 
 (a) (b) (c) (d) 

 
 (e) (f) (g) (h) 

 
 (i) (j) (k) (l) 

Fig. 7 GT2 FS F
~

(a), (e), (i), its induced ST2 FS F
~

(b), (f), (j), the type-reduced centroid 
F

C ~ (c), (g), (k) and the optimized function )
~

(V (d), (h), (l) for GT2 FS  

F
~

with parameter }9.0,5.0,1.0{w . 

  



 

Consider a GT2 FS F
~

with piecewise linear FOU, which 

can be defined in terms of its lower and upper membership 

functions as follows:   
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The GT2 FS F
~

 maintains trapezoidal secondary 

membership functions. The position of the left and the right 

boundary points of the center interval of the trapezoid can be 

adjusted using parameter w as: 
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 Fig. 7(a), 7(e) and 7(i) depict the GT2 FSs F
~

 constructed 

with the value of parameter }9.0,5.0,1.0{w . The three 

induced ST2 FSs F
~

 are depicted in Fig. 7(b), 7(f), 7(j). It can 

be observed how the shapes of the secondary membership 

functions affect the locations of the shadow and the core 

regions. 

 The type-reduced centroids of the ST2 FSs F
~

 are depicted 

in Fig. 7(c), 7(g), 7(k). For a comparison, the T1 centroid of 

the original GT2 FSs F
~

 is depicted by thick line in the 

figures. It can be observed that the location of the shadowed 

region corresponds to the location of the uncertain 

membership grades of the T1 fuzzy centroid around the value 

of 0.5. 

 Finally, Fig. 7(d), 7(h), 7(l) show the value of the 

optimization function )
~

(V . For the construction of the 

depicted figures, 100  -planes were used for the original GT2 

FSs. The optimal threshold values 
~

 for the three different 

values of parameter w were computed as follows 0.1531, 

0.1735 and 0.1939, respectively. 

VI. CONCLUSION 

This paper proposed a novel class of T2 FSs – the 

Shadowed Type-2 Fuzzy Sets. The ST2 FS is a T2 FS with 

secondary membership functions represented as Shadowed 

Sets. The concept of ST2 FSs combines improved uncertainty 

modeling capability of GT2 FSs with the computational 

effectiveness of IT2 FSs. The representation of ST2 FSs was 

introduced together with the basic set-theoretic operations and 

methods for type-reduction and defuzzification. Future work 

will be focused on developing the theory of fuzzy logic 

systems and fuzzy inference based on ST2 FSs and on 

applying to the ST2 FSs to real world problems. 

REFERENCES 

[1] L. A. Zadeh, “The Concept of a Linguistic Variable and its Approximate 

Reasoning - II,” in Information Sciences, No. 8, pp. 301-357, 1975. 

[2] S. Coupland, R. John, “Geometric Type-1 and Type-2 Fuzzy Logic 

Systems,” in IEEE Trans. on Fuzzy Systems, vol. 15, no. 1, pp. 3-15, 

Feb. 2007. 
[3] S. Coupland, R. John, “A Fast Geometric Method for Defuzzification of 

Type-2 Fuzzy Sets,” in IEEE Trans. on Fuzzy Systems, vol. 16, no. 4, pp. 

929-941, Aug. 2008. 
[4] F. Liu, “An efficient centroid type-reduction strategy for general type-2 

fuzzy logic system,” in Information Sciences, vol. 178, pp. 2224-2236, 

May 2008. 

[5] J. M. Mendel, F. Liu, D. Zhai, “ -Plane Representation for Type-2 

Fuzzy Sets: Theory and Applications,” in IEEE Transaction on Fuzzy 
Systems, vol. 17, no. 5, pp. 1189-1207, Oct. 2009. 

[6] Ch. Wagner, H. Hagras, “Toward General Type-2 Fuzzy Logic Systems 

Based on zSlices,” in IEEE Transaction of Fuzzy Systems, vol. 18, no. 4, 
pp. 637-660, Aug. 2010. 

[7] Ch. Wagner, H. Hagras, “Novel Methods for the Design on General 

Type-2 Fuzzy Sets based on Device Characteristics and Linguistic 
Labels Surveys,” in Proc. 2009 IFSA World Congress, Eusflat World 

Conference, Lisbon, Portugal, July 2009. 

[8] Ch. Wagner, H. Hagras, “An approach for the Generation and 
Adaptation of zSlices based General Type-2 Fuzzy Sets from Interval 

Type-2 Fuzzy Sets to Model Agreement with Application to Intelligent 

Environments, ” in Proc. IEEE World Congress on Computational 
Intelligence, pp. 650-657, July 2010. 

[9] O. Linda, M. Manic, "General Type-2 Fuzzy C-Means Algorithm for 

Uncertain Fuzzy Clustering," in IEEE Transaction on Fuzzy Systems, 
accepted for publication, 2012. 

[10] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction 

and New Directions, Prentice-Hall, Upper Saddle River, NJ, 2001. 
[11] J. M. Mendel, R. John, F. Liu, “Interval Type-2 Fuzzy Logic Systems 

Made Simple,” in IEEE Trans. on Fuzzy Systems, vol. 14, no. 6, pp. 808-

821, Dec. 2006. 
[12] N. Karnik, J. M. Mendel, “Centroid of a type-2 fuzzy set,” in 

Information Sciences, vol. 132, pp. 195-220, Feb. 2001. 

[13] H. Hagras, “Type-2 FLCs: A New Generation of Fuzzy Controllers,” in 
IEEE Computational Intelligence Magazine, pp. 30-43, Feb. 2007. 

[14] T. Dereli, A. Baykasoglu, K. Altun, A. Durmusoglu, B. Turksen, 

“Industrial applications of type-2 fuzzy sets and systems: A concise 

review,” in Computers in Industry, vol. 62, issue: 2, pp. 125-137, 2011. 

[15] O. Linda, M. Manic, “Interval Type-2 Fuzzy Voter Design for Fault 
Tolerant Systems,” in Information Sciences, vol. 181, issue: 14, pp. 

2933-2950, July 2011. 

[16] O. Linda, M. Manic, “Uncertainty-Robust Design of Interval Type-2 
Fuzzy Logic Controller for Delta Parallel Robot,” in IEEE Trans. on 

Industrial Informatics, vol. 7, no. 4, pp. 661-671, Nov. 2011. 

[17] W. Pedrycz, “Shadowed Sets: Representing and Processing Fuzzy  
Sets,” in IEEE Trans. on Systems, Man, and Cybernetics – Part B: 

Cybernetics, vol. 28, no. 1, pp. 103-109, Feb. 1998. 

[18] W. Pedrycz, “Interpretation of clusters in the framework of shadowed 
sets,” in Pattern Recognition Letters, vol. 26, issue: 15, pp. 2439-2449, 

Nov. 2005. 

[19] S. Mitra, W. Pedrycz, B. Barman, “Shadowed c-means: Integrating 
fuzzy and rough clustering,” in Pattern Recognition, vol. 43, issue: 4, 

pp. 1282-1291, April 2010. 

[20] W. Pedrycz, “From fuzzy sets to shadowed sets: Interpretation and 
computing,” in International Journal of Intelligent Systems, vol. 24, 

issue: 1, pp. 48-61, Jan. 2009. 

[21] J. Zhou, W. Pedrycz, D. Miao, “Shadowed sets in the characterization of 
rough-fuzzy clustering, “ in Pattern Recognition, vol.: 44, issues: 8, pp. 

1738-1749, Aug. 2011. 

[22] H. Tahayori, A. G. B. Tettamanzi, G. D. Antoni, “Approximated Type-2 
Fuzzy Set Operations,” in Proc. IEEE International Conference in Fuzzy 

Systems, Canada, pp. 1910-1917, Sep. 2006. 

[23] J. M. Mendel, “Comments on “ -Plane Representation for Type-2 

Fuzzy Sets: Theory and Applications”,” in IEEE Trans. on Fuzzy 

Systems, vol. 18, no. 1, pp. 229-230, Feb. 2010. 
[24] D. Wu, J. M. Mendel, “Enhanced Karnik-Mendel Algorithms”, in IEEE 

Trans. on Fuzzy Systems, vol. 17, No. 4, pp. 923-934, Aug. 2009. 

 

  


