



Abstract— Recently, Type-2 Fuzzy Logic Systems (T2 FLSs)

received increased research attention due to their potential to

model and cope with the dynamic uncertainties ubiquitous in

many engineering applications. However, because of the complex

nature and the computational intensity of the inference process,

only the constrained version of T2 FLSs, the Interval T2 FLSs,

were typically used. Fortunately, the very recently introduced

concepts of  -planes and zSlices allow for efficient

representation as well as computationally fast inference process

with General T2 (GT2) FLSs. This paper addresses the type-

reduction phase in GT2 FLSs, using GT2 Fuzzy Sets (FSs)

represented in the -planes framework. The monotone property

of centroids of a set of  -planes is derived and leveraged

towards developing a simple to implement, but fast algorithm for

type-reduction of GT2 FSs – the Monotone Centroid Flow (MCF)

algorithm. When compared to the Centroid Flow (CF) algorithm

previously developed by Zhai and Mendel, the MCF algorithm

features the following advantages: 1) the MCF algorithm

computes numerically identical centroid as the Karnik-Mendel

(KM) iterative algorithms, unlike the approximated centroid

obtained with CF algorithm, 2) the MCF algorithm is faster than

the CF algorithm as well as the independent application of the

KM algorithms, 3) the MCF algorithm is simple to implement,

unlike the CF algorithm, which requires computation of the

derivatives of the centroid, 4) the MCF algorithm completely

eliminates the need to apply the KM iterative procedure to any

 -planes of the GT2 FS. The performance of the algorithm is

presented on benchmark problems and compared to the other

type-reduction techniques available in literature.

Index Terms— General Type-2 Fuzzy Sets, Type-reduction,

Centroid,  -planes Representation

I. INTRODUCTION

YPE-2 Fuzzy Logic Systems (T2 FLSs) become the scope

of work for many researchers in recent years [1] –[5]. The

concept of T2 Fuzzy Sets (FSs) was originally proposed by

Zadeh [6]. Since then, T2 FLSs have been successfully applied

in many engineering areas, demonstrating the ability of T2

FLSs to perform better than T1 FLSs when confronted with

various sources of dynamic uncertainties, frequently

associated with real world engineering problems [7]-[13].

Unlike the T1 FLSs, the T2 FLSs use individual fuzzy sets

Ondrej Linda is with the Computer Science Department, University of

Idaho, Idaho Falls, ID 83402 USA phone: 208-227-3919; e-mail:
olinda@uidaho.edu.

Dr. Milos Manic is with the Computer Science Department, University of

Idaho, Idaho Falls, ID 83402 USA

with membership grades that are themselves fuzzy sets. This

additional dimension of uncertainty in T2 FLSs provides

additional degrees of freedom for modeling and coping with

dynamic input uncertainties when compared to T1 FLS with

equivalent number of fuzzy sets.

 However, the early representations of General T2 (GT2)

FSs, namely the vertical-slice and the wavy-slice

representations, did not provide inference algorithms that were

fast enough for real-time processing. This was primarily due

to the immense computational complexity of the model of

individual fuzzy sets as well as the inference process itself. In

particular, the type-reduction phase required enumeration of

an astronomically large number of embedded fuzzy sets,

impractical even in case of large discretization levels [14].

Due to its complexity the type-reduction used to be one of the

major limiting factors of applications of GT2 FSs and GT2

FLSs. For these reasons, the most typically used variant of T2

FLSs were the Interval T2 (IT2) FLSs, which use constrained

secondary membership functions [15]. The IT2 FLSs offer a

compromise between the computational inexpensiveness of T1

FLSs and the uncertainty modeling capability of GT2 FLSs.

 Fortunately, the very recently introduced representations of

 -planes [16], [17] and zSlices [18] offer a computationally

efficient and viable framework for representing GT2 FSs as

well as for the inferencing process with GT2 FLSs. In both

cases, the  -planes and the zSlices representation theorems

allow for treating of the GT2 FSs as a composition of multiple

IT2 FSs, each raised to the respective level of  or z. Hence,

the operations on GT2 FSs become a multiple application of

the computational efficient arithmetic of IT2 FLSs. It should

be noted here that both representations of  -planes and

zSlices are very similar concepts, developed independently at

the same time [19]. In the sequel of this paper the notation of

the  -planes representation is followed.

 This paper focuses on the type-reduction of GT2 FSs

represented using the  -planes framework. Recently, the

independent type-reduction of each  -plane was suggested in

[16]. Such approach uses the established tools of IT2 FLSs,

namely the Karnik-Mendel (KM) iterative algorithm [14] [20],

and considers the entire GT2 FS as a composition of

independent  -planes. The first authors to recognize the

dependency of neighboring  -planes were Zhai and Mendel

with their Centroid Flow (CF) algorithm [21], [22]. The CF

algorithm starts by applying the KM algorithm to the lowest

 -planes in order to compute the base of the type-reduced

centroid. Next, the derivatives of the secondary membership

Monotone Centroid Flow Algorithm for Type-

Reduction of General Type-2 Fuzzy Sets

Ondrej Linda, Student Member, IEEE, Milos Manic, Senior Member, IEEE

T

functions are used to propagate the centroid of one  -plane to

the next one. Despite the elimination of the need to apply the

iterative KM algorithm to each  -plane independently, which

made the CF algorithm substantially faster, several

deficiencies of this approach must be recognized: 1) the CF

algorithm provides only an approximate result when compared

to the baseline centroid computed using the KM algorithm, 2)

the CF algorithm requires computation of the derivatives of all

secondary membership functions, which might be considered

as potential computational bottleneck.

 This paper proposes the Monotone Centroid Flow (MCF)

algorithm for computation of the centroid of GT2 FSs

represented by  -planes. The algorithm is based on the

monotone property of the  -plane representation and the

centroid of the GT2 FS. The primary contributions of the

presented MCF algorithm are as follows: 1) the MCF

algorithm computes numerically identical centroid as the KM

algorithms, unlike the approximated centroid obtained with

the CF algorithm, 2) the MCF algorithm is faster than both the

CF algorithm and the independent application of the KM or

the Enhanced KM (EKM) algorithms, 3) the MCF algorithm is

simple to implement, not requiring computation of the

derivatives of the centroid and secondary membership

functions, 4) the MCF algorithm completely eliminates the

need to apply the KM iterative procedure to any  -planes of

the GT2 FS. The accuracy and the computational time of MCF

algorithm was demonstrated on several benchmark problems

and compared to the CF algorithm and the independent

application of the KM and the EKM algorithms.

 The rest of the paper is organized as follows. Section II

discusses the background of GT2 FSs and their  -plane

representation. The type-reduction of GT2 FSs is reviewed in

detail in Section III. Section IV first derives the monotone

property of the  -plane representation and then uses this

property to introduce the MCF algorithm. The experimental

results and comparisons are presented in Section V. Finally,

the paper is concluded in Section VI.

II. GENERAL TYPE-2 FUZZY SETS

 This section provides background overview of GT2 FSs and

the fundamentals of their  -plane representation.

A. General Type-2 Fuzzy Sets

A GT2 FS A
~

 can be expressed on the universe of discourse

X using its Type-2 fuzzy membership function),(~ ux
A

 , where

Xx and
xJu [1]:

   


Xx xJu

xA
JuxuxA]1,0[),(/),(

~
~ (1)

 Here, variable x and u are the primary and the secondary

variables and Jx denotes the support of the secondary

membership function also called the primary membership of x.

Operator   denotes union over all possible values of x and

u, and]1,0[),(~ ux
A

 . Two representations of GT2 FSs are

commonly adopted; the vertical-slice representation and the

wavy-slice representations.

 First, the vertical-slice representation is considered. By

instantiating a specific value for xx  , a vertical slice

),(~ ux
A

 of the fuzzy membership function),(~ ux
A

 can be

obtained. This vertical slice defines a secondary membership

function),(~ uxx
A

 for Xx  and]1,0[ xJu :

 


 
xJu

xxAA
Juufxuxx]1,0[/)()(),(~~  (2)

 Here,)(uf x
denotes the secondary grade or the amplitude of

the secondary membership function and]1,0[)( uf x
.

Assuming that the domain of primary variable x is discretized

using N samples, the GT2 FS A
~

 can be represented as a

composition of all its vertical slices:

i

N

i ixJu
ix xuufA  














1

/)(
~

 (3)

 Next, consider the wavy-slice representation. The GT2 FS A
~

can be also constructed as a composition of embedded FSs eA
~

.

Again, for a discrete universe of discourse with N elements,

the embedded FS eA
~

 can be described as:

  ]1,0[/)(
~

1




UJxfA
ixi

N

i

iiiixe  (4)

 According to the Mendel and John representation theorem

[23], the GT2 FS A
~

can be described as a union of all of its n

embedded T2 FSs:

 
n

j

j

eAA
1

~~



 (5)

 For the discretized primary domain X, the centroid
A

C ~ of a

GT2 FS A
~

 can be calculated using the Extension Principle

and by enumerating all of the embedded fuzzy sets [6]:

  












N

i

i

N

i

ii

NxJN
NNxx

ixJ
A

x

ffC

1

1

11
1

~)()(








 (6)

 Here, every possible combination of variables
N ,...,1

forms an embedded FS, which has a secondary grade of

)()(11 NNxx ff   . Operator  is the specific t-norm used

(e.g. the minimum operator).

 Assuming that each primary membership
ixJ was

discretized into Mi points, the number of embedded fuzzy sets

that have to be enumerated in (6) is  


N

i
iMn

1
. Already for

small number of discretization steps, n reaches inadmissibly

large values.

 The crisp output value y can be obtained by applying one of

the available defuzzification methods to the type-reduced

centroid
A

C ~ . As an example, the centroid defuzzifier is

commonly used [1]:








n

i

iA

n

i

iAi

xC

xCx

y

1

~

1

~

)(

)(

 (7)

B.  -Plane Representation for GT2 Fuzzy Sets

 The following notation for the  -plane representation was

adopted from [17], [21]. The  -plane representation was

originally developed by several authors [16], [18], [24]. It

constitutes a horizontal slice representation for GT2 FSs.

 An  -plane A
~

 of a GT2 Fs A
~

 can be defined as the

union of all primary memberships of A
~

 with secondary grades

that are greater than or equal to :

    


Xx xJu

x ufuxA )(|),(
~

 (8)

 An  -cut of the secondary membership function)(~ x
A



can be denoted as)|(~ xS
A

 and expressed as:

  )|(),|()|(~  xsxsxS RLA
 (9)

 Hence, an  -plane A
~

can be seen as a composition of all

individual  -cuts of all of its secondary membership

functions:

    











Xx xRsxLsuXx
A

xuxSA
)|(),|(

~)|(
~


  (10)

 It is apparent that the well known Footprint of Uncertainty

(FOU) of the GT2 FS A
~

 can now be denoted as:

 0

~
)

~
(AAFOU  (11)

 Each  -plane
 A

~
is bounded from above by its upper

membership function)|(~  x
A

and from below by its lower

membership function)|(~  x
A

. Using the  -cuts boundaries

of each vertical slice (9), these bounds can be expressed as:

  


Xx

RA
xsx)|()|(~  (12)

  


Xx

LA
xsx)|()|(~  (13)

 By raising the  -plane A
~

to the level of  , a special IT2

FS is created. This FS was named  -level T2 FS),(~ uxR
A

in

[16], [19] and expressed as follows:

 xA
JuXxAuxR  ,,

~
/),(~ 

 (14)

 Finally, according to Liu’s representation theorem, the GT2

FS A
~

 can be constructed as a composition of all of its

individual  -level T2 FSs [16]:

 


1,0

~~






 AA (15)

 It should be noted here, that the  sign denotes the union

set-theoretic operations, which for each point computes the

maximum membership grade for all  -planes. Furthermore,

Liu used the  -plane representation theorem to express the

centroid)(~ xC
A

of a GT2 FS A
~

 as a composition of individual

centroids)(~ xC
A

 of the respective  -level T2 FS),(~ uxR
A

:

 


1,0

~~)()(






 xCxC

AA
 (16)

 Because each  -level T2 FS),(~ uxR
A

 is an interval-valued

set, centroid)(~ xC
A

 will become an interval set completely

determined by its left and right boundaries

)]|
~

(),|
~

([)(~ 


AcAcxC rlA
 . Hence, it follows that:

 


1,0

~)]|
~

(),|
~

([)(





 AcAcxC rlA
 (17)

 (a) (b) (c)

Fig. 1 General T2 fuzzy set A
~

(a), its IT2 variant 2

~
ITA (b) and its  -plane representation (c). (The shade of grade illustratively depicts the distribution of

secondary grades).

 Equation (16) showed a new way for computing the

centroid)(~ xC
A

of a

GT2 FS A

~
via type-reducing each  -

plane A
~

and then merging the results together.

 The different discussed variants of GT2 FSs are depicted in

Fig. 1.

III. TYPE-REDUCTION OF GENERAL TYPE-2 FUZZY SETS

 This section provides an overview of type-reduction

techniques for GT2 FSs represented using the  -plane

framework.

A. Karnik Mendel Iterative Algorithms

Initially, the GT2 FS represented in the -plane framework

was type-reduced using entirely independent applications of

the Karnik-Mendel (KM) iterative algorithms applied to each

 -plane [16], [17], [18]. Recall that for an IT2 FS A
~

, the

KM algorithm iteratively converges towards the left and right

switch points L

and R, which are then used to compute the left

and right centroid boundary points)
~

(Acl and)
~

(Acr as follows

[20]:














N

Li
iA

L

i
iA

N

Li
iAi

L

i
iAi

l

xx

xxxx
Ac

1
~

1
~

1
~

1
~

)()(

)()(
)

~
(




 (18)














N

Ri
iA

R

i
iA

N

Ri
iAi

R

i
iAi

r

xx

xxxx
Ac

1
~

1
~

1
~

1
~

)()(

)()(
)

~
(




 (19)

The details of the KM iterative algorithm are presented in

Appendix A.

Assume that a GT2 FS A
~

is represented using k  -planes,

where 2k . The algorithm for computing the centroid
A

C ~ can

be described in several steps as follows [16], [17]:

Step 1: For each  -plane A
~

create the  -level T2 FS

),(~ uxR
A

.

Step 2: Compute the boundary points)|
~

(Acl and)|
~

(Acr

of centroid
A

C ~ using the KM algorithm (details in Appendix

A).

Step 3: Repeat steps 2 and 1 for all k  -planes of A
~

.

Step 4: Construct the final centroid
A

C ~ using (16).

Following the computational analysis of the KM iterative

algorithm in Appendix A, the above method for type-reduction

of GT2 FS A
~

requires time  NknO , where N is the number of

discretization steps of the primary domain and n is the number

of iterations required by the KM algorithm.

B. Enhanced Karnik Mendel Iterative Algorithm

In an effort to speed up the computational time of the KM

algorithm, the Enhanced KM (EKM) algorithm was proposed

in [25]. The major differences were as follows: 1) improved

initialization of the switch points L and R, 2) recursive update

of the computed centroid boundary, and 3) improved

convergence test.

The EKM algorithm was applied to independent type-

reduction of each  -plane in [21], [22], leading to a faster

computation of the centroid in the presented implementation.

C. Centroid Flow Algorithm

The previous KM and EKM based approaches used

completely independent type-reduction of each  -plane.

There, the entire GT2 FS was considered as a composition of

independent  -level T2 FSs),(~ uxR
A

. The first algorithm to

leverage the interconnected structure of the  -level T2 FSs

was the Centroid Flow (CF) algorithm developed by Zhai and

Mendel [21], [22].

The CF algorithm starts by applying the KM/EKM iterative

algorithm to the lowest  -plane
0

~
A

in order to compute the

base of the type-reduced centroid. Next, the derivatives of the

secondary membership functions are used to propagate the

centroid coordinate from one  -plane to the next. The

fundamental idea of the CF algorithm is to use the  -planes

connection equations, rather than independently type-reducing

each -plane [21], [22]:

         ||| xsgTxsTxs LsLsL
 (20)

         ||| xshTxsTxs RsRsR
 (21)

Here,
ST denotes the difference of the value of  between

two neighboring  -planes and)(xg 

and)(xh

are the

derivatives of the left and the right shoulders of the secondary

membership function of a vertical slice at coordinate x.

The CF algorithm requires only a single application of the

iterative KM/EKM algorithm applied to the base  -plane 0

~
A ,

which can be computed in time)(NnO . The centroid of the

subsequent  -planes is then computed using the previous

location and the centroid derivative following (17) and (18).

The computation of the centroid derivative requires  NO steps

for each  -plane. Thus, the computational time of the CF

algorithm is  kNNnO  .

A simplified version of the CF algorithm can be applied to

GT2 FSs with triangular or trapezoidal secondary membership

functions. Here, the constant derivative of the secondary

functions at each vertical slice can be pre-computed saving

computation of several integrals at each  -plane.

D. Other Applicable Type-reduction Techniques

A GT2 FS represented in the -plane framework can be

viewed as a composition of many individual IT2 FSs. Hence,

in general any algorithm for type-reduction of IT2 FSs can be

also used to compute the centroid of the GT2 FS. In the

available literature, the authors are aware of the work of

Greenfield who used the sampling defuzzifier for type-

reduction of a GT2 FS represented in the -plane framework

[26], [27]. However, in [27] only the defuzzified value is

presented, without commenting on the properties of the

calculated centroid. Other applicable type-reduction

techniques are for example the Collapsing defuzzifier [28].

IV. MONOTONE CENTROID FLOW ALGORITHM

 In this section the monotone property of the  -plane

representation of GT2 FS and the type-reduced centroid is first

derived. Next, the MCF algorithm is introduced.

 As pointed out by one of the reviewers: “…centroid of

general type-2 fuzzy set is ‘hot’ right now.” As it sometimes

happens with “hot” topics, different research groups might

arrive at similar results independently. Some of the ideas

behind the introduced MCF algorithm have been

independently developed by Yeh et al. [29]. However, there

are several significant differences between the Enhanced

Type-Reduction algorithm proposed by Yeh et al. and the

MCF algorithm. These differences are summarized at the end

of this section.

A. Monotonicity of  - planes

 Initially, the following assumption is made: at any value of

primary variable x, the vertical slice)(~ x
A

 is a convex T1 FS

defined by the secondary membership function)(uf x
 with the

following properties:

 
 
 





















Otherwise

uhxsxsuuh

xsxsu

ugxsxsuug

uf
xRRx

RL

xLLx

x

0

]1,0[)(,)0|(),1|()(

)1|(),1|(1

]1,0[)(,)1|(),0|()(

)(

 (22)

where)(ug x
and)(uhx

are monotonically non-decreasing and

monotonically non-increasing functions in their respective

domains.

 This assumption on the nature of secondary membership

functions might seem as a limiting factor for the applicability

of the proposed algorithm. Examples of convex T1 FS FSs are

triangular, trapezoidal and Gaussian T1 FSs, which are the

most commonly used types of secondary membership

functions for GT2 FSs. Karnik and Mendel proved in [30] that

under the maximum t-conorm and the minimum t-norm, the

set-theoretic operations join and meet on GT2 FSs with

convex and normal secondary membership functions also

result in GT2 FSs with convex and normal secondary

membership functions. Because maximum t-conorm and

minimum t-norm are commonly used in fuzzy logic system,

the proposed MCF algorithm is widely applicable.

 Property 1: Containment of  -planes:

 21

~~
 AA  if

21   (23)

 This containment property was stated without a proof by

Liu in [16] and it also appeared in [17], [31]. For completeness

sake the proof of Property 1 is given in Appendix B.

 Property 2: Containment of Centroids:

)()(

2

~

1

~ xCxC
AA 

 if
21  

 (24)

 Property 2 appeared as an observation without a proof in

[17]. For completeness sake, its proof is included in Appendix

B.

Corollary 1: Monotonicity of Centroids:

)|

~
()|

~
(

)|
~

()|
~

(

21

21





AcAc

AcAc

rr

ll





 if
21   (25)

 Corollary 1 is a direct consequence of Property 2. For

completeness sake its proof is presented in Appendix B.

B. Monotone Centroid Flow Algorithm

 The MCF algorithm leverages Corollary 1 to propagate the

boundary values)]|
~

(),|
~

([iril AcAc  of centroid
i

A
C


~ to the

type-reduction process of a nearby  -plane
j

A

~
. Hence,

similarly to the CF algorithm, the type-reduction of each  -

plane does not run independently, but rather proceeds in a

sequential manner taking advantage of the previously

computed results.

1) Initialization

 Unlike the CF algorithm that uses the approximated

gradients of the centroid [21], [22], the MCF algorithm utilizes

a monotone iteration through the discretized domain of the

primary variable x. However, an initial starting point for the

iteration procedure must be first provided. This initial point is

computed at a selected starting  -plane. For instance, the CF

algorithm begins at 0

~
A and thus starts by applying the

KM/EKM algorithm to the actual)
~

(AFOU [21]. The proposed

MCF algorithm uses a different approach starting its way

down from the highest  -plane 1

~
A .

 Recall that a core)(Acore of a T1 fuzzy set A is described as

a set of elements of X with a membership degree of 1. For the

secondary membership function)(uf x
, the core can be

defined as [32]:

  1)(|))(( ufJuufcore xxx
 (26)

 For T1 FSs such as triangular fuzzy sets, the core is

composed of a single point at the position of the apex of the

triangle. For T1 FSs such as trapezoidal fuzzy sets, the core

becomes an interval bounded by the coordinates of the apex of

the trapezoid.

 When observing the properties of the highest  -plane 1

~
A

for an arbitrary secondary membership functions)(uf x
, two

cases can be encountered. In the first case, the highest  -

plane 1

~
A reduces to a single line. This can happen when the

core of all vertical slice of fuzzy set A
~

is a singleton (e.g.

when all)(uf x
 are triangular). Such fuzzy set A

~
 fulfills the

following condition:

)1|()1|(~~ xxXx
AA

  (27)

 In the second case, the highest  -plane
1

~
A is an actual

plane, which might only locally reduce to a line. This can

happen when there exists a vertical slice of fuzzy set A
~

 with

an interval core (e.g. when some)(uf x
 are trapezoidal). For

such GT2 FS A
~

, the following condition holds:

)1|()1|(~~ xxXx
AA

  (28)

 The initial point for the MCF algorithm is set to be the

defuzzified value of the principal membership function of the

GT2 fuzzy set A
~

, denoted as *A . In the first case (e.g. all

)(uf x
 are triangular), the principal membership function is

simply equal to the highest  -plane 1

~
A . In the second case

(e.g. when some)(uf x
 are trapezoidal), the principal

membership function can be computed as the average of the

lower and the upper boundary membership functions of to the

highest  -plane 1

~
A . In summary:
































)1|()1|(

2

)1|()1|(

)1|()1|(

)1|()1|()(
~

)(

~~

~~

~~

~~1

*

xxif

xx

xxif

xxxA

xA

AA

AA

AA

AA









 (29)

Because the principal membership function *A is a T1 FS, it

can be defuzzified using the standard centroid defuzzifier as

follows [1]:








N

i

iA

N

i

iAi

A

x

xx

C

1

*

1

*

*

)(

)(





 (30)

 Here, N denotes the number of discretized steps in the

primary domain. The defuzzified value *A
C of the principal

membership function *A defines the initial point for the MCF

algorithm. Note, that when the highest  -plane 1

~
A does not

reduce to a single line, then
1* AA

CC  . Therefore the value of

*A
C

can only be used to initialize the monotone search, which

must first compute the accurate centroid of top  -plane 1

~
A .

Theorem 1: Initialization of the MCF algorithm:

 *)|
~

(
Al CAc  and *)|

~
(

Ar CAc ]1,0[

 (31)

 The proof of Theorem 1 is provided in Appendix B.

2) Incremental Step

 Assume that the centroid
tA

C ~ for an  -plane
t

A

~
was

computed as)]|
~

(),|
~

([trtl AcAc  . This result was obtained by

calculating the left and right switching points)|
~

(tAL  and

)|
~

(tAR  . The estimated boundaries)]|
~

(ˆ),|
~

(ˆ[11  trtl AcAc  of

the centroid of the neighboring  -plane
1

~
t

A can be

computed using the switch points from the preceding -plane

t
A

~
. Hence, the auxiliary variables L̂ and R̂ are initialized to

the values of switch points)|
~

(tAL  and)|
~

(tAR  and the

estimated centroid is computed as follows:

 


























N

Li

tiA

L

i

tiA

N

Li

tiAi

L

i

tiAi

tl

xx

xxxx

Ac

1ˆ

1~

ˆ

1

1~

1ˆ

1~

ˆ

1

1~

1

)|()|(

)|()|(

)|
~

(ˆ





 (32)

 


























N

Ri

tiA

R

i

tiA

N

Ri

tiAi

R

i

tiAi

tr

xx

xxxx

Ac

1ˆ

1~

ˆ

1

1~

1ˆ

1~

ˆ

1

1~

1

)|()|(

)|()|(

)|
~

(ˆ





 (33)

 Denote the numerator and the denumerator in (32) and (33)

as
L

E ˆ,1
,

L
E ˆ,2

 and
R

D ˆ,1
,

R
D ˆ,2

, respectively. An elementary

operations of the MCF algorithm are monotone decrement and

increment of the auxiliary variables L̂ and R̂ and the

subsequent update of the centroid estimate

)]|
~

(ˆ),|
~

(ˆ[11  trtl AcAc  .

 Theorem 2: Recursive update:

Given the values of
L

E ˆ,1
,

L
E ˆ,2

 and
R

D ˆ,1
,

R
D ˆ,2

 the updated

values for switch points 1ˆ L and 1ˆ R can be computed

recursively as follows:

))|()|((1ˆ~1ˆ~ˆˆ,11ˆ,1 
 tLAtLALLL

xxxEE  (34)

)|()|(1ˆ~1ˆ~ˆ,21ˆ,2 
 tLAtLALL

xxEE  (35)

))|()|((1ˆ~1ˆ~ˆˆ,11ˆ,1 
 tRAtRARRR

xxxDD  (36)

)|()|(1ˆ~1ˆ~ˆ,21ˆ,2 
 tRAtRARR

xxDD  (37)

 The proof of Theorem 2 is provided in Appendix B. Note

that this idea of incrementally stepping through the domain of

primary variable x is similar to the idea of the IASCO

algorithm presented by Duran et al [33]. However, the IASCO

algorithm was performing an exhaustive search for both

switch points in the primary domain starting from its lower

end-point and was only applied to IT2 FSs. The MCF

algorithm uses the incremental stepping procedure through the

primary domain of the GT2 FS iterating from the initial

starting point outwards and descending from the top  -plane

to the lowest one.

3) The MCF Algorithm

 The MCF algorithm starts with the defuzzification of the

principal membership function of the GT2 FS A
~

. The

algorithm further proceeds sequentially through individual  -

planes in a top-down direction. The switch points from one -

plane are used to compute the estimate of the centroids of the

subsequent  -plane. In this manner, the left and right switch

points are monotonically decremented and incremented until

the lowest  -plane
0

~
A is reached. The MCF algorithm can

be described in several steps as follows:

Input: A GT2 FS A
~

, decomposed into 2k  -planes. The

domain of the primary variable x is discretized into N samples.

Output: T1 FS defining the centroid)(~ xC
A

represented as a

set of coordinates pairs)]|
~

(),|
~

([ AcAc rl for each

considered value of  .

Step 1: Compute the principal membership function)(* xA

using (29).

Step 2: Calculate the centroid *A
C of the primary membership

function (30). Initialize the global switch points L̂ and R̂ as

follows:

    **
ˆ,ˆ

AA
CRCL  (38)

where operators   and   compute the discretized index of

the value *A
C rounded to the nearest value of the discretized

variable x in the increasing and in the decreasing direction,

respectively.

Step 3: Repeat for all  -planes starting from the highest  -

plane
k

A

~
(1

~
A) until the lowest  -plane

0

~
A (0

~
A) is reached.

Step 3.1: Compute values
L

E ˆ,1
,

L
E ˆ,2

 and
R

D ˆ,1
,

R
D ˆ,2

 and

 calculate the estimated centroid)]|
~

(ˆ),|
~

(ˆ[11  trtl AcAc  of

  -planes
1

~
t

A for the global switch points L̂ and R̂ using

(32) and (33).

Step 3.2: Pre-compute the location of the estimated left

 centroid boundary)|
~

(ˆ
1tl Ac  for a switch point 1ˆ L as

 follows. Recursively calculate the values of
1ˆ,1 L

E ,
1ˆ,2 L

E

using (34) and (35). Compute the estimated left centroid

boundary as:

1ˆ,2

1ˆ,1






L

L

l
E

E
c (39)

Note that (39) resembles (32) with the switch point 1ˆ L ,

where the numerator and the denumerator were recursively

pre-computed according to (34) and (35).

 Step 3.3: If)|
~

(ˆ
1 tll Acc  , set ltl cAc )|

~
(ˆ

1 , decrement

 the global switch point 1ˆˆ  LL and go back to Step 3.2.

 Else, store the estimated left centroid boundary as the true

 centroid boundary)|
~

(ˆ)|
~

(11   tltl AcAc  and proceed to

 Step 3.4.

Step 3.4: Pre-compute the location of the estimated right

 centroid boundary)|
~

(ˆ
1tr Ac  for a switch point 1ˆ R as

 follows. Recursively calculate the values
1ˆ,1 R

D ,
1ˆ,2 R

D

using (36) and (37). Compute the estimated right centroid

boundary as:

1ˆ,2

1ˆ,1






R

R

r
D

D
c (40)

Note that (40) resembles (33) with the switch point 1ˆ R ,

where the numerator and the denumerator were recursively

pre-computed using (36) and (37).

Step 3.5: If)|
~

(ˆ
1 trr Acc  , set rtr cAc )|

~
(ˆ

1 , increment

the global switch point 1ˆˆ  RR and go back to Step 3.4:

Else, store the estimated right centroid boundary as the true

centroid boundary)|
~

(ˆ)|
~

(11   trtr AcAc  and proceed to

the next  -planes below.

An illustration of the MCF algorithm for a GT2 FSs with

two  -planes is depicted in Fig. 2. First, the search for the

left centroid boundary)|
~

(1Acl of  -plane
1

~
A is illustrated

in Fig. 2(a). The label Init marks the initial position of the

global switch point L̂ based on the center of gravity *A
C of the

principal membership function *A . Next, the global switch

point L̂ is decremented two times in Step 1 and Step 2

(denoted as L̂) together with the recursive computation of

the estimated left centroid boundary according to (39). Note

that calculation of the estimated left centroid boundary in Step

2 is needed in order to confirm that the calculated left

boundary)|
~

(1Acl is the correct result (Step 3.3).

Subsequently, the MCF algorithm proceeds to the neighboring

 -plane
2

~
A seeking the new left centroid boundary)|

~
(2Acl

(Fig. 2(c)). Here, the value of the final switch point from  -

plane
1

~
A)|

~
(1AL is used to initialize the iterative stepping

procedure on  -plane
2

~
A in Step 3. Next, two more

decrements of the global left switch points L̂ in Step 4 and

Step 5 are performed to find the left centroid boundary

)|
~

(2Acl . The MCF algorithm proceeds in a similar manner

in case of the right centroid boundary incrementing the right

global switch point R̂ as shown in Fig. 2(b) and 2(d).

Theorem 3: Stopping of the MCF algorithm:

 The MCF stops after at most N updates of either global

switching points L̂ and R̂ .

Proof: Both global switching points L̂ and R̂ can only take on

values from the discretized primary domain  
Nxx ,...,1

.

Further, variables L̂ and R̂ can be only monotonically

decremented or incremented in Step 3.3 and Step 3.5,

respectively. Hence, they can be updated at most N times,

which completes the proof.

C. Computational Complexity

 One of the interesting consequences of the monotone

property of the  -plane representation of GT2 FSs is that

individual  -planes do not have to be separately type-

reduced using the KM/EKM algorithms. Rather, they are

processed in a sequential manner. Furthermore, because of the

initialization of the monotone iterative stepping procedure

using the principal membership function)(* xA and proceeding

in a top-down manner, the KM/EKM algorithms have been

completely eliminated from the type-reduction process using

the MCF algorithm.

 The calculation of the primary membership function)(* xA

and its subsequent defuzzification in Step 1 and 2 requires 2N

steps.

 The main body of the algorithm will be repeated k times for

each  -plane. At each  -plane the most computational

effort is required for computing the values of
L

E ˆ,1
,

L
E ˆ,2

 and

R
D ˆ,1

,
R

D ˆ,2
 used to calculate the estimated centroid

boundaries)|
~

(ˆ
1tl Ac  and)|

~
(ˆ

1tr Ac  . This phase requires 2N

steps.

 For each  -plane, at least one centroid location for

switching points 1ˆ L and 1ˆ R will be computed in Steps 3.3

and 3.4. Theoretically, either of the sub-loops between Step

3.2 - 3.3 and Step 3.4 - 3.5 can be evaluated up to N times for

a single  -plane. However, according to Theorem 2 there

can be at most N updates of either global switch points L̂ and

R̂ , resulting in an overall at most N pre-computed centroid

positions in Steps 3.3 and 3.4.

 In summary, the computational complexity of the MCF

algorithm can be described as:

  NkNkNO  22 (41)

 This can be further simplified into:

  ),max(kNNkO  (42)

 The second term in (42) was not excluded despite its

apparent lower asymptotical order since it might play a

significant role during performance comparison against other

algorithms such as the independent application of KM/EKM

algorithms or the CF algorithm.

 (a) (b)

 (c) (d)

Fig. 2 Schematic view of the monotone iteration of the left switch point L̂ at
1

~
A and

2

~
A (a), (c) and of the right switch point R̂ at

1

~
A and

2

~
A (b), (d).

 As stated at the beginning of this Section, the Enhanced

Type-Reduction (ETR) algorithm independently developed by

Yeh et al. features some similarities with the presented MCF

algorithm [29]. Both algorithms propose to start the type-

reduction process from the highest  -plane 1

~
A and proceed in

a top-down fashion. Also, both approaches are based on the

idea to initialize the search for switch points at current  -

plane with the switch points computed for the previous  -

plane. However, the ETR algorithm uses the original KM

algorithm to obtain the initial centroid at the highest  -plane

1

~
A and then also uses the KM algorithm to iteratively compute

the switch points at each consecutive  -plane with the new

initial values. Hence, the ETR algorithm still relies on the

iterative KM algorithms and does not take full advantage of

the monotone property of centroid as derived in this paper. On

the other hand, the MCF algorithm is in its nature more similar

to the IASCO algorithm, which monotonically iterates through

the domain from the initial starting value until the final

centroid is obtained [33]. In summary, the MCF algorithm

starts from the defuzzified value of the principal membership

function of the highest  -plane 1

~
A and then alternates

between monotonically traversing outwards through the

domain of the discretized primary variable and descending to

the consecutive  -plane when the current switch points are

computed.

V. EXPERIMENTAL RESULTS

This section presents the experimental testing of the

proposed MCF algorithm. The MCF algorithm was compared

to the KM/EKM algorithms and the CF algorithm in terms of

both accuracy and computational time.

For the purpose of experimental testing two benchmark GT2

FSs commonly used in literature were implemented [16], [17].

Fuzzy set F
~

 has a piece-wise linear FOU, which can be

described in terms of the lower and upper membership

functions as follows:

 
 

 
 































































8,2,0

8,6,5/216

6,2,5/2

,

7,1,0

7,3,4/7

3,1,1

max)(~

x

xx

xx

x

xx

xx

x
F



(43)

 
 

 
 































































8,3,0

8,5,9/8

5,3,6/3

,

7,1,0

7,4,6/7

4,1,6/1

max)(~

x

xx

xx

x

xx

xx

x
F



(44)

Fuzzy set G
~

 is composed of two Gaussian membership

functions defined as follows:

   























 












 


8

6
exp8.0,

8

3
expmax)(

22

~

xx
x

G
 (45)

   























 












 


2

6
exp4.0,

2

3
exp5.0max)(

22

~

xx
x

G


(46)

Fuzzy set F
~

 maintains trapezoidal secondary membership

functions. The position of the left and the right boundary

points of the core of the trapezoid can be adjusted using

parameter w [16], [17]:

))()((6.0)()(~~~ xxwxxcore
FFFL   (47)

  ))()((16.0)()(~~~ xxwxxcore
FFFR   (48)

The secondary membership function of fuzzy set G
~

was

created using the non-linear spline-based curve with a single-

point core computed as [16], [17]:

))()(()()(~~~ xxwxxcore
GGG

  (49)

Fuzzy sets F
~

and G
~

represented using 5  -planes are

 (a) (b)

Fig. 3 Benchmark GT2 fuzzy sets F
~

(a) and G
~

(b) represented using 5  -planes. The bold-faced line in (b) depicts the top  -plane
1

~
G .

shown in Fig. 3. Note that the  -plane
1

~
G is only depicted as

a line in Fig. 3(b).

A. Accuracy Testing

First, the KM
1
, CF and the MCF algorithm were compared

in terms of accuracy. Fig. 4 depicts the centroid of fuzzy sets

F
~

and G
~

 with secondary membership functions constructed

with  9.0,1.0w using the KM (solid line) and the MCF

(circles) algorithms. It can be observed that the MCF and the

KM algorithms compute numerically identical solution.

Next, Fig. 5 compares the centroid computed using the

MCF (solid line) and the CF (circles) algorithms. Fig. 5(a)-(d)

clearly demonstrate the approximation of the centroid obtained

with the CF algorithm for values of k=5 and N=20. N=20 is

equivalent to sampling rate of 0.5. Fig. 5(e)-(h) show the

1 Only the KM is considered since the EKM algorithm is known to produce

numerically identical results.

computed centroid with an increased number of  -planes. It

can be observed that the accuracy of the CF algorithm does

not improve as more  -planes are added for the considered

sampling rate of 0.5. Fig. 5(i)-(l) show a substantial

improvement of the accuracy of the CF algorithm when

increased number of discretized samples is applied to the

primary domain. In [22], it was demonstrated that when small

sampling rate of 0.01 (N=1000) was used, the results of the CF

algorithm could be considered approximately the same when

compared to the result of the baseline KM algorithm. The

proposed MCF algorithm does not impose any such limits on

the sampling rate and computes numerically identical solution

when compared to the KM algorithm for all values of k or N.

In addition to the plotted results, Table I numerically

quantifies the differences between CF and MCF algorithms.

First, the calculated centroids for the highest  -planes
1

~
F and

1

~
G are compared. It can be seen, that the calculated relative

error of the CF algorithm is greater for the fuzzy set G
~

, which

 (a) (b) (c) (d)

 (e) (f) (g) (h)

 (i) (j) (k) (l)

Fig. 5 The centroid calculated using the CF algorithm (circles) and using the MCF algorithm (solid line) with N=20, k=5 (a)-(d), N=20, k=20 (e)-(h) and N=100,

k=5 (i)-(l). In columns from left to right the original GT2 fuzzy set was F
~

with w=0.1, F
~

with w=0.9, G
~

with w=0.1 and G
~

with w=0.9.

 (a) (b) (c) (d)

Fig. 4 The centroid calculated using the MCF algorithm (circles) and using the independent application of the KM algorithm (solid line) with N=20, k=5 for fuzzy

set F
~

with w=0.1 (a), F
~

with w=0.9 (b), G
~

with w=0.1 (c) and G
~

with w=0.9 (d).

maintains non-linear secondary membership functions.

Furthermore, the centroid calculated with the CF algorithm

has an interval core, despite all secondary membership

functions having a single-point core. This result contradicts

some of the conclusions about the centroid of GT2 FSs drawn

in [17], where it is stated that when all secondary membership

functions are triangles then the centroid will be triangle-

looking with its apex will be a single point. In addition, this

observation might lead to incorrect conclusions, should the

geometry of the centroid be interpreted as a measure of output

uncertainty for an associated GT2 FLS.

Next, two measures for comparing the type-reduced

centroids have been calculated and reported in Table I. First,

the distance measure
A

d ~ was used, which calculates the

difference between the defuzzified values of both centroids

[22]:

)()(~~~
MCF

A

CF

AA
CcCcd  (50)

Here,)(~
CF

A
Cc and)(~

MCF

A
Cc denote the center of gravity of the

centroids computed by the CF and MCF algorithms

respectively. Second, the dissimilarity measure was computed,

which expresses the difference in shapes of both centroids.

The dissimilarity measure
A

s ~ was calculated based on the

discrete version of Jaccard similarity measure for T1 FSs [34]:








N

i

i

MCF

Ai

CF

A

N

i

i

MCF

Ai

CF

A

A

xCxC

xCxC

s

1

~~

1

~~

~

))(),(max(

))(),(min(

1 (51)

Note that  1,0~ 
A

s and that the higher its value the more

dissimilar both centroids are.

The calculated values of the distance measure
A

d ~ presented

in Table I reveals that the there is only very small difference

between the final defuzzified values of the centroids computed

by the CF and the MCF algorithms. However, the dissimilarity

measure
A

s ~ shows that there is a substantial difference

between the shapes of both centroids, mainly for smaller

number of  -planes k=5 and higher sampling rate of 0.5.

In summary, it can be concluded that the MCF algorithm

calculates numerically identical geometry of the centroid of

the GT2 FS when compared to the baseline KM algorithm,

while the CF algorithm only calculates an approximate result.

B. Computational Time

Next, the KM, EKM, CF and MCF algorithms have been

compared in terms of computational speed. In order to achieve

maximally objective comparison, all algorithms were

implemented in C++ programming language
2
. The authors

believe that C++ provides more robust environment for

unbiased computation time comparison as opposed to the

highly implementation-sensitive Matlab environment. The

algorithms have been executed on Dell Precision M4500, Intel

Core i7 CPU Q720@1.60 GHz with 8.00 GB RAM and

running Windows 7.

The computational time was measured for both fuzzy sets

F
~

and G
~

 first with varying number k of  -planes and next

with varying number N of discretized steps in the primary

domain of variable x. The fuzzy sets F
~

and G
~

 were

constructed using  0.1,75.0,5.0,25.0,0.0w . Each experiment

was repeated 1,000 times and the average time was recorded.

Fig. 6 shows the average computational time aggregated for

all values of parameter w for both varying values of k and N

for fuzzy set F
~

. Several observations can be made. Both the

CF and MCF algorithms are substantially faster than the

independent application of the KM/EKM algorithms. Because

of the trapezoidal secondary membership functions of fuzzy

set F
~

, the faster version of the CF algorithm can be used,

which takes advantage of the constant derivative of the

2 The authors rewrote the original Matlab code for the CF algorithm kindly

provided by D. Zhai into C++ programming language.

TABLE I

COMPARISONG OF THE CENTROIDS COMPUTED USING THE CF AND THE MCF ALGORITHMS

Fuzzy Set 1
~
A

C with MCF

algorithm

1
~
A

C with CF

algorithm

Relative error of the CF

algorithm for
1

~
A

Distance

Measure
A

d ~

Dissimilarity

Measure
A

s ~

F
~

 with w=0.1, k=5, N=20 [3.980, 4.628] [3.946, 4.655] [-0.853%, 0.583%] 0.0025 0.0257

F
~

 with w=0.9, k=5, N=20 [4.119, 4.551] [4.074, 4.583] [-1.092%, 0.703%] 0.0061 0.0449

G
~

 with w=0.1, k=5, N=20 [4.338] [4.228, 4.428] [-2.536%, 2.075%] 0.0074 0.0555

G
~

 with w=0.9, k=5, N=20 [4.386] [4.302, 4.470] [-1.915%, 1.915%] 0.0014 0.0846

F
~

 with w=0.1, k=20, N=20
[3.980, 4.628] [3.945, 4.656] [-0.879%, 0.605%] 0.0025 0.0258

F
~

 with w=0.9, k=20, N=20
[4.119, 4.551] [4.074, 4.584] [-1.092%, 0.725%] 0.0057 0.0456

G
~

 with w=0.1, k=20, N=20
[4.338] [4.240, 4.421] [-2.259%, 1.913%] 0.0033 0.0527

G
~

 with w=0.9, k=20, N=20
[4.386] [4.297, 4.468] [-2.029%, 1.869%] 0.0017 0.0926

F
~

 with w=0.1, k=5, N=100
[3.978, 4.628] [3.971, 4.634] [-0.176%, 0.129%] 0.0004 0.0058

F
~

 with w=0.9, k=5, N=100
[4.118, 4.551] [4.109, 4.557] [-0.219%, 0.132%] 0.0013 0.0089

G
~

 with w=0.1, k=5, N=100
[4.345] [4.331, 4.355] [-0.322%, 0.230%] 0.0058 0.0049

G
~

 with w=0.9, k=5, N=100
[4.409] [4.404, 4.414] [-0.113%, 0.113%] 0.0005 0.0026

secondary membership function. Hence, the CF algorithm

outperforms all other algorithms in terms of computational

speed.

Fig. 7 shows the average computational time aggregated for

all values of parameter w for both varying values of k and N

for fuzzy set G
~

. Due to the non-linear secondary membership

function, the CF algorithm must re-compute the derivatives at

each  -plane. This results in increased computational load

and the CF algorithm only slightly outperforms the

independent application of the EKM algorithm. This fact is

most likely due to the more complicated calculations of the

centroid derivatives. On the other hand, irrespective of the

nature of the secondary membership functions, the MCF

algorithm outperforms all other techniques yielding the fastest

computational time for both varying number of k and N.

In addition, Table II summarizes the average relative speed-

up with respect to the KM algorithm over all values of k or N

for the respective fuzzy sets. As highlighted in the table, for

fuzzy set F
~

the CF algorithm provides nearly 90% speed-up,

with the MCF algorithm placing second with 85% speed-up.

However, in case of the fuzzy set G
~

, the speed-up of the CF

algorithm drops under 70%, while the MCF algorithm still

maintains the 85% speed-up, irrespective of the nature of the

secondary membership functions.

Nevertheless, examining the actual computational time not

exceeding 1ms, it can be said that the  -plane representation

framework finally allows for real-time real-world applications

of GT2 fuzzy logic.

VI. CONCLUSION

This paper addressed the type-reduction of GT2 FSs

represented using the  -planes framework. The novel

Monotone Centroid Flow algorithm was introduced, which

leverages the derived monotone properties of the  -plane

representation and the centroid of the GT2 FSs. When

compared to other available approaches, the main advantages

of the MCF algorithm are as follows: 1) the MCF algorithm

calculates numerically identical centroid when compared to

the baseline KM algorithm, as opposed to the approximated

(b) (b)

Fig. 6 Computational time for the KM, EKM, CF and MCF algorithms for GT2 fuzzy set F
~

with varying k and N.

(a) (b)

Fig. 7 Computational time for the KM, EKM, CF and MCF algorithms for GT2 fuzzy set G
~

with varying k and N.

TABLE II
AVERAGE COMPUTATIONAL SPEED-UP RELATIVE TO THE KM ALGORITHM

Fuzzy Set
Average Relative Speed-Up

EKM CF MCF

F
~

 with varying k 56.81% 88.51% 85.23%

F
~

 with varying N 55.10% 90.23% 85.10%

G
~

 with varying k 56.94% 66.75% 84.85%

G
~

 with varying N 58.00% 69.04% 85.17%

centroid obtained with CF algorithm, 2) the MCF algorithm

features faster computational speed when compared to the CF

algorithm or the independent application of the EKM or KM

algorithms, 3) the MCF algorithm does not require

computation of the derivative of the centroid and the

secondary membership function and is thus simpler to

implement, 4) the MCF algorithm completely eliminates the

need to apply the KM iterative procedure to any  -planes of

the GT2 FS.

The accuracy and the computational time of the MCF

algorithm was tested on benchmark problems and compared to

other available type-reduction techniques for GT2 FSs. It was

demonstrated that the MCF algorithm computes numerically

identical geometry of the centroid when compared to the

baseline KM algorithm. The MCF algorithm provided 85%

relative computational speed-up when compared to

independent application of the KM algorithm, irrespective of

the nature of the secondary membership functions.

In summary, the presented MCF algorithm together with the

independently developed and different approach of Yeh et al.

[29] constitute the only available algorithms for computing the

centroid of GT2 FSs using fast methods which take advantage

of the interconnected structure of the GT2 FSs and produce

numerically identical solution when compared to the

EKM/KM algorithms.

APPENDIX A

 The review of the KM algorithm below was adopted from

[14]. The algorithm consists of two phases, which

independently compute the values)
~

(Acl and)
~

(Acr . The

algorithm for computing the left boundary)
~

(Acl can be

described in several steps as follows:

Step 1: Initialize a vector of weights wi as follows:

   Nixxw iAiAi ,...1)()(
2

1
~~   (A1)

 And compute the value of y:








N

i
i

N

i
ii

w

wx
y

1

1 (A2)

Step 2: Find switching point k (11  Nk) such that

11   kk xyx (A3)

Step 3: Set















1)(

)(

~

~

kix

kix

w

iA

iA

i





 (A4)

 And compute the value of y as:








N

i
i

N

i
ii

w

wx
y

1

1 (A5)

Step 4: If yy  , stop and set)
~

(Acl = y and L = k. Otherwise,

go to Step 5.

Step 5: Set yy  and go to Step 2.

 The procedure for computing the value of)
~

(Acr is identical

to computing)
~

(Acl except that in Step 3 different update of

weights wi is used as follows:















1)(

)(

~

~

kix

kix

w

iA

iA

i





 (A6)

 The final output value is assigned to)
~

(Acr and R=k.

Despite Mendel and Liu proving the super-exponential

convergence of the KM algorithm [35], its asymptotical

complexity still remains  NnO , where N is the discretization

level of the primary variable x and n denotes the beforehand

unknown number of iterations of the KM algorithm.

APPENDIX B

 In this section, proofs of properties, theorems and

corollaries stated in this paper are presented.

A. Proof of Property 1

 The proof of the containment property of  -planes is based

on a decomposition of the GT2 FS A
~

 into its vertical slices

and then taking advantage of the interval calculus of  -cuts

of the secondary membership functions. It should be recalled

here, that an assumption that all secondary membership

functions are convex T1 FSs have been made in Section IV.A.

 Assuming that
21   the property of

21

~~
 AA  can be

rewritten using the vertical slice representation as follows:

  


Xx

A
Xx

A
xSxS)|()|(2~1~  (B1)

 Further decomposition yields:

 

  

 

 

 



















Xx xRsxLsu

Xx xRsxLsu

xu

xu

)2|(),2|(

)1|(),1|(





 (B2)

 Hence, for all values of variable x it must hold that:

    


)2|(),2|()1|(),1|( xRsxLsuxRsxLsu

uu (B3)

 Using the interval calculus, (B3) is equivalent to the

following set of inequalities:

)|()|(21  xsxs LL  (B4)

)|()|(21  xsxs RR  (B5)

 Here, recall one of the fundamental properties of  -cuts of

T1 FS from [32]:

2121  AA  (B6)

 It is easy to see, that by applying this property to the

secondary membership functions at each vertical slice, the

inequalities (B4) and (B5) are proven. This completes the

proof of Property 1.

B. Proof of Property 2

 The proof of the containment property of two  -planes

centroids)(
1

~ xC
A

and)(
2

~ xC
A

takes advantage of the fact the

centroid can be computed by applying the tools for type-

reduction of IT2 FSs to the  -level T2 FSs),(
1

~ uxR
A

and

),(
2

~ uxR
A

. Assuming that
21   , Property 2 can be restated

as follows:

)]|
~

(),|
~

([)]|
~

(),|
~

([2211  AcAcAcAc rlrl  (B7)

 This can be broken down into the following two

inequalities:

)|
~

()|
~

(21  AcAc ll  (B8)

)|
~

()|
~

(21  AcAc rr  (B9)

 First, inequality (B8) will be proven. Recall from the

derivations performed by Karnik and Mendel that finding the

left centroid boundary
lc for a given IT2 FS is equivalent to

minimizing the value of
lc treated as a function of parameters

Nww ,...,1
[14]:








N

i
i

N

i
ii

Nl

w

wx
wwc

1

1

1),...,((B10)

 The value of each parameter wi is selected from the primary

membership
ixJ of the primary variable xi, thus subject to the

following constraint:

  )(),(iRiLi xsxsw  (B11)

 Next, following the work of Karnik and Mendel, the partial

derivative of (B10) with respect to weight wk can be expressed

as [14]:







 





















N

i
i

Nlk

N

i
i

N

i
ii

k w

wwcx

w

wx

w
1

1

1

1),...,(
 (B12)

Since 0
1

 

N

i
iw , the following observation can be made

[14]:

   0,...,1







Nl

k

wwc
w

 if  
Nlk wwcx ,...,1




 (B13)

This leads to the final observation for adjusting parameter

wk for minimizing  
Nl wwc ,...,1

:

 If),...,(1 Nlk wwcx  :

),...,(1 Nl wwc decreases as

kw decreases (B14)

 If),...,(1 Nlk wwcx  :

),...,(1 Nl wwc decreases as

kw increases (B15)

 The minimum value of cl is thus achieved by maximizing

all parameters wi to the left of cl and minimizing all

parameters wi to the right of cl. Using the constraint stated in

(B11), the solution can be written as:









 },...,1{,

),...,(),(

),...,(),(

1

1
Ni

wwcxifxs

wwcxifxs
w

NliL

NliiR

i (B16)

 Next, (B16) is rewritten for the left centroid boundary

)|
~

(1Acl of  -plane
1

~
A :











 },...,1{,

)
~

|,...,(),|(

)
~

|,...,(),|(

111

111
Ni

Awwcxifxs

Awwcxifxs
w

NliiL

NliiR

i









(B17)

 Hence, the left centroid boundary)|
~

(1Acl cannot be further

minimized because all parameters wi are all constrained by the

boundaries of  -plane
1

~
A according to (B11). However,

assuming that
21   , the previously proven inequalities (B4)

and (B5) show that for  -plane
2

~
A the constraints imposed

on parameters wi can be relaxed, since:

)]|(),|([)]|(),|([2211  xsxsxsxs RLRL  (B18)

 Hence, by following the direction of change equations

(B14) and (B15), it can be observed that the left centroid

boundary)|
~

(1Acl can be further minimized. Consequently

)|
~

()|
~

(12  AcAc ll  , which completes the proof.

The proof of inequality (B9) is identical, except that (B10)

is maximized, which leads to reversed directions of the update

rules in (B14), (B15).

C. Proof of Corollary 1

 Corollary 1 is a direct consequent of Property 2 and its

proof is included in the preceding section in (B8) and (B9).

D. Proof of Theorem 1

For the specific case of the highest  -plane 1

~
A Corollary

1 can be rewritten as follows:

)1|

~
()|

~
(AcAc ll  and)1|

~
()|

~
(AcAc rr ]1,0[

(B19)

Hence, in order to prove Theorem 1 the following set of

inequalities must be verified:

)1|

~
()1|

~
(* AcCAc rAl 

 (B20)

Recall that according to (29), for the general case of any

secondary membership functions having an interval core, the

value of the principal membership function)(* xA at

coordinate x is computed as:

2

)1|()1|(
)(

~~
*

xx
xA AA

 
 (B21)

Hence, using the  -cuts notations introduced in (9) the

above equation (B21) can be rewritten as:

)]1|(),1|([)(* xsxsxA RL

 (B22)

Equation (B22) shows that the principal membership

function)(* xA is fully contained within the highest  -plane

1

~
A :

 1

* ~
AA  (B23)

Upon deriving (B23), the proof of Corollary 2 can be

applied leading to verifying the inequality in (B20) and thus

proving Theorem 1.

E. Proof of Theorem 2

The proofs of (34), (35), (36) and (37) in Theorem 2 are

very similar. Therefore only proof of (34) is provided here.

Recall that
L

E ˆ,1
 in (34) stands for the numerator in (32).

Hence:









 
N

Li

tiAi

L

i

tiAiL
xxxxE

1ˆ

1~

ˆ

1

1~ˆ,1
)|()|(

 (B24)

For a decremented left switch point value 1ˆ L it is:













N

Li

tiAi

L

i

tiAiL
xxxxE

ˆ

1~

1ˆ

1

1~
1ˆ,1

)|()|(

 (B25)

By subtracting and adding the L̂
th

 element to and from both

the left and the right sum in (B25), the value of
1ˆ,1 L

E will

remain unchanged:

)|()|()|(

)|()|()|(

1ˆ~ˆ1ˆ~ˆ

ˆ

1~

1ˆ~ˆ1ˆ~ˆ

1ˆ

1

1~
1ˆ,1























tLALtLAL

N

Li

tiAi

tLALtLAL

L

i

tiAiL

xxxxxx

xxxxxxE





 (B26)

The above expression can be simplified as:

)|()|(

)|()|(

1ˆ~ˆ

1ˆ

1~

1ˆ~ˆ

ˆ

1

1~
1ˆ,1





















tLAL

N

Li

tiAi

tLAL

L

i

tiAiL

xxxx

xxxxE





 (B27)

Note that the initial and the final indexes in the first and the

second sums changed. By reordering (B27) and further

simplifying the expression, it can be concluded that:

))|()|((

)|()|(

1ˆ~1ˆ~ˆ

1ˆ

1~

ˆ

1

1~
1ˆ,1













 

tLAtLAL

N

Li

tiAi

L

i

tiAiL

xxx

xxxxE





 (B28)

By substituting (B24) into (B28) the proof of (34) is

completed:

))|()|((1ˆ~1ˆ~ˆˆ,11ˆ,1 

 tLAtLALLL
xxxEE 

 (B29)

ACKNOWLEDGMENT

 The authors would like to acknowledge the help of Daoyuan

Zhai who generously provide the Matlab code for the Centroid

Flow algorithm. The authors would like to also thank the

anonymous reviewers who significantly helped to improve the

quality of this manuscript.

REFERENCES

[1] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction

and New Directions, Prentice-Hall, Upper Saddle River, NJ, 2001.
[2] J. M. Mendel, “Advances in type-2 fuzzy sets and systems,” in

Information Sciences, vol. 177, pp. 84-110, 2007.

[3] H. Hagras, “Type-2 FLCs: A New Generation of Fuzzy Controllers,” in
IEEE Computational Intelligence Magazine, pp. 30-43, February 2007.

[4] N. N. Karnik, J. M. Mendel, “Type-2 Fuzzy Logic Systems,” in IEEE

Trans. on Fuzzy Systems, vol. 7, no. 6, pp. 643-658, December 1999.
[5] S. Coupland, R. John, “Geometric Type-1 and Type-2 Fuzzy Logic

Systems,” in IEEE Trans. on Fuzzy Systems, vol. 15, no. 1, pp. 3-15,

February 2007.
[6] L. A. Zadeh, “The Concept of a Linguistic Variable and its

Approximate Reasoning - II,” in Information Sciences, No. 8, pp. 301-

357, 1975.
[7] H. A. Hagras, “A Hierarchical Type-2 Fuzzy Logic Control Architecture

for Autonomous Mobile Robots,” in IEEE Trans. Fuzzy Systems, vol.

12, no. 4, pp. 524-539, 2004.
[8] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, S. Rojas, “A type-2

fuzzy logic controller for tracking mobile objects in the context of

robotic soccer games,” in Proc. IEEE Intl’ Conf. on Fuzzy Systems, pp.
359-364, 2005.

[9] Ch. Lynch, H. Hagras, “Using Uncertainty Bounds in the Design of an

Embedded Real-Time Type-2 Neuro-Fuzzy Speed Controller for Marine

Diesel Engines,” in Proc. IEEE Intl’ Conf. on Fuzzy Systems, pp. 1446-

1453, Vancouver, Canada, 2006.

[10] O. Linda, M. Manic, “Uncertainty-Robust Design of Interval Type-2
Fuzzy Logic Controller for Delta Parallel Robot,” in IEEE Trans. On

Industrial Informatics, vol. 7, no. 4, pp. 661-671, Nov. 2011.

[11] O. Linda, M. Manic, “Interval Type-2 Fuzzy Voter Design for Fault
Tolerant Systems,” in Information Sciences, vol. 181, issue: 14, pp.

2933-2950, July 2011..

[12] A. Niewiadomski, “On Finity, Countability, Cardinalities, and Cylindric
Extensions of Type-2 Fuzzy Sets in Linguistic Summarization of

Databases, ” in IEEE Trans. on Fuzzy Systems, vol. 18, no. 3, pp. 532-

545, June 2010.

[13] D. Wu, J. M. Mendel, “On the Continuity of Type-1 and Interval Type-2

Fuzzy Logic Systems,” in IEEE Trans. on Fuzzy Systems, vol. 19, no. 1,
pp. 179-192, Feb. 2011.

[14] N. Karnik, J. M. Mendel, “Centroid of a type-2 fuzzy set,” in

Information Sciences, vol. 132, pp. 195-220, 2001.
[15] J. M. Mendel, R. John, F. Liu, “Interval Type-2 Fuzzy Logic Systems

Made Simple,” in IEEE Trans. on Fuzzy Systems, vol. 14, no. 6, pp. 808-

821, 2006.
[16] F. Liu, “An efficient centroid type-reduction strategy for general type-2

fuzzy logic system,” in Information Sciences, vol. 178, pp. 2224-2236,

2008.

[17] J. M. Mendel, F. Liu, D. Zhai, “ -Plane Representation for Type-2

Fuzzy Sets: Theory and Applications,” in IEEE Transaction on Fuzzy
Systems, vol. 17, no. 5, pp. 1189-1207, October 2009.

[18] Ch. Wagner, H. Hagras, “Toward General Type-2 Fuzzy Logic Systems
Based on zSlices,” in IEEE Transaction of Fuzzy Systems, vol. 18, no. 4,

pp. 637-660, August, 2010.

[19] J. M. Mendel, “Comments on “ -Plane Representation for Type-2

Fuzzy Sets: Theory and Applications”,” in IEEE Trans. on Fuzzy

Systems, vol. 18, no. 1, pp. 229-230, Feb. 2010.
[20] X. Liu, J. M. Mendel, “Connect Karnik-Mendel Algorithms to Root-

Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set,” in

IEEE Trans. on Fuzzy Systems, vol. 19, no. 4, pp. 652-665, Aug. 2011.
[21] D. Zhai, J. M. Mendel, “Centroid of a General Type-2 Fuzzy Set

Computed by Means of the Centroid-Flow Algorithm,” in Proc. WCCI

2010, Barcelona, Spain, pp. 895-902, July, 2010.
[22] D. Zhai, J. M. Mendel, “Computing the Centroid of a General Type-2

Fuzzy Set by Means of the Centroid-Flow Algorithm,” in IEEE Trans.

on Fuzzy Systems, vol: 19, issue: 3, pp. 401-422, June 2011.
[23] J. M. Mendel, R. I. John, “A fundamental decomposition of type-2 fuzzy

sets,” in Proc. of IFSA World Congress and 20th NAFIPS International

Conference, pp.1896-1901, Canada, July, 2001.
[24] H. Tahayori, A. G. B. Tettamanzi, G. D. Antoni, “Approximated Type-2

Fuzzy Set Operations,” in Proc. IEEE International Conference in Fuzzy

Systems, Canada, pp. 1910-1917, 2006.
[25] D. Wu, J. M. Mendel, “Enhanced Karnik-Mendel Algorithms”, in IEEE

Transaction on Fuzzy Systems, vol. 17, No. 4, pp. 923-934, August,

2009.
[26] S. Greenfield, R John, S. Coupland, “A Novel Sampling Method for

Type-2 Defuzzification,” in Proc. UKCI 06, pp. 120-127, 2005.

[27] S. Greenfield, F. Chiclana, S. Coupland, R. John, “Type-2

Defuzzification: Two Contrasting Approaches.” in Proc. of IEEE World

Congress on Computational Intelligence, Barcelona, Spain, pp. 3183-

3189, June 2010.
[28] S. Greenfield, F. Chiclana, S. Coupland, R. John, “The collapsing

method of defuzzification for discretized interval type-2 fuzzy sets,” in

Information Sciences, vol. 179, issue: 13, pp. 2055-2069, June 2009.
[29] C.Y. Yeh, W. H. Jeng, S. J. Lee, “An Enhanced Type-Reduction

Algorithm for Type-2 Fuzzy Sets, ” in IEEE Trans. on Fuzzy Systems,

vol. 19, issue: 2, pp. 227-240, April 2011.
[30] N. N. Karnik, J. M. Mendel, “Operations on type-2 fuzzy sets,” in Fuzzy

Sets and Systems, vol. 122, issue: 2, pp. 327-348, Sep. 2001.

[31] H. Hamrawi, S. Coupland, “Non-specificity Measures for Type-2 Fuzzy

Sets,” in Proc. IEEE-FUZZ, Korea, pp. 732-737, August 2009
[32] G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,

Prentice Hall, Upper Saddle River, NJ, 1995.

[33] K. Duran, H. Bernal, M. Melgarejo, “Improved iterative algorithm for
computing the generalized centroid of an interval type-2 fuzzy set,” in

Proc. Annual Meeting of the North American Fuzzy Information

Processing Society – NAFIPS, pp. 1-5, May 2008.
[34] P. Jaccard, “Nouvelles recherches sur la distribution florale,” in Bulletin

de la Societe de Vaud des Sciences Naturelles, vol. 44, pp. 223, 1908.

[35] J. M. Mendel, F. Liu, “Super-Exponential Convergence of the Karnik-
Mendel Algorithms for Computing the Centroid of an Interval Type-2

Fuzzy Set,” in IEEE Trans. on Fuzzy Systems, vol. 15, no. 2, pp. 309-

320, April, 2007.

Ondrej Linda, (S’09) received his M.Sc. in

Computer Graphics from Czech Technical
University in Prague in 2010, and M.Sc. in

Computational Intelligence from the University of

Idaho at Idaho Falls in 2009. He received his B.Sc.
in Electronic Engineering and Informatics from

Czech Technical University in Prague in 2007. He

is currently a Doctoral student at the University of
Idaho in Idaho Falls. His research experience

includes research assistant positions at Kansas State

University and at the University of Idaho, and an
internship with the Robotics Group at the Idaho National Laboratory. His

fields of interest included machine learning, pattern recognition, intelligent
control systems, data mining and computer graphics.

Dr. Milos Manic, (S'95-M'05-SM'06), Dr. Milos
Manic, IEEE Senior Member, has been leading

Computer Science Program at Idaho Falls and is a

Director of Modern Heuristics Research Group.
He received his Ph.D. degree in Computer

Science from University of Idaho, Computer

Science Dept. He received his M.S. and Dipl.Ing.
in Electrical Engineering and Computer Science

from the University of Nis, Faculty of Electronic

Engineering, Serbia. He has over 20 years of
academic and industrial experience, including an

appointment at the ECE Dept. and Neuroscience

program at University of Idaho. As university collaborator or principal
investigator he lead number of research grants with the Idaho National

Laboratory, NSF, EPSCoR, Dept. of Air Force, and Hewlett-Packard, in the

area of data mining and computational intelligence applications in process
control, network security and infrastructure protection. Dr. Manic is an

Administrative Committee Member for the IEEE Industrial Electronics

Society and member of several technical committees and boards of this
Society. Dr. Manic has published over hundred refereed articles in

international journals, books, and conferences.

