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Abstract— Recently, Type-2 Fuzzy Logic Systems (T2 FLSs) 

received increased research attention due to their potential to 

model and cope with the dynamic uncertainties ubiquitous in 

many engineering applications. However, because of the complex 

nature and the computational intensity of the inference process, 

only the constrained version of T2 FLSs, the Interval T2 FLSs, 

were typically used. Fortunately, the very recently introduced 

concepts of  -planes and zSlices allow for efficient 

representation as well as computationally fast inference process 

with General T2 (GT2) FLSs. This paper addresses the type-

reduction phase in GT2 FLSs, using GT2 Fuzzy Sets (FSs) 

represented in the -planes framework. The monotone property 

of centroids of a set of  -planes is derived and leveraged 

towards developing a simple to implement, but fast algorithm for 

type-reduction of GT2 FSs – the Monotone Centroid Flow (MCF) 

algorithm. When compared to the Centroid Flow (CF) algorithm 

previously developed by Zhai and Mendel, the MCF algorithm 

features the following advantages: 1) the MCF algorithm 

computes numerically identical centroid as the Karnik-Mendel 

(KM) iterative algorithms, unlike the approximated centroid 

obtained with CF algorithm, 2) the MCF algorithm is faster than 

the CF algorithm as well as the independent application of the 

KM algorithms, 3) the MCF algorithm is simple to implement, 

unlike the CF algorithm, which requires computation of the 

derivatives of the centroid, 4) the MCF algorithm completely 

eliminates the need to apply the KM iterative procedure to any 

 -planes of the GT2 FS. The performance of the algorithm is 

presented on benchmark problems and compared to the other 

type-reduction techniques available in literature. 

 
Index Terms— General Type-2 Fuzzy Sets, Type-reduction, 

Centroid,  -planes Representation 

 

I. INTRODUCTION 

YPE-2 Fuzzy Logic Systems (T2 FLSs) become the scope 

of work for many researchers in recent years [1] –[5]. The 

concept of T2 Fuzzy Sets (FSs) was originally proposed by 

Zadeh [6]. Since then, T2 FLSs have been successfully applied 

in many engineering areas, demonstrating the ability of T2 

FLSs to perform better than T1 FLSs when confronted with 

various sources of dynamic uncertainties, frequently 

associated with real world engineering problems [7]-[13]. 

Unlike the T1 FLSs, the T2 FLSs use individual fuzzy sets 

 
Ondrej Linda is with the Computer Science Department, University of 

Idaho, Idaho Falls, ID 83402 USA phone: 208-227-3919; e-mail: 
olinda@uidaho.edu.  

Dr. Milos Manic is with the Computer Science Department, University of 

Idaho, Idaho Falls, ID 83402 USA 
 

with membership grades that are themselves fuzzy sets. This 

additional dimension of uncertainty in T2 FLSs provides 

additional degrees of freedom for modeling and coping with 

dynamic input uncertainties when compared to T1 FLS with 

equivalent number of fuzzy sets. 

 However, the early representations of General T2 (GT2) 

FSs, namely the vertical-slice and the wavy-slice 

representations, did not provide inference algorithms that were 

fast enough for real-time processing. This was primarily due 

to the immense computational complexity of the model of 

individual fuzzy sets as well as the inference process itself. In 

particular, the type-reduction phase required enumeration of 

an astronomically large number of embedded fuzzy sets, 

impractical even in case of large discretization levels [14]. 

Due to its complexity the type-reduction used to be one of the 

major limiting factors of applications of GT2 FSs and GT2 

FLSs. For these reasons, the most typically used variant of T2 

FLSs were the Interval T2 (IT2) FLSs, which use constrained 

secondary membership functions [15]. The IT2 FLSs offer a 

compromise between the computational inexpensiveness of T1 

FLSs and the uncertainty modeling capability of GT2 FLSs. 

 Fortunately, the very recently introduced representations of 

 -planes [16], [17] and zSlices [18] offer a computationally 

efficient and viable framework for representing GT2 FSs as 

well as for the inferencing process with GT2 FLSs. In both 

cases, the  -planes and the zSlices representation theorems 

allow for treating of the GT2 FSs as a composition of multiple 

IT2 FSs, each raised to the respective level of  or z. Hence, 

the operations on GT2 FSs become a multiple application of 

the computational efficient arithmetic of IT2 FLSs. It should 

be noted here that both representations of  -planes and 

zSlices are very similar concepts, developed independently at 

the same time [19]. In the sequel of this paper the notation of 

the  -planes representation is followed. 

 This paper focuses on the type-reduction of GT2 FSs 

represented using the  -planes framework. Recently, the 

independent type-reduction of each  -plane was suggested in 

[16]. Such approach uses the established tools of IT2 FLSs, 

namely the Karnik-Mendel (KM) iterative algorithm [14] [20], 

and considers the entire GT2 FS as a composition of 

independent  -planes. The first authors to recognize the 

dependency of neighboring  -planes were Zhai and Mendel 

with their Centroid Flow (CF) algorithm [21], [22]. The CF 

algorithm starts by applying the KM algorithm to the lowest 

 -planes in order to compute the base of the type-reduced 

centroid. Next, the derivatives of the secondary membership 
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functions are used to propagate the centroid of one  -plane to 

the next one. Despite the elimination of the need to apply the 

iterative KM algorithm to each  -plane independently, which 

made the CF algorithm substantially faster, several 

deficiencies of this approach must be recognized: 1) the CF 

algorithm provides only an approximate result when compared 

to the baseline centroid computed using the KM algorithm, 2) 

the CF algorithm requires computation of the derivatives of all 

secondary membership functions, which might be considered 

as potential computational bottleneck. 

 This paper proposes the Monotone Centroid Flow (MCF) 

algorithm for computation of the centroid of GT2 FSs 

represented by  -planes. The algorithm is based on the 

monotone property of the  -plane representation and the 

centroid of the GT2 FS. The primary contributions of the 

presented MCF algorithm are as follows: 1) the MCF 

algorithm computes numerically identical centroid as the KM 

algorithms, unlike the approximated centroid obtained with 

the CF algorithm, 2) the MCF algorithm is faster than both the 

CF algorithm and the independent application of the KM or 

the Enhanced KM (EKM) algorithms, 3) the MCF algorithm is 

simple to implement, not requiring computation of the 

derivatives of the centroid and secondary membership 

functions, 4) the MCF algorithm completely eliminates the 

need to apply the KM iterative procedure to any  -planes of 

the GT2 FS. The accuracy and the computational time of MCF 

algorithm was demonstrated on several benchmark problems 

and compared to the CF algorithm and the independent 

application of the KM and the EKM algorithms. 

 The rest of the paper is organized as follows. Section II 

discusses the background of GT2 FSs and their  -plane 

representation. The type-reduction of GT2 FSs is reviewed in 

detail in Section III. Section IV first derives the monotone 

property of the  -plane representation and then uses this 

property to introduce the MCF algorithm. The experimental 

results and comparisons are presented in Section V. Finally, 

the paper is concluded in Section VI. 

II. GENERAL TYPE-2 FUZZY SETS 

 This section provides background overview of GT2 FSs and 

the fundamentals of their  -plane representation. 

A. General Type-2 Fuzzy Sets 

A GT2 FS A
~

 can be expressed on the universe of discourse 

X using its Type-2 fuzzy membership function ),(~ ux
A

 , where 

Xx and 
xJu  [1]: 

 

   


Xx xJu
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 Here, variable x and u are the primary and the secondary 

variables and Jx denotes the support of the secondary 

membership function also called the primary membership of x. 

Operator   denotes union over all possible values of x and 

u, and ]1,0[),(~ ux
A

 . Two representations of GT2 FSs are 

commonly adopted; the vertical-slice representation and the 

wavy-slice representations. 

 First, the vertical-slice representation is considered. By 

instantiating a specific value for xx  , a vertical slice 

),(~ ux
A

 of the fuzzy membership function ),(~ ux
A

 can be 

obtained. This vertical slice defines a secondary membership 

function ),(~ uxx
A

 for Xx  and ]1,0[ xJu : 
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 Here, )(uf x
denotes the secondary grade or the amplitude of 

the secondary membership function and ]1,0[)(  uf x
. 

Assuming that the domain of primary variable x is discretized 

using N samples, the GT2 FS A
~

 can be represented as a 

composition of all its vertical slices: 
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 Next, consider the wavy-slice representation. The GT2 FS A
~

 

can be also constructed as a composition of embedded FSs eA
~

. 

Again, for a discrete universe of discourse with N elements, 

the embedded FS eA
~

 can be described as: 
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 According to the Mendel and John representation theorem 

[23], the GT2 FS A
~

can be described as a union of all of its n 

embedded T2 FSs: 

 
n
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
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 For the discretized primary domain X, the centroid 
A

C ~ of a 

GT2 FS A
~

 can be calculated using the Extension Principle 

and by enumerating all of the embedded fuzzy sets [6]: 
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 Here, every possible combination of variables 
N ,...,1

forms an embedded FS, which has a secondary grade of 

)()( 11 NNxx ff   . Operator   is the specific t-norm used 

(e.g. the minimum operator). 

 Assuming that each primary membership 
ixJ was 

discretized into Mi points, the number of embedded fuzzy sets 

that have to be enumerated in (6) is  


N

i
iMn

1
. Already for 

small number of discretization steps, n reaches inadmissibly 

large values.  



 

 The crisp output value y can be obtained by applying one of 

the available defuzzification methods to the type-reduced 

centroid 
A

C ~ . As an example, the centroid defuzzifier is 

commonly used [1]: 
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B.  -Plane Representation for GT2 Fuzzy Sets 

 The following notation for the  -plane representation was 

adopted from [17], [21]. The  -plane representation was 

originally developed by several authors [16], [18], [24]. It 

constitutes a horizontal slice representation for GT2 FSs.  

 An  -plane A
~

 of a GT2 Fs A
~

 can be defined as the 

union of all primary memberships of A
~

 with secondary grades 

that are greater than or equal to : 

 

    


Xx xJu
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 (8) 

 

 An  -cut of the secondary membership function )(~ x
A

  

can be denoted as )|(~ xS
A

 and expressed as: 

 

  )|(),|()|(~  xsxsxS RLA
  (9) 

 

 Hence, an  -plane A
~

can be seen as a composition of all 

individual  -cuts of all of its secondary membership 

functions: 
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 It is apparent that the well known Footprint of Uncertainty 

(FOU) of the GT2 FS A
~

 can now be denoted as: 

 

 0

~
)

~
( AAFOU   (11) 

 

 Each  -plane
 A

~
is bounded from above by its upper 

membership function )|(~  x
A

and from below by its lower 

membership function )|(~  x
A

. Using the  -cuts boundaries 

of each vertical slice (9), these bounds can be expressed as: 
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 By raising the  -plane A
~

to the level of  , a special IT2 

FS is created. This FS was named  -level T2 FS ),(~ uxR
A

in 

[16], [19] and expressed as follows: 

 

 xA
JuXxAuxR  ,,

~
/),(~ 

  (14) 

 

 Finally, according to Liu’s representation theorem, the GT2 

FS A
~

 can be constructed as a composition of all of its 

individual  -level T2 FSs [16]: 
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 It should be noted here, that the  sign denotes the union 

set-theoretic operations, which for each point computes the 

maximum membership grade for all  -planes. Furthermore, 

Liu used the  -plane representation theorem to express the 

centroid )(~ xC
A

of a GT2 FS A
~

 as a composition of individual 

centroids )(~ xC
A

 of the respective  -level T2 FS ),(~ uxR
A

: 
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 Because each  -level T2 FS ),(~ uxR
A

 is an interval-valued 

set, centroid )(~ xC
A

 will become an interval set completely 

determined by its left and right boundaries 

)]|
~

(),|
~

([)(~ 


AcAcxC rlA
 . Hence, it follows that: 
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 (a) (b) (c) 

Fig. 1 General T2 fuzzy set A
~

(a), its IT2 variant 2

~
ITA (b) and its  -plane representation (c). (The shade of grade illustratively depicts the distribution of 

secondary grades). 

  



 

 Equation (16) showed a new way for computing the 

centroid )(~ xC
A  

of a 
 
GT2 FS A

~
via type-reducing each  -

plane A
~

and then merging the results together. 

 The different discussed variants of GT2 FSs are depicted in 

Fig. 1. 

III. TYPE-REDUCTION OF GENERAL TYPE-2 FUZZY SETS 

 This section provides an overview of type-reduction 

techniques for GT2 FSs represented using the  -plane 

framework. 

A. Karnik Mendel Iterative Algorithms 

Initially, the GT2 FS represented in the -plane framework 

was type-reduced using entirely independent applications of 

the Karnik-Mendel (KM) iterative algorithms applied to each 

 -plane [16], [17], [18]. Recall that for an IT2 FS A
~

, the 

KM algorithm iteratively converges towards the left and right 

switch points L
 
and R, which are then used to compute the left 

and right centroid boundary points )
~

(Acl and )
~

(Acr  as follows 

[20]: 
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The details of the KM iterative algorithm are presented in 

Appendix A.  

Assume that a GT2 FS A
~

is represented using k  -planes, 

where 2k . The algorithm for computing the centroid 
A

C ~ can 

be described in several steps as follows [16], [17]: 

 

Step 1: For each  -plane A
~

create the  -level T2 FS 

),(~ uxR
A

. 

Step 2: Compute the boundary points )|
~

( Acl  and )|
~

( Acr  

of centroid 
A

C ~ using the KM algorithm (details in Appendix 

A). 

Step 3: Repeat steps 2 and 1 for all k  -planes of A
~

. 

Step 4: Construct the final centroid 
A

C ~  using (16). 

 

Following the computational analysis of the KM iterative 

algorithm in Appendix A, the above method for type-reduction 

of GT2 FS A
~

requires time  NknO , where N is the number of 

discretization steps of the primary domain and n is the number 

of iterations required by the KM algorithm. 

B. Enhanced Karnik Mendel Iterative Algorithm 

In an effort to speed up the computational time of the KM 

algorithm, the Enhanced KM (EKM) algorithm was proposed 

in [25]. The major differences were as follows: 1) improved 

initialization of the switch points L and R, 2) recursive update 

of the computed centroid boundary, and 3) improved 

convergence test. 

The EKM algorithm was applied to independent type-

reduction of each  -plane in [21], [22], leading to a faster 

computation of the centroid in the presented implementation. 

C. Centroid Flow Algorithm 

The previous KM and EKM based approaches used 

completely independent type-reduction of each  -plane. 

There, the entire GT2 FS was considered as a composition of 

independent  -level T2 FSs ),(~ uxR
A

. The first algorithm to 

leverage the interconnected structure of the  -level T2 FSs 

was the Centroid Flow (CF) algorithm developed by Zhai and 

Mendel [21], [22].  

The CF algorithm starts by applying the KM/EKM iterative 

algorithm to the lowest  -plane 
0

~
A

 
in order to compute the 

base of the type-reduced centroid. Next, the derivatives of the 

secondary membership functions are used to propagate the 

centroid coordinate from one  -plane to the next. The 

fundamental idea of the CF algorithm is to use the  -planes 

connection equations, rather than independently type-reducing 

each -plane [21], [22]: 

 

         ||| xsgTxsTxs LsLsL
  (20) 

 

         ||| xshTxsTxs RsRsR
  (21) 

 

Here, 
ST  denotes the difference of the value of  between 

two neighboring  -planes and )(xg 
 

and )(xh
 

are the 

derivatives of the left and the right shoulders of the secondary 

membership function of a vertical slice at coordinate x. 

The CF algorithm requires only a single application of the 

iterative KM/EKM algorithm applied to the base  -plane 0

~
A , 

which can be computed in time )(NnO . The centroid of the 

subsequent  -planes is then computed using the previous 

location and the centroid derivative following (17) and (18). 

The computation of the centroid derivative requires  NO steps 

for each  -plane. Thus, the computational time of the CF 

algorithm is  kNNnO  .  

A simplified version of the CF algorithm can be applied to 

GT2 FSs with triangular or trapezoidal secondary membership 

functions. Here, the constant derivative of the secondary 

functions at each vertical slice can be pre-computed saving 

computation of several integrals at each  -plane. 

D. Other Applicable Type-reduction Techniques 

A GT2 FS represented in the -plane framework can be 

viewed as a composition of many individual IT2 FSs. Hence, 

in general any algorithm for type-reduction of IT2 FSs can be 

also used to compute the centroid of the GT2 FS. In the 

available literature, the authors are aware of the work of 

Greenfield who used the sampling defuzzifier for type-

reduction of a GT2 FS represented in the -plane framework 

[26], [27]. However, in [27] only the defuzzified value is 

presented, without commenting on the properties of the 



 

calculated centroid. Other applicable type-reduction 

techniques are for example the Collapsing defuzzifier [28].  

IV. MONOTONE CENTROID FLOW ALGORITHM 

 In this section the monotone property of the  -plane 

representation of GT2 FS and the type-reduced centroid is first 

derived. Next, the MCF algorithm is introduced. 

 As pointed out by one of the reviewers: “…centroid of 

general type-2 fuzzy set is ‘hot’ right now.” As it sometimes 

happens with “hot” topics, different research groups might 

arrive at similar results independently. Some of the ideas 

behind the introduced MCF algorithm have been 

independently developed by Yeh et al. [29]. However, there 

are several significant differences between the Enhanced 

Type-Reduction algorithm proposed by Yeh et al. and the 

MCF algorithm. These differences are summarized at the end 

of this section. 

A. Monotonicity of  - planes  

 Initially, the following assumption is made: at any value of 

primary variable x, the vertical slice )(~ x
A

 is a convex T1 FS 

defined by the secondary membership function )(uf x
 with the 

following properties: 
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where )(ug x
and )(uhx

are monotonically non-decreasing and 

monotonically non-increasing functions in their respective 

domains.  

 This assumption on the nature of secondary membership 

functions might seem as a limiting factor for the applicability 

of the proposed algorithm. Examples of convex T1 FS FSs are 

triangular, trapezoidal and Gaussian T1 FSs, which are the 

most commonly used types of secondary membership 

functions for GT2 FSs. Karnik and Mendel proved in [30] that 

under the maximum t-conorm and the minimum t-norm, the 

set-theoretic operations join and meet on GT2 FSs with 

convex and normal secondary membership functions also 

result in GT2 FSs with convex and normal secondary 

membership functions. Because maximum t-conorm and 

minimum t-norm are commonly used in fuzzy logic system, 

the proposed MCF algorithm is widely applicable. 

 

 Property 1: Containment of  -planes: 

 

 21

~~
 AA     if     

21     (23) 

 

 This containment property was stated without a proof by 

Liu in [16] and it also appeared in [17], [31]. For completeness 

sake the proof of Property 1 is given in Appendix B. 

 

 Property 2: Containment of Centroids: 
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 Property 2 appeared as an observation without a proof in 

[17]. For completeness sake, its proof is included in Appendix 

B. 

 

Corollary 1: Monotonicity of Centroids: 
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 Corollary 1 is a direct consequence of Property 2. For 

completeness sake its proof is presented in Appendix B.  

B. Monotone Centroid Flow Algorithm 

 The MCF algorithm leverages Corollary 1 to propagate the 

boundary values )]|
~

(),|
~

([ iril AcAc   of centroid 
i

A
C


~ to the 

type-reduction process of a nearby  -plane 
j

A

~
. Hence, 

similarly to the CF algorithm, the type-reduction of each  -

plane does not run independently, but rather proceeds in a 

sequential manner taking advantage of the previously 

computed results. 

   

1) Initialization  

 Unlike the CF algorithm that uses the approximated 

gradients of the centroid [21], [22], the MCF algorithm utilizes 

a monotone iteration through the discretized domain of the 

primary variable x. However, an initial starting point for the 

iteration procedure must be first provided. This initial point is 

computed at a selected starting  -plane.  For instance, the CF 

algorithm begins at 0

~
A  and thus starts by applying the 

KM/EKM algorithm to the actual )
~

(AFOU [21]. The proposed 

MCF algorithm uses a different approach starting its way 

down from the highest  -plane 1

~
A . 

 Recall that a core )(Acore of a T1 fuzzy set A is described as 

a set of elements of X with a membership degree of 1. For the 

secondary membership function )(uf x
, the core can be 

defined as [32]: 

 

  1)(|))((  ufJuufcore xxx
 (26) 

 

 For T1 FSs such as triangular fuzzy sets, the core is 

composed of a single point at the position of the apex of the 

triangle. For T1 FSs such as trapezoidal fuzzy sets, the core 

becomes an interval bounded by the coordinates of the apex of 

the trapezoid. 

 When observing the properties of the highest  -plane 1

~
A  

for an arbitrary secondary membership functions )(uf x
, two 

cases can be encountered.  In the first case, the highest  -

plane 1

~
A  reduces to a single line. This can happen when the 

core of all vertical slice of fuzzy set A
~

is a singleton (e.g. 



 

when all )(uf x
 are triangular). Such fuzzy set A

~
 fulfills the 

following condition: 

 

 )1|()1|( ~~ xxXx
AA

   (27) 

 

 In the second case, the highest  -plane 
1

~
A  is an actual 

plane, which might only locally reduce to a line. This can 

happen when there exists a vertical slice of fuzzy set A
~

 with 

an interval core (e.g. when some )(uf x
 are trapezoidal). For 

such GT2 FS A
~

, the following condition holds: 

 

 )1|()1|( ~~ xxXx
AA

   (28) 

 

 The initial point for the MCF algorithm is set to be the 

defuzzified value of the principal membership function of the 

GT2 fuzzy set A
~

, denoted as *A . In the first case (e.g. all 

)(uf x
 are triangular), the principal membership function is 

simply equal to the highest  -plane 1

~
A . In the second case 

(e.g. when some )(uf x
 are trapezoidal), the principal 

membership function can be computed as the average of the 

lower and the upper boundary membership functions of to the 

highest  -plane 1

~
A . In summary: 
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 (29) 

 

Because the principal membership function *A is a T1 FS, it 

can be defuzzified using the standard centroid defuzzifier as 

follows [1]: 
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 Here, N denotes the number of discretized steps in the 

primary domain. The defuzzified value *A
C of the principal 

membership function *A defines the initial point for the MCF 

algorithm. Note, that when the highest  -plane 1

~
A  does not 

reduce to a single line, then 
1* AA

CC  . Therefore the value of 

*A
C

 
can only be used to initialize the monotone search, which 

must first compute the accurate centroid of top  -plane 1

~
A . 

 

Theorem 1: Initialization of the MCF algorithm: 

 *)|
~

(
Al CAc    and   *)|

~
(

Ar CAc      ]1,0[
 

 (31) 

 

 The proof of Theorem 1 is provided in Appendix B. 

 

2) Incremental Step 

 Assume that the centroid 
tA

C ~ for an  -plane 
t

A

~
was 

computed as )]|
~

(),|
~

([ trtl AcAc  . This result was obtained by 

calculating the left and right switching points )|
~

( tAL   and 

)|
~

( tAR  . The estimated boundaries )]|
~

(ˆ),|
~

(ˆ[ 11  trtl AcAc  of 

the centroid of the neighboring  -plane 
1

~
t

A can be 

computed using the switch points from the preceding -plane 

t
A

~
. Hence, the auxiliary variables L̂  and R̂  are initialized to 

the values of switch points  )|
~

( tAL   and )|
~

( tAR   and the 

estimated centroid is computed as follows: 
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 Denote the numerator and the denumerator in (32) and (33) 

as 
L

E ˆ,1
, 

L
E ˆ,2

 and 
R

D ˆ,1
,

R
D ˆ,2

, respectively. An elementary 

operations of the MCF algorithm are monotone decrement and 

increment of the auxiliary variables L̂  and R̂  and the 

subsequent update of the centroid estimate 

)]|
~

(ˆ),|
~

(ˆ[ 11  trtl AcAc  .  

 

 Theorem 2: Recursive update: 

 

Given the values of 
L

E ˆ,1
, 

L
E ˆ,2

 and 
R

D ˆ,1
,

R
D ˆ,2

 the updated 

values for switch points 1ˆ L  and 1ˆ R can be computed 

recursively as follows: 

 

 ))|()|(( 1ˆ~1ˆ~ˆˆ,11ˆ,1 
 tLAtLALLL

xxxEE   (34) 

 

 )|()|( 1ˆ~1ˆ~ˆ,21ˆ,2 
 tLAtLALL

xxEE   (35) 

 

 ))|()|(( 1ˆ~1ˆ~ˆˆ,11ˆ,1 
 tRAtRARRR

xxxDD   (36) 

 

 )|()|( 1ˆ~1ˆ~ˆ,21ˆ,2 
 tRAtRARR

xxDD   (37) 

 

 The proof of Theorem 2 is provided in Appendix B. Note 

that this idea of incrementally stepping through the domain of 

primary variable x is similar to the idea of the IASCO 

algorithm presented by Duran et al [33]. However, the IASCO 



 

algorithm was performing an exhaustive search for both 

switch points in the primary domain starting from its lower 

end-point and was only applied to IT2 FSs. The MCF 

algorithm uses the incremental stepping procedure through the 

primary domain of the GT2 FS iterating from the initial 

starting point outwards and descending from the top  -plane 

to the lowest one. 

 

3) The MCF Algorithm 

 The MCF algorithm starts with the defuzzification of the 

principal membership function of the GT2 FS A
~

. The 

algorithm further proceeds sequentially through individual  -

planes in a top-down direction. The switch points from one -

plane are used to compute the estimate of the centroids of the 

subsequent  -plane. In this manner, the left and right switch 

points are monotonically decremented and incremented until 

the lowest  -plane 
0

~
A  is reached. The MCF algorithm can 

be described in several steps as follows: 

 

Input: A GT2 FS A
~

, decomposed into 2k  -planes. The 

domain of the primary variable x is discretized into N samples. 

Output: T1 FS defining the centroid )(~ xC
A

represented as a 

set of coordinates pairs )]|
~

(),|
~

([  AcAc rl  for each 

considered value of  . 

 

Step 1: Compute the principal membership function )(* xA  

using (29). 

 

Step 2: Calculate the centroid *A
C  of the primary membership 

function (30). Initialize the global switch points L̂ and R̂  as 

follows: 

    **
ˆ,ˆ

AA
CRCL   (38) 

 

where operators    and    compute the discretized index of 

the value *A
C  rounded to the nearest value of the discretized 

variable x in the increasing and in the decreasing direction, 

respectively. 

 

Step 3: Repeat for all  -planes starting from the highest  -

plane 
k

A

~
( 1

~
A ) until the lowest  -plane

0

~
A ( 0

~
A ) is reached. 

 

Step 3.1: Compute values 
L

E ˆ,1
, 

L
E ˆ,2

 and 
R

D ˆ,1
, 

R
D ˆ,2

 and 

 calculate the estimated centroid )]|
~

(ˆ),|
~

(ˆ[ 11  trtl AcAc   of 

  -planes 
1

~
t

A for the global  switch points L̂ and R̂  using 

(32) and (33). 

 

Step 3.2: Pre-compute the location of the estimated left 

 centroid boundary )|
~

(ˆ
1tl Ac   for a switch point 1ˆ L  as 

 follows. Recursively calculate the values of 
1ˆ,1 L

E , 
1ˆ,2 L

E  

using (34) and (35). Compute the estimated left centroid 

boundary as: 

 
1ˆ,2

1ˆ,1






L

L

l
E

E
c  (39) 

 

Note that (39) resembles (32) with the switch point 1ˆ L , 

where the numerator and the denumerator were recursively 

pre-computed according to (34) and (35). 

 

 Step 3.3: If )|
~

(ˆ
1 tll Acc  , set ltl cAc  )|

~
(ˆ

1 , decrement 

 the global switch point 1ˆˆ  LL  and go back to Step 3.2. 

 Else, store the estimated left centroid boundary as the true 

 centroid boundary )|
~

(ˆ)|
~

( 11   tltl AcAc   and proceed to 

 Step 3.4. 

 

Step 3.4: Pre-compute the location of the estimated right 

 centroid boundary )|
~

(ˆ
1tr Ac   for a switch point 1ˆ R  as 

 follows. Recursively calculate the values 
1ˆ,1 R

D , 
1ˆ,2 R

D  

using (36) and (37). Compute the estimated right centroid 

boundary as: 

 
1ˆ,2

1ˆ,1






R

R

r
D

D
c  (40) 

  

Note that (40) resembles (33) with the switch point 1ˆ R , 

where the numerator and the denumerator were recursively 

pre-computed using (36) and (37). 

 

Step 3.5: If )|
~

(ˆ
1 trr Acc  , set rtr cAc  )|

~
(ˆ

1 , increment 

the global switch point 1ˆˆ  RR  and go back to Step 3.4: 

Else, store the estimated right centroid boundary as the true 

centroid boundary )|
~

(ˆ)|
~

( 11   trtr AcAc   and proceed to 

the next  -planes below. 

 

An illustration of the MCF algorithm for a GT2 FSs with 

two  -planes is depicted in Fig. 2. First, the search for the 

left centroid boundary )|
~

( 1Acl of  -plane
1

~
A  is illustrated 

in Fig. 2(a). The label Init marks the initial position of the 

global switch point L̂  based on the center of gravity *A
C of the 

principal membership function *A . Next, the global switch 

point L̂  is decremented two times in Step 1 and Step 2 

(denoted as L̂ ) together with the recursive computation of 

the estimated left centroid boundary according to (39). Note 

that calculation of the estimated left centroid boundary in Step 

2 is needed in order to confirm that the calculated left 

boundary )|
~

( 1Acl is the correct result (Step 3.3). 

Subsequently, the MCF algorithm proceeds to the neighboring 

 -plane
2

~
A seeking the new left centroid boundary )|

~
( 2Acl

(Fig. 2(c)). Here, the value of the final switch point from  -

plane
1

~
A )|

~
( 1AL is used to initialize the iterative stepping 

procedure on  -plane
2

~
A in Step 3. Next, two more 

decrements of the global left switch points L̂  in Step 4 and 

Step 5 are performed to find the left centroid boundary 



 

)|
~

( 2Acl . The MCF algorithm proceeds in a similar manner 

in case of the right centroid boundary incrementing the right 

global switch point R̂  as shown in Fig. 2(b) and 2(d). 

 

Theorem 3: Stopping of the MCF algorithm: 

 

 The MCF stops after at most N updates of either global 

switching points L̂ and R̂ . 

 

Proof: Both global switching points L̂ and R̂ can only take on 

values from the discretized primary domain  
Nxx ,...,1

. 

Further, variables L̂ and R̂  can be only monotonically 

decremented or incremented in Step 3.3 and Step 3.5, 

respectively. Hence, they can be updated at most N times, 

which completes the proof. 

C. Computational Complexity 

 One of the interesting consequences of the monotone 

property of the  -plane representation of GT2 FSs is that 

individual  -planes do not have to be separately type-

reduced using the KM/EKM algorithms. Rather, they are 

processed in a sequential manner. Furthermore, because of the 

initialization of the monotone iterative stepping procedure 

using the principal membership function )(* xA and proceeding 

in a top-down manner, the KM/EKM algorithms have been 

completely eliminated from the type-reduction process using 

the MCF algorithm. 

 The calculation of the primary membership function )(* xA  

and its subsequent defuzzification in Step 1 and 2 requires 2N 

steps. 

 The main body of the algorithm will be repeated k times for 

each  -plane. At each  -plane the most computational 

effort is required for computing the values of 
L

E ˆ,1
, 

L
E ˆ,2

 and 

R
D ˆ,1

,
R

D ˆ,2
 used to  calculate the estimated centroid 

boundaries )|
~

(ˆ
1tl Ac  and )|

~
(ˆ

1tr Ac  . This phase requires 2N 

steps. 

 For each  -plane, at least one centroid location for 

switching points 1ˆ L  and 1ˆ R will be computed in Steps 3.3 

and 3.4. Theoretically, either of the sub-loops between Step 

3.2 - 3.3 and Step 3.4 - 3.5 can be evaluated up to N times for 

a single  -plane. However, according to Theorem 2 there 

can be at most N updates of either global switch points L̂  and 

R̂ , resulting in an overall at most N pre-computed centroid 

positions in Steps 3.3 and 3.4. 

 In summary, the computational complexity of the MCF 

algorithm can be described as: 

 

  NkNkNO  22  (41) 

 

 This can be further simplified into: 

 

  ),max( kNNkO    (42) 

 

 The second term in (42) was not excluded despite its 

apparent lower asymptotical order since it might play a 

significant role during performance comparison against other 

algorithms such as the independent application of KM/EKM 

algorithms or the CF algorithm. 

 

 
 (a) (b) 

 
 (c) (d) 

Fig. 2 Schematic view of the monotone iteration of the left switch point L̂  at 
1

~
A  and 

2

~
A (a), (c) and of the right switch point R̂  at 

1

~
A  and 

2

~
A (b), (d). 

  



 

 As stated at the beginning of this Section, the Enhanced 

Type-Reduction (ETR) algorithm independently developed by 

Yeh et al. features some similarities with the presented MCF 

algorithm [29]. Both algorithms propose to start the type-

reduction process from the highest  -plane 1

~
A  and proceed in 

a top-down fashion. Also, both approaches are based on the 

idea to initialize the search for switch points at current  -

plane with the switch points computed for the previous  -

plane. However, the ETR algorithm uses the original KM 

algorithm to obtain the initial centroid at the highest  -plane 

1

~
A  and then also uses the KM algorithm to iteratively compute 

the switch points at each consecutive  -plane with the new 

initial values. Hence, the ETR algorithm still relies on the 

iterative KM algorithms and does not take full advantage of 

the monotone property of centroid as derived in this paper. On 

the other hand, the MCF algorithm is in its nature more similar 

to the IASCO algorithm, which monotonically iterates through 

the domain from the initial starting value until the final 

centroid is obtained [33]. In summary, the MCF algorithm 

starts from the defuzzified value of the principal membership 

function of the highest  -plane 1

~
A  and then alternates 

between monotonically traversing outwards through the 

domain of the discretized primary variable and descending to 

the consecutive  -plane when the current switch points are 

computed. 

V. EXPERIMENTAL RESULTS 

This section presents the experimental testing of the 

proposed MCF algorithm.  The MCF algorithm was compared 

to the KM/EKM algorithms and the CF algorithm in terms of 

both accuracy and computational time. 

For the purpose of experimental testing two benchmark GT2 

FSs commonly used in literature were implemented [16], [17]. 

Fuzzy set F
~

 has a piece-wise linear FOU, which can be 

described in terms of the lower and upper membership 

functions as follows: 
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Fuzzy set G
~

 is composed of two Gaussian membership 

functions defined as follows: 
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Fuzzy set F
~

 maintains trapezoidal secondary membership 

functions. The position of the left and the right boundary 

points of the core of the trapezoid can be adjusted using 

parameter w [16], [17]: 

 

 ))()((6.0)()( ~~~ xxwxxcore
FFFL    (47) 

 

   ))()((16.0)()( ~~~ xxwxxcore
FFFR    (48) 

 

The secondary membership function of fuzzy set G
~

was 

created using the non-linear spline-based curve with a single-

point core computed as [16], [17]: 

 

 ))()(()()( ~~~ xxwxxcore
GGG

   (49) 

 

Fuzzy sets F
~

and G
~

represented using 5  -planes are 

 
 (a) (b) 

Fig. 3 Benchmark GT2 fuzzy sets F
~

(a) and G
~

(b) represented using 5  -planes. The bold-faced line in (b) depicts the top  -plane 
1

~
G .  

  



 

shown in Fig. 3. Note that the  -plane 
1

~
G is only depicted as 

a line in Fig. 3(b).  

A. Accuracy Testing 

First, the KM
1
, CF and the MCF algorithm were compared 

in terms of accuracy. Fig. 4 depicts the centroid of fuzzy sets 

F
~

and G
~

 with secondary membership functions constructed 

with  9.0,1.0w  using the KM (solid line) and the MCF 

(circles) algorithms. It can be observed that the MCF and the 

KM algorithms compute numerically identical solution. 

Next, Fig. 5 compares the centroid computed using the 

MCF (solid line) and the CF (circles) algorithms. Fig. 5(a)-(d) 

clearly demonstrate the approximation of the centroid obtained 

with the CF algorithm for values of k=5 and N=20. N=20 is 

equivalent to sampling rate of 0.5. Fig. 5(e)-(h) show the 

 
1 Only the KM is considered since the EKM algorithm is known to produce 

numerically identical results. 

computed centroid with an increased number of  -planes. It 

can be observed that the accuracy of the CF algorithm does 

not improve as more  -planes are added for the considered 

sampling rate of 0.5. Fig. 5(i)-(l) show a substantial 

improvement of the accuracy of the CF algorithm when 

increased number of discretized samples is applied to the 

primary domain. In [22], it was demonstrated that when small 

sampling rate of 0.01 (N=1000) was used, the results of the CF 

algorithm could be considered approximately the same when 

compared to the result of the baseline KM algorithm. The 

proposed MCF algorithm does not impose any such limits on 

the sampling rate and computes numerically identical solution 

when compared to the KM algorithm for all values of k or N. 

In addition to the plotted results, Table I numerically 

quantifies the differences between CF and MCF algorithms. 

First, the calculated centroids for the highest  -planes 
1

~
F  and 

1

~
G are compared. It can be seen, that the calculated relative 

error of the CF algorithm is greater for the fuzzy set G
~

, which 

 
 (a) (b) (c) (d) 

 
 (e) (f) (g) (h) 
 

 
 (i) (j) (k) (l) 

Fig. 5 The centroid calculated using the CF algorithm (circles) and using the MCF algorithm (solid line) with N=20, k=5 (a)-(d), N=20, k=20 (e)-(h) and N=100, 

k=5 (i)-(l). In columns from left to right the original GT2 fuzzy set was F
~

with w=0.1, F
~

with w=0.9, G
~

with w=0.1 and G
~

with w=0.9. 

 

  

 
 (a) (b) (c) (d) 

 
Fig. 4 The centroid calculated using the MCF algorithm (circles) and using the independent application of the KM algorithm (solid line) with N=20, k=5 for fuzzy 

set F
~

with w=0.1 (a), F
~

with w=0.9 (b), G
~

with w=0.1 (c) and G
~

with w=0.9 (d).  

  



 

maintains non-linear secondary membership functions. 

Furthermore, the centroid calculated with the CF algorithm 

has an interval core, despite all secondary membership 

functions having a single-point core. This result contradicts 

some of the conclusions about the centroid of GT2 FSs drawn 

in [17], where it is stated that when all secondary membership 

functions are triangles then the centroid will be triangle-

looking with its apex will be a single point. In addition, this 

observation might lead to incorrect conclusions, should the 

geometry of the centroid be interpreted as a measure of output 

uncertainty for an associated GT2 FLS.  

Next, two measures for comparing the type-reduced 

centroids have been calculated and reported in Table I. First, 

the distance measure 
A

d ~  was used, which calculates the 

difference between the defuzzified values of both centroids 

[22]: 

 )()( ~~~
MCF

A

CF

AA
CcCcd   (50) 

 

Here, )( ~
CF

A
Cc and )( ~

MCF

A
Cc denote the center of gravity of the 

centroids computed by the CF and MCF algorithms 

respectively. Second, the dissimilarity measure was computed, 

which expresses the difference in shapes of both centroids. 

The dissimilarity measure 
A

s ~ was calculated based on the 

discrete version of Jaccard similarity measure for T1 FSs [34]: 
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Note that  1,0~ 
A

s  and that the higher its value the more 

dissimilar both centroids are.  

The calculated values of the distance measure 
A

d ~ presented 

in Table I reveals that the there is only very small difference 

between the final defuzzified values of the centroids computed 

by the CF and the MCF algorithms. However, the dissimilarity 

measure 
A

s ~ shows that there is a substantial difference 

between the shapes of both centroids, mainly for smaller 

number of  -planes k=5 and higher sampling rate of 0.5.  

In summary, it can be concluded that the MCF algorithm 

calculates numerically identical geometry of the centroid of 

the GT2 FS when compared to the baseline KM algorithm, 

while the CF algorithm only calculates an approximate result. 

B. Computational Time 

Next, the KM, EKM, CF and MCF algorithms have been 

compared in terms of computational speed. In order to achieve 

maximally objective comparison, all algorithms were 

implemented in C++ programming language
2
. The authors 

believe that C++ provides more robust environment for 

unbiased computation time comparison as opposed to the 

highly implementation-sensitive Matlab environment. The 

algorithms have been executed on Dell Precision M4500, Intel 

Core i7 CPU Q720@1.60 GHz with 8.00 GB RAM and 

running Windows 7. 

The computational time was measured for both fuzzy sets 

F
~

and G
~

 first with varying number k of  -planes and next 

with varying number N of discretized steps in the primary 

domain of variable x. The fuzzy sets F
~

and G
~

 were 

constructed using  0.1,75.0,5.0,25.0,0.0w . Each experiment 

was repeated 1,000 times and the average time was recorded.  

Fig. 6 shows the average computational time aggregated for 

all values of parameter w for both varying values of k and N 

for fuzzy set F
~

. Several observations can be made. Both the 

CF and MCF algorithms are substantially faster than the 

independent application of the KM/EKM algorithms. Because 

of the trapezoidal secondary membership functions of fuzzy 

set F
~

, the faster version of the CF algorithm can be used, 

which takes advantage of the constant derivative of the 

 
2 The authors rewrote the original Matlab code for the CF algorithm kindly 

provided by D. Zhai into C++ programming language. 

TABLE I 

COMPARISONG OF THE CENTROIDS COMPUTED USING THE CF AND THE MCF ALGORITHMS 

Fuzzy Set 1
~
A

C with MCF 

algorithm 

1
~
A

C with CF 

algorithm 

Relative error of the CF 

algorithm for 
1

~
A  

Distance 

Measure
A

d ~  

Dissimilarity 

Measure
A

s ~  

F
~

 with w=0.1, k=5, N=20 [3.980, 4.628] [3.946, 4.655] [-0.853%, 0.583%] 0.0025 0.0257 

F
~

 with w=0.9, k=5, N=20 [4.119, 4.551] [4.074, 4.583] [-1.092%, 0.703%] 0.0061 0.0449 

G
~

 with w=0.1, k=5, N=20 [4.338] [4.228, 4.428] [-2.536%, 2.075%] 0.0074 0.0555 

G
~

 with w=0.9, k=5, N=20 [4.386] [4.302, 4.470] [-1.915%, 1.915%] 0.0014 0.0846 

F
~

 with w=0.1, k=20, N=20 
[3.980, 4.628] [3.945, 4.656] [-0.879%, 0.605%] 0.0025 0.0258 

F
~

 with w=0.9, k=20, N=20 
[4.119, 4.551] [4.074, 4.584] [-1.092%, 0.725%] 0.0057 0.0456 

G
~

 with w=0.1, k=20, N=20 
[4.338] [4.240, 4.421] [-2.259%, 1.913%] 0.0033 0.0527 

G
~

 with w=0.9, k=20, N=20 
[4.386] [4.297, 4.468] [-2.029%, 1.869%] 0.0017 0.0926 

F
~

 with w=0.1, k=5, N=100 
[3.978, 4.628] [3.971, 4.634] [-0.176%, 0.129%] 0.0004 0.0058 

F
~

 with w=0.9, k=5, N=100 
[4.118, 4.551] [4.109, 4.557] [-0.219%, 0.132%] 0.0013 0.0089 

G
~

 with w=0.1, k=5, N=100 
[4.345] [4.331, 4.355] [-0.322%, 0.230%] 0.0058 0.0049 

G
~

 with w=0.9, k=5, N=100 
[4.409] [4.404, 4.414] [-0.113%, 0.113%] 0.0005 0.0026 

 



 

secondary membership function. Hence, the CF algorithm 

outperforms all other algorithms in terms of computational 

speed. 

Fig. 7 shows the average computational time aggregated for 

all values of parameter w for both varying values of k and N 

for fuzzy set G
~

. Due to the non-linear secondary membership 

function, the CF algorithm must re-compute the derivatives at 

each  -plane. This results in increased computational load 

and the CF algorithm only slightly outperforms the 

independent application of the EKM algorithm. This fact is 

most likely due to the more complicated calculations of the 

centroid derivatives. On the other hand, irrespective of the 

nature of the secondary membership functions, the MCF 

algorithm outperforms all other techniques yielding the fastest 

computational time for both varying number of k and N. 

In addition, Table II summarizes the average relative speed-

up with respect to the KM algorithm over all values of k or N 

for the respective fuzzy sets. As highlighted in the table, for 

fuzzy set F
~

the CF algorithm provides nearly 90% speed-up, 

with the MCF algorithm placing second with 85% speed-up. 

However, in case of the fuzzy set G
~

, the speed-up of the CF 

algorithm drops under 70%, while the MCF algorithm still 

maintains the 85% speed-up, irrespective of the nature of the 

secondary membership functions. 

Nevertheless, examining the actual computational time not 

exceeding 1ms, it can be said that the  -plane representation 

framework finally allows for real-time real-world applications 

of GT2 fuzzy logic. 

VI. CONCLUSION 

This paper addressed the type-reduction of GT2 FSs 

represented using the  -planes framework. The novel 

Monotone Centroid Flow algorithm was introduced, which 

leverages the derived monotone properties of the  -plane 

representation and the centroid of the GT2 FSs. When 

compared to other available approaches, the main advantages 

of the MCF algorithm are as follows: 1) the MCF algorithm 

calculates numerically identical centroid when compared to 

the baseline KM algorithm, as opposed to the approximated 

 
(b) (b) 

Fig. 6 Computational time for the KM, EKM, CF and MCF algorithms for GT2 fuzzy set F
~

with varying k and N. 

  

 
(a) (b) 

Fig. 7 Computational time for the KM, EKM, CF and MCF algorithms for GT2 fuzzy set G
~

with varying k and N. 

  

TABLE II 
AVERAGE COMPUTATIONAL SPEED-UP RELATIVE TO THE KM ALGORITHM 

Fuzzy Set 
Average Relative Speed-Up 

EKM CF MCF 

F
~

 with varying k 56.81% 88.51% 85.23% 

F
~

 with varying N 55.10% 90.23% 85.10% 

G
~

 with varying k 56.94% 66.75% 84.85% 

G
~

 with varying N 58.00% 69.04% 85.17% 

 



 

centroid obtained with CF algorithm, 2) the MCF algorithm 

features faster computational speed when compared to the CF 

algorithm or the independent application of the EKM or KM 

algorithms, 3) the MCF algorithm does not require 

computation of the derivative of the centroid and the 

secondary membership function and is thus simpler to 

implement, 4) the MCF algorithm completely eliminates the 

need to apply the KM iterative procedure to any  -planes of 

the GT2 FS.  

The accuracy and the computational time of the MCF 

algorithm was tested on benchmark problems and compared to 

other available type-reduction techniques for GT2 FSs. It was 

demonstrated that the MCF algorithm computes numerically 

identical geometry of the centroid when compared to the 

baseline KM algorithm. The MCF algorithm provided 85% 

relative computational speed-up when compared to 

independent application of the KM algorithm, irrespective of 

the nature of the secondary membership functions. 

In summary, the presented MCF algorithm together with the 

independently developed and different approach of Yeh et al. 

[29] constitute the only available algorithms for computing the 

centroid of GT2 FSs using fast methods which take advantage 

of the interconnected structure of the GT2 FSs and produce 

numerically identical solution when compared to the 

EKM/KM algorithms.  

APPENDIX A 

 The review of the KM algorithm below was adopted from 

[14]. The algorithm consists of two phases, which 

independently compute the values )
~

(Acl  and )
~

(Acr . The 

algorithm for computing the left boundary )
~

(Acl  can be 

described in several steps as follows: 

 

Step 1: Initialize a vector of weights wi as follows: 

 

   Nixxw iAiAi ,...1)()(
2

1
~~    (A1) 

 

 And compute the value of y: 
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Step 2: Find switching point k ( 11  Nk ) such that 

 

 
11   kk xyx  (A3) 

Step 3: Set 
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 And compute the value of y as: 
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Step 4: If yy  , stop and set )
~

(Acl  = y and L = k. Otherwise, 

go to Step 5. 

 

Step 5: Set yy  and go to Step 2. 

 

 The procedure for computing the value of )
~

(Acr  is identical 

to computing )
~

(Acl except that in Step 3 different update of 

weights wi is used as follows: 
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 (A6) 

 

 The final output value is assigned to )
~

(Acr and R=k. 

Despite Mendel and Liu proving the super-exponential 

convergence of the KM algorithm [35], its asymptotical 

complexity still remains  NnO , where N is the discretization 

level of the primary variable x and n denotes the beforehand 

unknown number of iterations of the KM algorithm. 

APPENDIX B 

 In this section, proofs of properties, theorems and 

corollaries stated in this paper are presented. 

A. Proof of Property 1 

 The proof of the containment property of  -planes is based 

on a decomposition of the GT2 FS A
~

 into its vertical slices 

and then taking advantage of the interval calculus of  -cuts 

of the secondary membership functions. It should be recalled 

here, that an assumption that all secondary membership 

functions are convex T1 FSs have been made in Section IV.A. 

 Assuming that 
21   the property of 

21

~~
 AA  can be 

rewritten using the vertical slice representation as follows: 
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 Further decomposition yields: 
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 Hence, for all values of variable x it must hold that: 

 

 
    


)2|(),2|()1|(),1|(  xRsxLsuxRsxLsu

uu  (B3) 

 

 Using the interval calculus, (B3) is equivalent to the 

following set of inequalities: 



 

 )|()|( 21  xsxs LL   (B4) 

 

 )|()|( 21  xsxs RR   (B5) 

 

 Here, recall one of the fundamental properties of   -cuts of 

T1 FS from [32]: 

 

 
2121  AA   (B6) 

 

 It is easy to see, that by applying this property to the 

secondary membership functions at each vertical slice, the 

inequalities (B4) and (B5) are proven. This completes the 

proof of Property 1. 

B. Proof of Property 2 

 The proof of the containment property of two  -planes 

centroids )(
1

~ xC
A

and )(
2

~ xC
A

takes advantage of the fact the 

centroid can be computed by applying the tools for type-

reduction of IT2 FSs to the  -level T2 FSs ),(
1

~ uxR
A

and 

),(
2

~ uxR
A

. Assuming that 
21   , Property 2 can be restated 

as follows: 
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 This can be broken down into the following two 

inequalities: 

 )|
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( 21  AcAc ll   (B8) 

 

 )|
~

()|
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( 21  AcAc rr   (B9) 

 

 First, inequality (B8) will be proven. Recall from the 

derivations performed by Karnik and Mendel that finding the 

left centroid boundary
lc for a given IT2 FS is equivalent to 

minimizing the value of 
lc treated as a function of parameters 

Nww ,...,1
[14]: 
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 The value of each parameter wi is selected from the primary 

membership 
ixJ  of the primary variable xi, thus subject to the 

following constraint: 

 

  )(),( iRiLi xsxsw   (B11) 

 

 Next, following the work of Karnik and Mendel, the partial 

derivative of (B10) with respect to weight wk can be expressed 

as [14]: 
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Since 0
1

 

N

i
iw , the following observation can be made 

[14]: 

   0,...,1
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 (B13) 

 

This leads to the final observation for adjusting parameter 

wk for minimizing  
Nl wwc ,...,1

: 

 

 If ),...,( 1 Nlk wwcx  :
 

 
),...,( 1 Nl wwc decreases as 

kw decreases  (B14) 

 

 If ),...,( 1 Nlk wwcx  :
 

 
),...,( 1 Nl wwc decreases as 

kw increases  (B15) 

 

 The minimum value of cl is thus achieved by maximizing 

all parameters wi to the left of cl and minimizing all 

parameters wi to the right of cl. Using the constraint stated in 

(B11), the solution can be written as: 
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 Next, (B16) is rewritten for the left centroid boundary 

)|
~

( 1Acl  of  -plane 
1

~
A : 
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 Hence, the left centroid boundary )|
~

( 1Acl  cannot be further 

minimized because all parameters wi are all constrained by the 

boundaries of  -plane 
1

~
A according to (B11). However, 

assuming that
21   , the previously proven inequalities (B4) 

and (B5) show that for  -plane 
2

~
A  the constraints imposed 

on parameters wi can be relaxed, since: 

 

 )]|(),|([)]|(),|([ 2211  xsxsxsxs RLRL   (B18) 

 

 Hence, by following the direction of change equations 

(B14) and (B15), it can be observed that the left centroid 

boundary )|
~

( 1Acl can be further minimized. Consequently

)|
~

()|
~

( 12  AcAc ll  , which completes the proof.  

The proof of inequality (B9) is identical, except that (B10) 

is maximized, which leads to reversed directions of the update 

rules in (B14), (B15). 

C. Proof of Corollary 1 

 Corollary 1 is a direct consequent of Property 2 and its 

proof is included in the preceding section in (B8) and (B9). 

D. Proof of Theorem 1 

For the specific case of the highest  -plane 1

~
A  Corollary 

1 can be rewritten as follows: 
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Hence, in order to prove Theorem 1 the following set of 

inequalities must be verified: 
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Recall that according to (29), for the general case of any 

secondary membership functions having an interval core, the 

value of the principal membership function )(* xA  at 

coordinate x is computed as: 
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Hence, using the  -cuts notations introduced in (9) the 

above equation (B21) can be rewritten as: 

 

 
)]1|(),1|([)(* xsxsxA RL

 
 (B22) 

 

Equation (B22) shows that the principal membership 

function )(* xA  is fully contained within the highest  -plane 

1

~
A : 

 1

* ~
AA   (B23) 

 

Upon deriving (B23), the proof of Corollary 2 can be 

applied leading to verifying the inequality in (B20) and thus 

proving Theorem 1. 

E. Proof of Theorem 2 

The proofs of (34), (35), (36) and (37) in Theorem 2 are 

very similar. Therefore only proof of (34) is provided here. 

Recall that 
L

E ˆ,1
 in (34) stands for the numerator in (32). 

Hence: 
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For a decremented left switch point value 1ˆ L  it is:  
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By subtracting and adding the L̂
th

 element to and from both 

the left and the right sum in (B25), the value of 
1ˆ,1 L

E will 

remain unchanged: 
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The above expression can be simplified as: 
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Note that the initial and the final indexes in the first and the 

second sums changed. By reordering (B27) and further 

simplifying the expression, it can be concluded that: 
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By substituting (B24) into (B28) the proof of (34) is 

completed: 
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