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Abstract— Pattern recognition in real world data is subject to 

various sources of uncertainty that should be appropriately 

managed. The focus of this paper is the management of 

uncertainty associated with parameters of fuzzy clustering 

algorithms. Type-2 Fuzzy Sets (T2 FSs) received increased 

research interest in the past decade primarily due to their 

potential to model various uncertainties. However, because of the 

computational intensity of the processing of General T2 (GT2) 

Fuzzy Sets (FSs), only their constrained version, the Interval T2 

(IT2) FSs, were typically used. Fortunately, the recently 

introduced concepts of  -planes and zSlices allow for efficient 

representation and computation with GT2 FSs. Following this 

recent development, this paper presents a novel approach for 

uncertain fuzzy clustering using the General Type-2 Fuzzy C-

Means (GT2 FCM) algorithm. The proposed method builds on 

top of the previously published IT2 FCM algorithm, which is 

extended via the  -planes representation theorem. The fuzzifier 

parameter of the FCM algorithm can be expressed using 

linguistic terms such as “Small” or “High”, modeled as T1 FSs. 

This linguistic fuzzifier value is then used to construct the GT2 

FCM cluster membership functions. The linguistic uncertainty is 

transformed into uncertain fuzzy positions of the extracted 

clusters. The GT2 FCM algorithm was found to balance the 

performance of T1 FCM algorithms in various uncertain pattern 

recognition tasks and provide increased robustness in situations 

where noisy or insufficient training data are present. 

 

Index Terms— General Type-2 Fuzzy Sets, -Planes 

Representation, Fuzzy C-Means, Uncertainty, Pattern 

Recognition 

I. INTRODUCTION 

ATTERN recognition algorithms are commonly subject to 

various sources of uncertainty that should be appropriately 

managed. Several forms of uncertainties are typically 

recognized. For instance, the uncertainty related to the input 

data themselves (e.g. clustering heterogeneous input data such 

as real numbers, intervals and linguistic terms), the uncertainty 

related to the interpretation of the computed result and the 

uncertainty related to the suitable parameters’ values of the 

pattern recognition algorithms. The scope of this work is the 

appropriate uncertainty management for fuzzy clustering 

algorithms [1]-[4]. 
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Examples of the management of the first type of uncertainty 

are the nonparametric and parametric models for fusing 

heterogeneous fuzzy data developed by Pedrycz and 

Hathaway et al [5], [6]. In this work, the heterogeneous input 

data are encoded into a uniform internal representation that 

allows for application of common processing methods such as 

fuzzy clustering. Subsequently, the internal representation can 

be decoded back to the original form. While this approach 

enables the use of standard pattern recognition tools to 

heterogeneous input data, it requires a selection of suitable 

algorithm parameters (e.g. the fuzzifier parameter for FCM 

algorithm). An example of managing the uncertainty related to 

interpretation of the results is the concept of shadowed sets 

proposed by Pedrycz [7], [8]. In this work, the shadowed sets 

were used to interpret the fuzzy cluster partition and 

distinguish between cluster cores and cluster shadows with 

ambiguously assigned data points. Finally, an example of 

managing the uncertainty related to algorithm parameters’ 

values is the work of Rhee and Hwang on uncertain fuzzy 

clustering with IT2 FCM algorithm [4], [9], [10]. This paper 

extends the IT2 FCM algorithm into a GT2 FCM algorithm 

via using GT2 fuzzy cluster membership functions. 

Type-2 Fuzzy Logic (FL) became the scope of work for 

many researchers in recent years [11]-[16]. T2 FL has been 

successfully applied in many engineering areas, demonstrating 

improved performance and robustness of T2 FL relative to T1 

FL when confronted with various sources of data uncertainties 

[17]-[22]. Unlike the T1 FL, the T2 FL systems use individual 

fuzzy sets with membership grades that are themselves fuzzy 

sets. These secondary fuzzy grades provide additional degrees 

of freedom for modeling and coping with dynamic input 

uncertainties. 

 However, the early representations of General T2 (GT2) 

Fuzzy Sets (FSs) did not provide computationally feasible 

algorithms [23]. Instead, the Interval T2 (IT2) FSs, which use 

constrained secondary membership functions, were used [24]. 

The IT2 FL offers a compromise between the computational 

inexpensiveness of T1 FL and the uncertainty modeling 

capability of GT2 FL.  Many researchers proposed to extend 

the T1 FL based algorithms by incorporating the IT2 FL. 

Mitchell proposed the extension of pattern recognition using 

IT2 FSs [25]. Wu and Mendel extended the uncertainty 

measures for T1 FSs to IT2 FSs in [26]. Zeng et al. proposed 

the IT2 Gaussian mixture models [27]. Rhee and Hwang 

published several papers discussing the extension of several 

T1 fuzzy pattern recognition algorithms into IT2 FL, namely 

General Type-2 Fuzzy C-Means Algorithm for 

Uncertain Fuzzy Clustering 

Ondrej Linda, Student Member, IEEE, Milos Manic, Senior Member, IEEE 

P 



 

the IT2 fuzzy C-Spherical shells algorithm [28], the IT2 fuzzy 

perceptron [29], the IT2 fuzzy K-nearest neighbor algorithm 

[30] and the IT2 FCM algorithm [4], [9], [10].  

 The recently introduced representations of  -planes [31], 

[32] and zSlices [33] offer a computational efficient and viable 

framework for representing and computing with the GT2 FSs. 

In both cases, the  -planes and the zSlices representation 

theorems allow for treating the GT2 FSs as a composition of 

multiple IT2 FSs, each raised to the respective level of  or z. 

The operations on GT2 FSs become a multiple application of 

the efficient arithmetic of IT2 FSs. This development allows 

for extending the previously developed IT2 FL algorithms 

using the  -planes representation theorem and thus managing 

the uncertainty with fully-developed GT2 FSs. An example of 

this development is the work of Zhai and Mendel on 

uncertainty measures for GT2 FSs [34].  

 This paper proposes a novel method for managing the 

uncertainty associated with the selection of the fuzzifier 

paremeter m for the FCM algorithm. The value of m has a 

direct impact on the location and quality of the cluster 

partition. However, it is difficult to express the notion of 

fuzziness in the input data using precise real value for T1 

FCM algorithm or even as an interval value for IT2 FCM 

algorithm [1]-[4]. To alleviate this issue, the proposed GT2 

FCM algorithm allows for linguistically expressing the 

fuzzifier value using terms such as “Small” or “High” modeled 

as T1 FSs. The resulting cluster membership functions are 

implemented as GT2 FSs represented using the  -planes 

theorem. A novel hard-partitioning rule is proposed for the 

final input-cluster assignment. In addition, the Quasi-T2 

(QT2) FCM algorithm is also introduced as a simplified 

version of the GT2 FCM method. 

 The rest of the paper is organized as follows. Section II 

discusses the background of GT2 FSs and the  -plane 

representation theorem. The original T1 FCM algorithm and 

its IT2 FL extension are reviewed in Section III. Section IV 

and Section V present the novel GT2 and QT2 FCM 

algorithms. Experimental results and comparisons are 

presented in Section VI. Finally, the paper is concluded in 

Section VII. 

II. GENERAL TYPE-2 FUZZY SETS 

 This section provides background overview of GT2 FSs and 

the fundamentals of the  -plane representation. 

A. General Type-2 Fuzzy Sets 

A GT2 FS A
~

 can be expressed on the universe of discourse 

X using its T2 fuzzy membership function ),(~ ux
A

 , where 

Xx and xJu  [11]: 
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 Here, variable x and u are the primary and the secondary 

variables and Jx denotes the support of the secondary 

membership function also called the primary membership of x. 

Operator   denotes union over all possible values of x and 

u, and ]1,0[),(~ ux
A

 . Two representations of GT2 FSs are 

commonly adopted; the vertical-slice representation and the 

wavy-slice representations. 

 First, the vertical-slice representation is considered. By 

instantiating a specific value for xx  , a vertical slice 

),(~ ux
A

 of the fuzzy membership function ),(~ ux
A

 can be 

obtained. This vertical slice defines a secondary membership 

function ),(~ uxx
A

 for Xx  and ]1,0[ xJu : 
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 Here, )(uf x denotes the secondary grade or the amplitude of 

the secondary membership function and ]1,0[)(  uf x . 

Assuming that the domain of primary variable x is discretized 

using N samples, the GT2 FS A
~

 can be represented as a 

composition of all its vertical slices: 
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 Next, the wavy-slice representation is considered. The GT2 

FS A
~

 can be constructed as a composition of its embedded FSs

eA
~

. Again, for a discrete universe of discourse with N 

elements, the embedded FS eA
~

 can be described as: 
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 According to the Mendel and John representation theorem 

[35], the GT2 FS A
~

can be described as a union of all of its n 

embedded T2 FSs: 
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 For the discretized primary domain X, the centroid 
A

C ~ of a 

GT2 FS A
~

 can be calculated using the Extension Principle 

and by enumerating all of the embedded fuzzy sets [16]: 
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 Here, every possible combination of variables N ,...,1

forms an embedded FS, which has a secondary grade of 

)()( 11 Nxx N
ff   . Operator   is the specific t-norm used 

(e.g. the minimum operator). 



 

 Assuming that each primary membership 
ixJ was 

discretized into Mi points, the number of embedded fuzzy sets 

that have to be enumerated in (6) is  


N

i
iMn

1
. Already for 

large discretization steps n becomes prohibitively large.  

 The crisp output value y can be obtained by applying one of 

the available defuzzification methods to the type-reduced 

centroid 
A

C ~ . As an example, the centroid defuzzifier is 

commonly used [11]: 
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Here, n denotes the number of discretized samples in the 

output domain of variable y and yi is the discretized sample. 

B.  -Plane Representation for GT2 Fuzzy Sets 

 The following notation for the  -plane representation was 

adopted from [32], [36], [37]. The  -plane representation was 

independently developed in the work of several authors [31], 

[33], [38].  

 An  -plane A
~

 of a GT2 Fs A
~

 can be defined as the union 

of all primary memberships of A
~

 with secondary grades 

greater than or equal to : 

 

    


Xx Ju
x

x

ufuxA  )(|),(
~

 (8) 

 

 An  -cut of the secondary membership function )(~ x
A

  can 

be denoted as )|(~ xS
A

 and expressed as: 
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 Hence, an  -plane A
~

is a composition of all  -cuts of all 

secondary membership functions: 
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 It is apparent that the well known Footprint of Uncertainty 

(FOU) of the GT2 FS A
~

 is equivalent to: 
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 Each  -plane
 A

~
is bounded from above by its upper 

membership function )|(~  x
A

and from below by its lower 

membership function )|(~  x
A

. Using the  -cuts boundaries of 

each vertical slice (9), these bounds can be expressed as: 
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 By raising the  -plane A
~

to the level of  , a special IT2 

FS is created. This FS was named  -level T2 FS ),(~ uxR
A

in 

[31], [39] and denoted as: 
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The different discussed variants of GT2 FSs are depicted in 

Fig. 1. Finally, according to Liu’s representation theorem, the 

GT2 FS A
~

 can be constructed as a composition of all of its 

individual  -level T2 FSs [31]: 
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 It should be noted here, that the  symbol denotes the 

union set-theoretic operations, which for all points computes 

the maximum membership grade for all  -planes. 

Furthermore, Liu used the  -plane representation theorem to 

express the centroid )(~ xC
A

of GT2 FS A
~

 as a composition of 

individual centroids )(~ xC
A

 of the respective  -level T2 FSs 

),(~ uxR
A

: 

 
 (a) (b) (c) 

Fig. 1 General T2 fuzzy set A
~

(a), its IT2 variant
2

~
ITA (b) and its  -plane representation (c). 
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 Because each  -level T2 FS ),(~ uxR
A

 is an interval-valued 

set, centroid )(~ xC
A

 will become an interval set completely 

determined by its left and right boundaries
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 Equation (16) showed a new way for computing the 

centroid )(~ xC
A  

of a GT2 FS A
~

via type-reducing each  -

level T2 FS ),(~ uxR
A

and then fusing the results together. 

 Several algorithms are applicable for the type-reduction of 

GT2 FSs represented using  -planes. Originally, independent 

application of the Karnik-Mendel (KM) or the Enhanced KM 

algorithms at each  -plane was proposed [31]-[33]. Recently, 

new and faster algorithms exploiting the structural 

dependencies of neighboring  -planes have been emerging, 

namely the Centroid Flow algorithm [36], [37], the Enhanced 

Type-Reduction algorithm [40] or the Monotone Centroid 

Flow algorithm [41].  

III. TYPE-1 AND INTERVAL TYPE-2 FUZZY C-MEANS 

This section provides an overview of the T1 FCM algorithm 

[1]-[3] and the uncertain clustering using IT2 FCM algorithm 

proposed by Hwang and Rhee [4], [10]. 

A. Type-1 Fuzzy C-Means 

The original FCM algorithm seeks an exhaustive partition 

of the input data set into a non-empty set of clusters [1]-[3]. 

The employed fuzzy membership grades allow each point to 

maintain gradual membership to multiple clusters. Consider an 

input data set   d
n XX  ,...,,1 xx , where n is the number of 

data points and d denotes the input space dimensionality. The 

membership of pattern xj into a set C of c clusters can be 

defined by the membership vector )( ixu as [3]:  
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Subject to constraints: 
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The complete assignment of all data points to the set of 

clusters can be described by a nc  fuzzy partition matrix U 

defined as: 
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The optimality of the membership matrix U with respect to 

the data set X and the cluster set C is achieved via the 

constrained minimization of the following objective function: 
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Here, jid denotes the chosen distance norm (e.g. Euclidean) 

and parameter m, m > 1, is referred to as the fuzzifier, which 

controls the “fuzziness” of the extracted clusters. The greater 

the value of fuzzifier m, the softer the cluster boundaries 

become (depicted in Fig. 2). The objective function J can be 

minimized by iteratively re-computing the membership matrix 

U and updating the cluster positions vj as follows: 
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The FCM clustering algorithm starts from a randomly 

initialized cluster positions and converges when the 

accumulated change in cluster positions falls bellow certain 

threshold. 

A hard-partitioning can be applied to determine the final 

assignment of pattern xi to its designated cluster j as follows: 
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B. Interval Type-2 Fuzzy C-Means 

The value of fuzzifier m should reflect the “fuzziness” of 

the input data. However, in a majority of applications it is 

difficult or impossible to precisely specify the appropriate 

value of m. Furthermore, its specification using a precise 

numerical value is rather counter-intuitive as the amount of 

“fuzziness” can hardly be precisely expressed. In order to 

alleviate this issue, Hwang and Rhee proposed the IT2 FCM 

algorithm, which was designed to handle the uncertainty in 

fuzzy clustering using the tools of IT2 fuzzy logic [4], [10]. 

The IT2 FCM method considers an interval-valued fuzzifier 

[mL, mR] rather than a precise numerical value. The interval 

 
Fig. 2 T1 FCM membership functions. 

  



 

membership )](),([ ijij
uu xx of pattern xi to cluster vj can then 

be computed as: 
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 The update of the cluster positions must take into account 

the interval membership grades, which results in an interval 

cluster coordinates. Using the definition of the interval 

centroid of IT2 FSs, the interval cluster position becomes: 
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The value of fuzzifier m in (27) switches from mL or mR 

according to (25) and (26). The individual values of the left 

and right cluster boundaries in each dimension can be 

computed by first sorting the order of patterns in particular 

dimension and then applying the Karnik-Mendel iterative 

procedure [23]. 

The precise position of the center of gravity can be obtained 

by defuzzifying the interval centroid jv~ as follows: 
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The hard-partitioning method for the IT2 FCM algorithm 

proceeds according to the T1 FCM algorithm once the clusters 

membership grades are defuzzified. The method proposed by 

Hwang and Rhee computes the precise membership of pattern 

xi to cluster j as: 
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Where the left and right membership values are computed 

as: 
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IV. GENERAL TYPE-2 FUZZY C-MEANS ALGORITHM 

This section introduces the GT2 FCM algorithm for 

uncertain fuzzy clustering. The value of the fuzzifier m has a 

direct impact on the obtained location and quality of the 

cluster partition. However, it is difficult to express the 

uncertain notion of fuzziness in the input data using precise 

values. The GT2 FCM algorithm allows for expressing the 

notion of fuzziness using linguistic terms modeled as T1 FSs. 

The linguistic fuzzifier value is then used to construct the GT2 

fuzzy cluster membership functions. Using the  -planes 

representation, the input uncertainty is transformed into the 

uncertain fuzzy position of the extracted clusters. 

A. Constructing GT2 fuzzy membership functions 

The original T1 FCM algorithm requires specification of a 

precise fuzzifier value m. The IT2 FCM algorithm accepts an 

interval-valued fuzzifier [mL, mR], which resembled a uniform 

uncertainty about the appropriate value of fuzzifier m. The 

proposed GT2 FCM algorithm accepts a linguistic description 

of the fuzzifier value expressed as a T1 fuzzy set (e.g. “Small” 

or “High”). The linguistic fuzzifier value is here denoted as a 

T1 fuzzy set M. Fig. 3 illustrates two examples of encoding 

the linguistic notion of the appropriate fuzzifier value for the 

GT2 FCM algorithm using three linguistic terms. 

Following the notation introduced in (9), the linguistic 

fuzzifier M can be expressed using its  -cuts as follows: 
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 (a) (b) 

Fig. 3 Two possible linguistic representation of the fuzzifier M using T1 fuzzy sets. 

  



 

where 
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The proposed GT2 FCM algorithm uses the linguistic 

fuzzifier M to construct secondary membership functions of 

the GT2 fuzzy partition matrixU
~

. The degree of belonging of 

pattern xi to cluster vj can now be expressed using a 

membership grade )(~
iju x  expressed as T1 FS. Combining the 

T1 fuzzy memberships from all input patterns, the GT2 fuzzy 

membership function for cluster vj can be obtained: 
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The T1 fuzzy membership grades of individual patterns 

)(~
iju x  can be understood as a secondary membership 

functions of the GT2 cluster membership function ju~ sampled 

at the particular locations of patterns xi. The secondary 

membership function )(~
iju x  can be expressed using its  -

cuts as follows: 
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By combining all  -cuts )(~ 
juS  for a specific value of   

over all input patterns, an  -plane of the GT2 cluster 

membership function  ju~  can be obtained as: 
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The left and right boundaries )(~ i
L
u j

s x  and )(~ i
R
u j

s x of  -

plane )(~ ju at a specific position of pattern xi can be computed 

by evaluating the interval fuzzy membership of pattern xi to 

cluster vj using the interval-valued fuzzifier )](),([  R
M

L
M ss . 

Note, that this interval-valued fuzzifier value is obtained from 

the  -cuts representation of the linguistic fuzzifier M as in 

(33). Hence: 
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Hence, the  -cuts of the linguistic fuzzifier M are used to 

construct  -planes of the GT2 cluster membership function 

ju~ . A comparison of the constructed IT2 and the GT2 fuzzy 

membership functions is depicted in Fig. 4. Note that in Fig. 

4(b) the GT2 FCM membership function was constructed 

using linguistic fuzzifier valued modeled as symmetrical 

Gaussian T1 FS. 

B. Cluster Position Update 

The cluster position update of the T1 FCM algorithm 

determines the new cluster locations based on the membership 

matrix U. In case of the introduced GT2 FCM algorithm, the 

proposed cluster position update method consists of first type-

reducing the GT2 fuzzy cluster memberships into their T1 

fuzzy centroids and then defuzzifying these centroids into the 

precise cluster positions.  

The proposed algorithm is based on Liu’s  -planes centroid 

theorem as expressed in (16) and (17). One of the fundamental 

ideas underlying the  -plane representation theorem for GT2 

FSs is that each  -plane and its respective  -level set can be 

treated as IT2 FSs. 

In case of the GT2 fuzzy membership function ju~  the fuzzy 

position of cluster jv~  can be obtained as its centroid, which 

itself is a T1 fuzzy set. Hence: 

 
 (a) (b) 

Fig. 4 The IT2 (a) and GT2 (b) FCM membership functions. 
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The computation of fuzzy position of cluster jv~ resembles 

(6), were * denotes the selected t-norm operation (e.g. 

minimum). 

 According to Liu’s theorem, centroid 
juC~ can be calculated 

as a weighted composition of the interval centroids of 

individual  -planes. 
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The computation of individual interval centroids 

)](),([ ~~  R
u

L
u jj

cc  is straightforward as it follows the well-

established arithmetic of type-reduction for IT2 FSs. In the 

presented implementation, the independent application of the 

Enhanced Karnik-Mendel algorithms was used [31]-[33]. 

The precise cluster position is computed by defuzzifying the 

cluster centroid 
juC~ : 
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Here, K is the number of discretization steps of the domain 

of the centroid and yi denotes the position vector of those 

discretized steps. The value of K is directly determined by the 

number of  -planes used. An illustration of the GT2 FCM 

algorithm is depicted in Fig. 5. 

C. Hard-Thresholding for GT2 FCM Algorithm 

In some applications it is desirable to determine the hard 

assignment of an input pattern xi to the most representative 

cluster. The hard-partitioning rule of the GT2 FCM algorithm 

can be expressed as: 
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However, the fuzzy membership grades )(~
iju x  of pattern xi 

to different clusters are themselves T1 FSs and must be first 

defuzzified. The approach presented in [10] for the IT2 FCM 

algorithm could be extended from IT2 FSs to GT2 FSs via 

Liu’s representation theorem. However, some deficiencies of 

the hard-partitioning approach proposed by Hwang and Rhee 

in [10] can be identified. 

The previously proposed method, which was described in 

(29)-(31), calculates the left and right membership )( i
L
ju x   and 

)( i
R
ju x  of pattern xi with respect to cluster j based on pattern’s 

contribution either to the left or to the right cluster interval 

position in each dimension. Two problems can be identified as 

follows. Firstly, since the membership of pattern xi to cluster j 

was calculated in the multidimensional space using the 

Euclidian distance norm, it seems redundant to separately 

aggregate identical membership values for each dimension. 

Secondly, the proposed method commonly results in values of 

the left membership )( i
L
ju x  being greater than the right 

membership )( i
R
ju x . The authors consider this as 

counterintuitive with respect to the basic principles of T2 

fuzzy logic and thus propose a novel hard-partitioning scheme. 

In the proposed GT2 FCM algorithm the hard-partitioning 

is performed based on the defuzzified value of the T1 fuzzy 

membership grade. Hence, the following rule can be applied: 
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Fig. 5 Schematic view of the GT2 FCM algorithm. 

  



 

 

For the sake of completeness, the centroid of the T1 fuzzy 

membership grade ))(~( ijuc x  can be computed as follows: 
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Again, K is the number of discretization steps of the domain 

of the fuzzy cluster membership grade and yi denotes the 

position vector of those discretized steps. The value of K is 

directly determined by the number of  -planes used. 

D. Computational Complexity  

Assume that the number of input patterns is denoted as n, 

number of clusters is c and the number of training iterations is 

I. Each update of a single element in the T1 FCM membership 

matrix of size nc  requires computation of mutual distances 

between particular input pattern and all other clusters as in 

(22). Hence, the asymptotical complexity of the T1 FCM 

algorithm can be summarized as )( 2cInO . 

The IT2 FCM algorithm uses interval-valued fuzzifier, 

which requires computation of the lower and the upper cluster 

membership functions. In addition, the EKM algorithm is used 

to compute the left and right cluster boundaries. It has been 

shown that the EKM algorithm converges super-exponentially 

fast, however its asymptotical time complexity is still )( mnO , 

where m is the number of iterations required. Since the 

number of iterations is typically very low, the complexity of 

the EKM algorithm is here approximated as O(n) [42]. Hence, 

the asymptotical complexity of the IT2 FCM algorithm can be 

summarized as ))2(( 2 cncnIO  . 

The GT2 FCM algorithm proceeds by computing the 

interval membership values and the interval cluster positions 

for each  -plane. When K  -planes are used the 

asymptotical complexity of the GT2 FCM algorithm becomes

))2(( 2 cncnKIO  . Hence, when compared to the IT2 FCM 

algorithms, the GT2 FCM algorithm linearly increases the 

computational complexity with the number of  -planes used. 

V. QUASI TYPE-2 FUZZY C-MEANS ALGORITHM 

Several authors proposed the concept of QT2 FSs as an 

intermediate step between IT2 FSs and the full-blown GT2 

FSs [43], [44]. Here, the GT2 FS is approximated by 

considering only two  -planes of each FS A
~

, namely the 

bottom and top  -planes 0

~
A  and 1

~
A . Experimental studies 

demonstrated that especially in case of triangular secondary 

membership functions the QT2 FL systems compute close 

approximation of the GT2 FL systems. Similar idea is used 

here to develop the QT2 FCM algorithm. 

The QT2 FCM algorithm calculates the partition of the 

input data set X into a set of clusters C via fusing the 

calculation of the T1 FCM and the IT2 FCM algorithms. Here, 

the geometry of the linguistic fuzzifier M is restricted only to 

triangular fuzzy membership functions. Hence, fuzzifier M can 

be described using three parameters },,{ RAL mmm encoding the 

base and the apex of the triangular membership function as 

depicted in Fig. 6(a) and subject to constraint RAL mmm  . 

The QT2 FCM algorithm uses the T1 FCM algorithm as 

described in Section III.A with the fuzzifier value mA and the 

IT2 FCM algorithm as described in Section III.B with the 

interval-valued fuzzifier [mL, mR]. The fuzzy position of 

cluster jv~ for the QT2 FCM algorithm is then computed as the 

centroid of the fuzzy cluster membership function by fusing 

the singleton cluster position of the T1 FCM algorithm with 

the IT2 centroid of the IT2 FCM algorithm as follows: 
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The precise position of cluster j can then be determined 

using the simplified defuzzification of the centroid [42]: 
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The schematic of the QT2 FCM algorithm is depicted in 

Fig. 6(b). 

VI. EXPERIMENTAL RESULTS 

This section presents the experimental testing of the 

proposed GT2 FCM algorithm. First, the extraction of patterns 

using GT2 fuzzy membership functions is demonstrated by 

visualizing the extracted uncertain cluster positions. Second, 

the performance of the GT2 FCM algorithm is compared 

against T1, IT2 and QT2 FCM algorithms on benchmark data 

sets with uncertain cluster position and densities. Finally, the 

GT2 FCM algorithm is applied to the task of pattern 

  
(a) (b) 

Fig. 6 Fuzzifier value M modeled as QT2 FS (a) and a schematic view of the QT2 FCM algorithm. 

  



 

recognition in several well-known multi-dimensional 

benchmark data sets. 

A. Extracting Uncertain Patterns 

Experiment 1: Consider a problem of clustering 2D input 

data distribution composed of three Gaussian clusters. The 

cluster positions extracted using the T1 FCM algorithm with c 

= 3 and a real valued fuzzifier parameter are shown in Fig. 

7(a). The third dimension in Fig. 7 denotes the uncertainty 

about the cluster position. Since T1 FCM algorithm does not 

provide any mechanism for handling uncertainty, the extracted 

cluster positions are certain and denoted as singletons in the 

2D input space. 

The IT2 FCM algorithm handles interval uncertainty in the 

used fuzzifier value. Through the algorithm proposed by Rhee 

and Hwang, this interval uncertainty is translated into interval 

position of the cluster centroids, as depicted in Fig. 7(b). Due 

to the interval fuzzy memberships, the precise cluster location 

 
 (a) (b) 

 
 (c) (d) 

Fig. 7 Cluster position uncertainty for T1 FCM (a), IT2 FCM (b), QT2 FCM (c) and GT2 FCM (d) algorithms. 

  

 
 (a) (b) 

Fig. 8 GT2 FCM cluster position uncertainty for clusters with lower dispersion (a) and for insufficient number of clusters (b). 

  



 

is equally likely within the interval region. Thus it is computed 

as the center of the interval centroid. 

The proposed GT2 FCM algorithm uses linguistic 

description of the fuzzifier value M. This parameter 

uncertainty transforms to T1 fuzzy centroids, which more 

accurately model the uncertainty about the cluster position 

using T1 FSs. The cluster position uncertainty for GT2 FCM 

algorithm with 10  -planes is depicted in Fig. 7(d).  

Finally, the proposed QT2 FCM algorithm clusters the input 

data using linguistic fuzzifier specified as a QT2 FS M. Thus 

this uncertainty is transformed into the uncertainty about 

cluster position modeled using the QT2 fuzzy centroid 

depicted in Fig. 7(c). 

It should be noted here that the uncertain cluster positions 

visualized in Fig. 7 resemble the 3D terminal FCM prototypes 

obtained by clustering the fused heterogeneous fuzzy data in 

[5], [6]. However, the fundamental difference between both 

approaches is that the uncertainty in cluster positions in Fig. 7 

is due to the uncertain fuzzy parameters of the fuzzy clustering 

algorithm, while in latter case, the uncertain cluster positions 

are due the uncertainty of the input data themselves. 

Experiment 2: The uncertainty about cluster positions can 

also provide some vital clues about the structure of the input 

data or the quality of the obtained solution.  

Fig. 8(a) shows uncertain cluster position extracted using 

the GT2 FCM algorithm from a 2D data set with three 

Gaussian distributions as in the previous experiment. The 

Gaussian distributions have identical means, but reduced 

standard deviations. It can be observed in Fig. 8(a), that as the 

dispersion of the data points is substantially lower, the 

uncertainty about the position of the extracted patterns was 

also significantly reduced (compare to Fig. 7(d)). 

Fig. 8(b) illustrates the behavior of the cluster position 

uncertainty in case of a pre-selected inappropriate number of 

clusters when c = 2. It can be seen, that while one cluster was 

located successfully, the second cluster cannot cover the 

position of the two remaining Gaussian distributions and is 

thus significantly more uncertain, which is reflected in the 

geometry of the fuzzy centroid. 

These two observations suggest that uncertainty measures 

of GT2 FSs [34] can provide important clues for cluster 

quality monitoring or as validation indexes. 

B. Uncertain Cluster Position Estimation 

Experiment 3: Next, the performance of the GT2 FCM 

algorithm was tested on a problem of uncertain cluster 

position estimation. Here, two non-overlapping 2D clusters 

were created by sampling 100 data points from two Gaussian 

distributions with specified mean and standard deviation. The 

task of the FCM algorithms was to estimate the center of the 

Gaussian distribution via the clustering process. 

 First, a clean data set was considered as depicted in Fig. 

9(a). Next, an increasing amount of uniformly distributed 

noise was added into the distribution all the way to 30 noisy 

points as shown in Fig. 9(b). Five algorithms were tested, 1) 

T1 FCM with m = 1.5, 2) T1 FCM with m = 4.0, 3) IT2 FCM 

with mL = 1.5 and mR = 4.0, 4) QT2 FCM with mL = 1.5, mR = 

4.0 and mA = 2.75, and 5) GT2 FCM with linguistic fuzzifier 

M =”Medium” modeled as symmetrical Gaussian T1 FS as 

shown in Fig. 3(b)). The experiment was repeated 500 times 

for each level of noise to reduce the variance of the results. 

The used quality measure was the sum of the position error of 

the estimated precise clusters’ positions. Fig. 10 shows the 

calculated position error for different test cases, where test 

case 1 was the input data without noise and test case 11 

contained the maximum amount of 30 uniformly distributed 

noisy points. 

      
 (a) (b) 

Fig. 9 Two overlapping Gaussian clusters for cluster position estimation with no noise (a) and with 30 uniformly distributed noise points (b). 
  

 
Fig. 10 Cluster position estimation error for different FCM algorithms. 

  

TABLE I 
RELATIVE ERROR IMPROVEMENT FOR DIFFERENT FCM ALGORITHMS 

FCM 

Algorithm 

Test Case 1 Test Case 11 

Error 
Relative 

Improvement 
Error 

Relative 
Improvement 

T1 FCM m = 1.5 0.0126 3.82% 0.0216 - 

T1 FCM m = 4.0 0.0131 - 0.0159 26.39% 

GT2 FCM 0.0128 2.29% 0.0168 22.22% 

 



 

The following observations can be made based on Fig. 10 

and the summarized errors for test case 1 and test case 11 

presented in Table I. The T1 FCM algorithm with smaller 

fuzzifier value performed the best for noise-less data (test case 

1), while the T1 FCM algorithm with high fuzzifier value 

performed the worst. However, for data with high amount of 

noise (test case 11), the T1 FCM algorithm with high fuzzifier 

value significantly outperformed the T1 FCM algorithm with 

small fuzzifier value. The GT2 FCM algorithm combined the 

ability of T1 FCM algorithm with small fuzzifier value to 

correctly cluster noise-less and non-overlapping data with the 

ability of T1 FCM algorithm with large fuzzifier value to 

correctly cluster noisy over-lapping data sets. The GT2 FCM 

algorithm provided performance improvement regardless of 

the noise level. This is demonstrated in Table I, where the 

relative improvement denotes the improvement in determining 

the cluster position with respect to the worse of the two T1 

FCM algorithms used. Hence, the GT2 FCM algorithm 

provides 2.29% lower error when compared to T1 FCM 

algorithm with higher fuzzifier value for test case 1 and 

22.22% lower error when compared to T1 FCM algorithm 

with lower fuzzifier value for test case 11. 

The IT2 FCM algorithm outperformed the worse T1 FCM 

algorithm for lower amounts of noise. Quite interestingly, its 

performance was the worst for increased amount of noise. 

This can be likely attributed to the fact that the IT2 FCM 

algorithm assigns uniform weight to all fuzzifier values in the 

large considered fuzzifier interval. The QT2 FCM algorithm 

performed in-between the GT2 and the IT2 FCM algorithms, 

ensuring steady robust performance and providing 

performance improvement when compared to the T1 FCM 

algorithm with inadequate choice of fuzzifier value.  

C. Uncertain Pattern Recognition 

Experiment 4: The following experiment analyzed the 

performance of the FCM algorithms on the task of uncertain 

pattern recognition. Here, two partially over-lapping 2D 

clusters were created by drawing a total of 400 points from 

     
(a) (b) 

Fig. 11 Two uniform clusters for test case 1 (a) and test case 25 (b). 

  

     
(a) (b) 

     
 (c) (d) 

Fig. 12 Classification rate of T1 FCM algorithms (a), comparison of T1 and GT2 FCM with small (b), medium (c) and high (d) values of the fuzzifier parameter. 

  



 

two uniform distributions. The two clusters varied in the size 

and the density of the data points. Altogether 25 test cases 

were constructed, where the number of points (density) of 

each cluster was varied for each test case. The first test case is 

depicted in Fig. 11(a), where the smaller left cluster is 

composed of 100 points, while the larger right cluster contains 

300 data points. The test case number 25 is depicted in Fig. 

11(b), where the number of points in the left and right cluster 

is 350 and 50, respectively. The intermediate test cases were 

constructed by linearly increasing/decreasing the number of 

points in the left/right cluster. In this manner, the uncertainty 

in the pattern recognition task was due to cluster overlap, 

different cluster sizes and different cluster densities. 

Six FCM algorithms with c=2 clusters  were applied to the 

task of pattern recognition as follows: 1) T1 FCM with m = 

1.5, 2) T1 FCM with m = 2.75, 3) T1 FCM with m = 4.0, 4) 

GT2 FCM with linguistic fuzzifier M=”Small”, 5) GT2 FCM 

with linguistic fuzzifier M=”Medium”, and 6) GT2 FCM with 

linguistic fuzzifier M=”High” modeled according to Fig. 3(b). 

After the cluster positions were identified, the hard-

partitioning process was applied to determine the final 

assignment of each data point to a specific cluster. The 

average classification rate was calculated over 10 runs for 

different distributions of points.  

In general, the FCM algorithms were more successful in 

locating the smaller left cluster, hence significantly higher 

classification rates were achieved when this cluster contained 

more points. Fig. 12(a) plots the classification rates of all three 

T1 FCM algorithms. It can be observed that the T1 FCM 

algorithm with high fuzzifier value performs superior up to 

test case 17 and then its performance sharply deteriorates as 

the larger cluster becomes loosely defined by the decreasing 

number of data points. On the other hand, the T1 FCM 

algorithm with low fuzzifier value outperforms the other two 

algorithms for test cases 20-25, but its performance is worse 

for the first 20 test cases. This observation demonstrates that 

the optimal choice of the fuzzifier parameter m depends on the 

distribution of the input data points.  

Figures 12(b)-12(d) compare the performance of the T1 

FCM algorithms and the GT2 FCM algorithms with matching 

fuzzifier values (e.g. Fig. 12(b) shows T1 FCM with m=1.5 

and GT2 FCM with M=”Small”). It can be observed that the 

GT2 FCM algorithms balance the performance of the T1 FCM 

algorithms, resulting in more robust pattern recognition 

performance given the present uncertainties. Fig. 12(b) depicts 

the GT2 FCM algorithm with “Small” fuzzifier value offering 

increased classification rate for the first 22 test cases. The 

tradeoff is the performance deterioration for the last test cases. 

Fig. 12(c) and Fig. 12(d) show the improved performance of 

the GT2 FCM algorithms with “Medium” and “High” 

fuzzifier values, which is apparent as increased robustness of 

the algorithms to performance deterioration for later test cases.  

In summary, using GT2 FCM algorithm can be observed to 

balance the performance of the T1 FCM algorithms since the 

GT2 cluster membership functions encapsulate many T1 fuzzy 

membership functions and combine their performance 

together. 

D. Pattern Recognition in Higher-Dimensional Data sets 

Experiment 5: The performance of the proposed GT2 FCM 

algorithm was tested on the task of pattern recognition in 

multi-dimensional benchmark data sets obtained from the UCI 

Machine Learning repository [45]. Six data sets were selected, 

Iris, Wine, Pima Indians diabetes, Yeast, Statlog Shuttle and 

Magic Gamma Telescope data sets. The summary of the data 

sets is given in Table II. For the Yeast data set only the four 

most abundant classes have been used. Similarly, two classes 

have been created in the Shuttle data set by taking the most 

abundant data class (80% of data) as class 1 and the remaining 

less abundant data classes as class 2 (20% of data). 

Identical FCM algorithms with the same parameter values 

were used as in Experiment 3. Individual FCM algorithms 

have been used to model the distribution of patterns in each 

class using c=3 clusters. The training process was considered 

to converge after 20 iterations of the FCM algorithms. The 

classification recognition rate was computed using the hard-

partitioning scheme as described in Sections III and IV. To 

further accentuate the performance of the FCM algorithms in 

uncertain clustering, two additional sources of uncertainty that 

are common to real world pattern recognition tasks were 

considered. First, an insufficient number of training data 

points was used, by considering only 30% of the available 

input data for training and the remaining 70% for testing. 

Second, three test cases were constructed by considering clean 

input data and data with additional noise with SNR = 20db and 

SNR = 10db. In order to reduce the variance of the reported 

results, the experiment was repeated 10 times. Different set of 

training and testing data was selected for each experimental 

run. The classification rates are reported in Table III-V. 

First, the following observation can be made by observing 

the performance of the T1 FCM algorithms. The optimal value 

of the fuzzifier parameter m for the T1 FCM algorithms varies 

for different data sets (e.g. clean Shuttle and Magic data sets in 

Table III) and different levels of noise in the same data set 

(e.g. clean and noisy SNR=20dB Shuttle data sets). 

Furthermore, the optimal value of fuzzifier parameter m also 

varies between the training and the testing data (e.g. Iris data 

set with noise SNR=20dB). Hence, T1 FCM algorithms with 

fuzzifier value m tuned based on the available training data 

might perform poorly on the previously unseen testing data. 

For ease of understanding, the performance of the worse of the 

two used T1 FCM algorithms has been highlighted in Table 

III-V. 

Second, the performance of the GT2 FCM algorithm can be 

found to be less affected by the existing uncertainties in the 

data sets (e.g. unknown amount of noise or unknown optimal 

value of the fuzzifier parameter). By observing the results in 

TABLE II 
SUMMARY OF MULTI-DIMENSIONAL DATA SETS 

Data Set Attributes 
Number of 

Data Points 
Classes 

Iris 4 150 3 

Wine 13 178 3 

Pima Indians  8 768 2 

Yeast 8 1,299 4 

Shuttle 9 43,500 2 

Magic 11 19,200 2 

 



 

Table III-V, the performance of the GT2 FCM algorithm on 

the unseen testing data can be found in most cases better than 

the T1 FCM algorithm with the inappropriate choice of the 

fuzzifier parameter (highlighted in bold). This fact can be 

attributed to the GT2 fuzzy membership functions combining 

several T1 fuzzy membership functions together and 

embedding them in the footprint of uncertainty of the GT2 

cluster memberships. The performance of the IT2 and QT2 

FCM algorithms can be found to be similar to the performance 

of GT2 FCM algorithm, but less consistent. 

Hence, the experimental results obtained on the real-world 

higher-dimensional data sets demonstrate that when the 

algorithm parameters are uncertain and cannot be specified by 

real values (e.g. when insufficient training data are available 

or the data are corrupted by an unknown amount of noise), the 

GT2 FCM can deliver reasonable balanced performance 

despite these uncertainties.  

E. Computational Complexity 

 Section IV.D presented the analysis of the asymptotical 

computational complexity of the different FCM algorithms. 

To further compare the computational requirements, the 

different algorithms have been implemented in C++ 

programming language and the actual computational time was 

measured on Dell Precision M4500, Intel Core i7 CPU 

Q720@1.60 GHz with 8.00 GB RAM and running Windows 

7. The reported results have been averaged over 10 runs. Table 

VI compares the computational time for 50 iterations of the 

T1, IT2, QT2 and GT2 FCM algorithms with c=5, with 10  -

planes and applied to a 2D data sets of various sizes. The 

presented results demonstrate the linear increase of 

computational time required by the GT2 FCM algorithm as a 

function of the number of  -planes used, when compared to 

the IT2 FCM algorithm. Furthermore, it can be also seen that 

the time of all algorithms is approximately linear with the size 

of the input data set. 

From the theoretical analysis in Section V.D is apparent that 

the computational time is most strongly dependent on the 

number of clusters c. This behavior is verified in Table VII, 

when all four FCM algorithms have been applied to a data set 

with 300 data patterns and with 50 iterations and 10  -planes 

for the GT2 FCM algorithm. It can be seen that the 

computational time increases faster than linear as a functions 

of c. Also the computational time of the GT2 FCM can be 

TABLE III 
FCM CLASSIFICATION RATES FOR CLEAN DATA 

FCM 
Iris Wine Pima Indians Yeast Shuttle Magic 

Train Test Train Test Train Test Train Test Train Test Train Test 

T1 m=1.5 97.91% 95.06% 98.33% 95.10% 77.43% 72.89% 60.21% 56.46% 75.96% 75.92% 74.81% 74.45% 

T1 m=4.0 96.80% 95.15% 95.23% 94.54% 73.90% 73.59% 60.24% 60.03% 74.09% 74.02% 77.44% 77.26% 

IT2 97.28% 94.18% 96.08% 94.40% 75.30% 74.38% 54.99% 54.81% 75.98% 75.97% 75.97% 75.63% 

QT2 97.53% 94.28% 95.43% 94.87% 75.46% 75.05% 56.04% 55.97% 74.89% 74.90% 77.58% 77.44% 

GT2 97.49% 94.76% 94.68% 94.64% 75.44% 74.40% 58.67% 58.22% 74.75% 74.73% 78.24% 78.14% 

 
TABLE IV 

FCM CLASSIFICATION RATES FOR NOISE DATA SNR = 20DB 

FCM 
Iris Wine Pima Indians Yeast Shuttle Magic 

Train Test Train Test Train Test Train Test Train Test Train Test 

T1 m=1.5 91.38% 81.54% 96.00% 90.11% 71.84% 66.75% 45.10% 39.45% 54.18% 54.19% 72.68% 72.32% 

T1 m=4.0 89.68% 86.07% 94.25% 90.94% 70.10% 67.94% 44.97% 42.15% 60.33% 60.36% 73.71% 73.75% 

IT2 89.68% 85.00% 94.00% 89.78% 70.61% 68.10% 44.45% 42.21% 61.77% 61.79% 75.91% 75.58% 

QT2 87.72% 83.90% 94.22% 90.57% 70.04% 68.36% 44.76% 42.42% 61.29% 61.32% 75.50% 75.48% 

GT2 91.48% 83.96% 94.77% 90.63% 70.41% 68.14% 44.84% 42.36% 60.44% 60.48% 74.08% 74.04% 

 
TABLE V 

FCM CLASSIFICATION RATES FOR NOISE DATA SNR = 10DB 

FCM 
Iris Wine Pima Indians Yeast Shuttle Magic 

Train Test Train Test Train Test Train Test Train Test Train Test 

T1 m=1.5 83.37% 67.45% 90.06% 75.52% 62.18% 58.44% 35.57% 28.62% 50.81% 51.06% 66.28% 65.97% 

T1 m=4.0 78.03% 69.72% 85.44% 77.95% 64.71% 62.25% 37.53% 32.80% 50.85% 51.11% 65.32% 65.13% 

IT2 76.44% 68.75% 84.18% 77.16% 62.70% 60.75% 35.64% 32.93% 50.91% 51.17% 65.85% 65.86% 

QT2 77.02% 69.24% 84.38% 77.58% 63.89% 61.31% 36.13% 32.68% 50.88% 51.14% 65.69% 65.62% 

GT2 80.42% 68.97% 84.81% 77.92% 64.58% 62.12% 37.20% 32.77% 50.84% 51.09% 65.34% 65.17% 

 

TABLE VI 

COMPUTATIONAL TIME [S] COMPARISON FOR DIFFERENT DATA SET SIZE 

Data Set Size T1 FCM IT2 FCM QT2 FCM GT2 FCM 

50 0.038 0.107 0.124 1.080 

100 0.076 0.159 0.184 1.502 

250 0.190 0.260 0.348 2.642 

500 0.481 0.516 0.691 5.385 

1000 0.756 1.040 1.484 10.685 

 
TABLE VII 

COMPUTATIONAL TIME [S] COMPARISON FOR DIFFERENT NUMBER OF 

CLUSTERS C 

c T1 FCM IT2 FCM QT2 FCM GT2 FCM 

1 0.022 0.057 0.070 0.476 

2 0.049 0.074 0.097 0.747 

5 0.222 0.341 0.487 3.048 

10 0.770 1.217 1.436 11.294 

 



 

seen a number of  -planes longer than the IT2 FCM 

algorithm. 

The presented results clearly demonstrate the tradeoff 

between the computational time required by the use of GT2 

FSs and the improved uncertainty modeling capability of the 

GT2 FCM algorithm capable of computing with linguistically 

specified parameters.  

VII. CONCLUSION 

This paper presented a novel algorithm for uncertain pattern 

recognition using fuzzy clustering – the General Type-2 Fuzzy 

C-Means algorithm. The GT2 FCM algorithm manages the 

uncertainty associated with the appropriate choice of the 

fuzzifier parameter of the FCM algorithm. The GT2 FCM 

algorithm extends the previously published IT2 FCM 

algorithm via using the  -planes representation theorem. In 

the proposed framework the fuzziness of the input data can be 

expressed using linguistic terms such as “Small” or “High” 

modeled via T1 FSs. This linguistic fuzzifier is then used to 

construct the cluster membership functions as GT2 FSs. The 

modeled parameter uncertainty is then transformed into the 

uncertain fuzzy positions of the extracted clusters. A novel 

hard-thresholding method was also proposed for final input-

cluster assignment. In addition, the Quasi-T2 FCM algorithm 

was introduced as a simplified version of the GT2 FCM 

method. 

The advantages of the proposed GT2 FCM algorithm were 

demonstrated on several low-dimensional problems as well as 

on multi-dimensional benchmark data sets. It was shown that 

the GT2 FCM algorithm allows for extracting uncertain 

cluster position in the form of the centroids of the GT2 fuzzy 

cluster membership functions. In addition, the GT2 FCM 

algorithm was found to provide balanced performance in case 

of noisy data and clusters with varying density and weights. 

Performance evaluation on six multi-dimensional data sets 

showed that the GT2 FCM algorithm is capable of higher 

recognition rates on previously unseen testing data compared 

to T1 FCM algorithm with inappropriate choice of the 

fuzzifier value. The classification results of the GT2 FCM 

algorithm were found to be robust irrespective of the 

uncertainties in the pattern recognition task such as input noisy 

and insufficient amount of training data.  
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