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Abstract— The planned large scale deployment of smart grid 

network devices will generate a large amount of information 

exchanged over various types of communication networks. The 

implementation of these critical systems will require appropriate 

cyber-security measures. A network anomaly detection solution is 

considered in this paper. In common network architectures 

multiple communications streams are simultaneously present, 

making it difficult to build an anomaly detection solution for the 

entire system. In addition, common anomaly detection algorithms 

require specification of a sensitivity threshold, which inevitably 

leads to a tradeoff between false positives and false negatives 

rates. In order to alleviate these issues, this paper proposes a 

novel anomaly detection architecture. The designed system 

applies a previously developed network security cyber-sensor 

method to individual selected communication streams allowing 

for learning accurate normal network behavior models. In 

addition, an Interval Type-2 Fuzzy Logic System (IT2 FLS) is 

used to model human background knowledge about the network 

system and to dynamically adjust the sensitivity threshold of the 

anomaly detection algorithms. The IT2 FLS was used to model 

the linguistic uncertainty in describing the relationship between 

various network communication attributes and the possibility of 

a cyber attack. The proposed method was tested on an 

experimental smart grid system demonstrating enhanced cyber-

security.  

Keywords-— Anomaly Detection; Critical Systems, Cyber 

Sensor; Fuzzy Logic System; Domain Knowledge; Smart Grid;  

I. INTRODUCTION 

Resiliency and enhanced state-awareness are highly 

desirable properties of modern critical systems [1]. It is of 

paramount importance that critical infrastructures, such as 

energy production or energy distribution systems, are 

equipped with intelligent components for timely reporting and 

understanding of the status and behavioral trends in the system 

[2]. With the increasing amount of information being 

exchanged over various types of communication networks, 

resiliency and enhanced state-awareness cannot be achieved 

without ensuring appropriate cyber-security measures. 

In the particular case of smart grids networks a large scale 

deployment of devices will soon be prevalent. These systems 

potentially add Wireless Access Point (WAP) devices to 

existing utility networks. For instance, in a typical Advanced 

Metering Infrastructure (AMI) system 1,500 wireless sensors 

report to one or multiple WAP nodes [3]. As of April 2010, 

almost 69 million of these meters were planned for 

deployment in the United States [4]. Assuming a uniform 

deployment of sensors this calls for 46,000 WAP’s without 

any regard for redundancy. An example deployment is the 

Pacific Northwest Smart Grid Demonstration Project. A 2011 

progress report states that utility partners are in the process of 

installing 80,000 smart grid components to consumers in five 

states [5]. This large influx of devices into a network vastly 

expands the potential network attack surface. 

To ensure the cyber-security of network system various 

approaches can be applied [6]-[14]. One of the most common 

approaches is anomaly detection. An anomaly detection 

system is trained on a set of normal network behavior. The 

extracted behavior model is then used to detect anomalous 

behavior in the newly observed testing data.  

Two possible difficulties with this approach are identified as 

follows. Firstly, building a single comprehensive normal 

behavior model for a specific network communication system 

might be difficult due to the complexity of the network and 

due to the presence of multiple diverse communication 

streams. Secondly, the performance of anomaly detection 

algorithms can be tuned by adjusting a sensitivity threshold. 

The selection of a specific threshold value inevitably results in 

a tradeoff between false negative and false positive rate. 

Hence, determining the suitable sensitivity threshold value 

constitutes an important design problem. 

This paper alleviates the above mentioned issues by 

proposing novel anomaly detection architecture. The presented 

system first identifies individual communication streams in the 

overall network traffic and then individually applies a 

previously developed network security cyber-sensor algorithm 

to selected streams [8], [15]. This approach allows for learning 

accurate normal behavior models specific to each network 

communication. In addition, an Interval Type-2 Fuzzy Logic 

System (IT2 FLS) is used to model human background 

knowledge about the network system and to dynamically 

adjust the sensitivity threshold of the anomaly detection 

algorithms. The IT2 FLS is used to model the linguistic 

uncertainty in describing the relationship between various 

network communication attributes and the possibility of a 

cyber attack. For instance, if only a small number of distinct 

communication protocols is expected to be used during the 



normal network communication, a linguistic rule can be 

created that sets a lower sensitivity threshold when a high 

number of distinct communication protocols appear in the 

network communication. Hence, the IT2 FLS is not used 

directly for detecting anomalous network traffic, but it is only 

used to utilize the provided human domain knowledge to tune 

the performance of the clustering based anomaly detection 

algorithm via adjusting the sensitivity threshold. 

The proposed anomaly detection system was implemented 

and tested on a smart grid experimental test-bed. It was 

demonstrated that the system can learn normal behavior 

models for each selected communication stream and perform 

accurate anomaly detection. In addition, it was also 

demonstrated that the availability of domain knowledge can 

significantly improve the performance of the anomaly 

detection method. 

The rest of the paper is structured as follows. Section II 

presents an overview of the previously developed network 

security cyber-sensor. Section III proposes how to model the 

domain knowledge using IT2 FL rules. Section IV describes 

the architecture of the proposed anomaly detection system. 

Finally, the system is tested in Section V and the paper is 

concluded in Section VI. 

II. PREVIOUS WORK 

This section provides a brief overview of the previously 

developed network security cyber-sensor algorithm. First, the 

network traffic feature extraction method is described. Next, 

the fuzzy rule extraction technique based on online clustering 

is explained. 

A. Feature Extraction from Packet Stream 

The anomaly detection algorithm is trained on a set of 

network traffic features extracted by a window-based 

technique. This technique is applied directly to the stream of 

packets. The inherent time series nature of the packet stream 

data is described by a vector, which captures statistical 

properties of the network traffic. 

As described in the previous work [8], a window of specified 

length is shifted over the stream of network packets. At each 

position of the window a descriptive feature vector is 

computed. As the next arriving packet is pushed into the 

window, the last packet is removed from the end. Fig. 1 

schematically depicts this feature extraction process. Table I 

summarizes the list of extracted statistical features from the 

packet window. This set of features was empirically selected 

based on the motivation to most accurately capture the time 

series nature of the packet stream. For further details and 

evaluation of the feature extraction refer to [8]. 

B. Fuzzy Logic Rule Extraction via Online Clustering 

In the previous work of the authors, a new low-cost online 

rule extraction technique was proposed to model the network 

traffic [8]. The model is composed of a set of fuzzy rules that 

are constructed based on the window-based feature vectors 

using an online version of the adapted Nearest Neighbor 

Clustering (NNC) algorithm. This adapted algorithm 

maintains additional information about the spread of data 

points associated with each cluster throughout the clustering 

process. Each cluster Pi of encountered normal network 

behavior is described by its center of gravity ic


, weight wi and 

a matrix of boundary parameters Mi. Hence: 
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Here, i is the index of the particular cluster, 
j

ic is the 

attribute value in the j
th

 dimension, U

jic , and L

jic , are the upper 

and lower bounds of the encountered values of the j
th

 attribute 

for data points assigned to cluster Pi and n denotes the 

dimensionality of the input. The algorithm is initialized with a 

single cluster P1 positioned at the first supplied training input 

vector 1x


. This initial input vector is received once the shifting 

window is first filled with the incoming network packets. 

Upon acquiring a new data vector ix


 from the shifting 

window buffer, the set of clusters is updated according to the 

NNC algorithm. First, the Euclidean distance to all available 

clusters with respect to the new input feature vector ix


 is 

calculated. The nearest cluster Pa is identified. If the computed 

nearest distance is greater than the established maximum 

cluster radius parameter, a new cluster is created. Otherwise 

the nearest cluster Pa is updated according to: 
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Fig. 1 Window based feature extraction process [10]. 

 
TABLE I 

SELECTED WINDOW-BASED FEATURES 

Num. of IP addresses Num. of Flag Codes 

Min. Num. of Packets / IP Min. Num. of Packets / Flag Code 

Max. Num. of Packets / IP Max. Num. of Packets / Flag Code 

Avg. Time between Packets Num. of Packets with 0 Win. Size 

Time Length of the Window Num. of Packets with 0 Data Len. 

Data Speed Avg. Win. Size 

Num. of Protocols Avg. Data Length 

Min. Num. of Packets / Protocol Num. of Ports 

Max. Num. of Packets / Protocol  

 

 



The rule extraction phase of the learning process produces a 

set of clusters, which describe the normal network 

communication behavior. In the next stage, each cluster is 

converted into a fuzzy logic rule. Each fuzzy rule describes the 

belonging of a particular sub-region of the multi-dimensional 

input space to the class of normal behavior. 

Each cluster is transformed into a fuzzy rule. Each fuzzy rule 

is composed of n antecedent fuzzy sets 
j

iA that are modeled 

using a non-symmetric Gaussian fuzzy membership function 

with distinct left and right standard deviations. There are three 

parameters of the membership function, the mean 
j

im  and the 

left and the right standard deviations 
j

i , 
j

i , as shown in 

Fig. 2. The parameter values are extracted based on the 

computed cluster Pi in the following manner: 

 

 
j

i

j

i cm   (4) 

 

 )( j

i

j

i

j

i cc   (5) 

 

 )(
j

i

j

i

j

i
cc   (6) 

 

Here, symbol  denotes the fuzziness parameter, which is 

used to adjust the spread of the membership functions. This set 

of fuzzy rules is then used to calculate a similarity score 

between the input vector and the model of normal behavior 

C. Anomaly Detection Example 

The presented fuzzy logic based anomaly detection method 

assigns a real value to each window-based feature vector. This 

value expresses the likelihood that the window of packets 

contains an intrusion. The closer this value is to 1 the more 

confident the algorithm is that there is an intrusion present. 

The classification performance of this anomaly detection 

algorithm can be tuned by setting a specific sensitivity 

threshold  . This threshold adjusts the tradeoff between the 

false negative and false positive rate of the algorithm.  

As an exemplary case study, consider an illustrative output 

of the presented anomaly detection algorithm as depicted in 

Fig. 3. Here, the thin solid black line depicts the real-valued 

response of the anomaly detection algorithm, the thick solid 

red line marks the actual occurrence of an intrusion and finally 

the thin dotted line depicts three different sensitivity threshold 

levels. The classification performance in terms of correct 

classification rates and the false positive and false negative 

rates for three different constant sensitivity threshold values is 

summarized in Table II. It can be observed that lowering the 

threshold value decreases the false negative rate (i.e. 

frequency of missed intrusion attempts), however, with the 

tradeoff of increasing the false positive rate (i.e. frequency of 

falsely reported alarms). 

III. REPRESENTATING DOMAIN KNOWLEDGE USING 

LINGUISTIC FUZZY RULES 

This Section first provides a brief introduction to Interval 

Type-2 Fuzzy Logic. Next, the methodology for representing 

cyber-security domain knowledge is described. 

A. Interval Type-2 Fuzzy Logic Systems 

Type-1 Fuzzy Sets (T1 FSs) and T1 Fuzzy Logic Systems 

(FLSs) have been successfully applied in many engineering 

areas [16]-[18]. However, when modeling linguistic terms, 

which can mean different things to different people, T1 FSs 

have been shown to provide only limited design capabilities 

[18]. To address these issues, Type-2 (T2) FSs and T2 FLSs 

were originally proposed by Zadeh [19]. T2 FSs offer more 

modeling flexibility because they employ membership degrees 

that are themselves fuzzy sets [20]-[22]. 

In this paper, the Interval T2 (IT2) FSs are considered. IT2 

FSs restrict all membership grades into intervals, which result 

in significant simplification of the computational complexity 

associated with computing with IT2 FSs. An IT2 FS A
~

 can be 

described by its membership function ),(~ ux
A

 , where Xx

and xJu  [18]: 

 

Fig. 2 Illustration of the non-symmetric input Gaussian fuzzy set 
j

iA . 

 

 
Fig. 3 Classification performance of the fuzzy logic based anomaly detection system with different levels of constant sensitivity threshold  . 

 

TABLE II 

CLASSIFICATION PERFORMANCE WITH DIFFERENT SENSITIVITY THRESHOLDS 

Threshold Correct Rate False Pos. False Neg. 

0.3 99.9037% 0.1217% 0.0275% 

0.6 99.5504% 0.1082% 1.3753% 

0.9 99.3799% 0.1082% 2.0079% 
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Here, x and u are the primary and the secondary variables 

and Jx denotes the interval support of the secondary 

membership function. The domain of the primary 

memberships Jx defines the Footprint-Of-Uncertainty (FOU) 

of FS A
~

: 
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The FOU of an IT2 FS can be completely described by the 

upper and lower membership functions: 
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It is this FOU that allows for modeling of linguistic 

uncertainty. As an example depicted in Fig. 4, consider two 

possibilities for modeling an arbitrary linguistic concept using 

T1 FSs A1 and A2 (e.g. two experts designed two different 

membership functions for the same concept) and the possible 

model of this concepts using IT2 FSs A
~

. It can be seen that 

the IT2 FS encapsulates the T1 FS models and it can model 

the linguistic uncertainty. This flexibility in modeling vague 

linguistic concepts was the reason for employing IT2 FSs and 

IT2 FLS for modeling the linguistic human cyber-security 

domain knowledge in the proposed system. 

Linguistic knowledge can be formulated using implicative 

IT2 fuzzy rules as follow [18]: 

 

Rule Rk: IF x1 is 
kA1

~
AND … AND xn is 

k

nA
~

 

               THEN yk is kB
~

  (10) 

 

Here, symbols 
k

iA
~

and kB
~

denote the i
th

 input IT2 FS and the 

output IT2 FS of the k
th

 rule, respectively, where n is the 

dimensionality of the input vector x


 and yk is the associated 

output variable.  

The set of linguistic rules together with the representation of 

the input and output IT2 FSs can be used to create an IT2 FLS. 

Due to the limited space in this paper, the technical details of 

fuzzy inferencing using IT2 FLSs have been omitted but they 

can be found in literature [18], [23]. 

B. Cyber-Security Domain Knowledge Modeling 

The IT2 fuzzy rules can be used to linguistically describe 

the relationship between various features of the network 

communication and the possibility of a cyber attack. The 

window-based feature extraction technique is used to describe 

the global features of the monitored network traffic.  

Each window-based feature is first normalized into a unit 

interval. There are different approaches to fuzzifying the input 

domain of each attribute. Because of its simplicity, the 

fuzzification scheme depicted in Fig. 5(a) was used in the 

presented work. Here, two trapezoidal and one triangular IT2 

fuzzy sets were used to fuzzify each input domain into fuzzy 

sets “Low”, “Medium” and “High”.  

The output IT2 FSs express the likelihood of an intrusion in 

the system and can be used to adjust the sensitivity threshold 

of each anomaly detection algorithm. As was chosen for the 

input domain, the output domain is modeled using the three 

triangular IT2 FSs: “Low”, “Medium” and “High”. These sets 

are depicted in Fig. 5(b). 

The provided set of linguistic fuzzy rules and the described 

input and output IT2 FSs are used to implement an IT2 FLSs, 

which calculates the specific sensitivity threshold of the 

anomaly detection. For instance, the domain knowledge can be 

encoded using IT2 FL rules such as: “If number of protocols is 

high then sensitivity threshold is low”. 

IV. ANOMALY DETECTION SYSTEM USING LINGUISTIC 

RULES 

The overall architecture of the proposed anomaly detection 

system is depicted in Fig. 6. The network traffic is first 

processed by an IT2 FLS which uses a fuzzy logic rule base 

with encoded linguistic domain knowledge to calculate the 

cyber-security context of the current observed network traffic. 

This cyber-security context expresses the belief that an 

intruder is currently present in the system. 

In the next stage, the network traffic is separated into 

individual communication streams. In the current 

implementation, a specific IP address is used to identify each 

communication stream. Other features, such as port numbers 

 

Fig. 4 Interval type-2 fuzzy set A
~

. 

 
(a) 

 
(b) 

Fig. 5 Input IT2 FSs (a) and output IT2 FSs (b).  



of protocol types can also be used. Packets assigned to 

individual communication streams are then passed into 

dedicated anomaly detection algorithms. Each anomaly 

detection algorithm maintains its own buffer of incoming 

packets, which is used to extract the window-based features as 

described in Section II. The fuzzy logic based anomaly 

detection algorithm is used to assign a real value to each input 

vector, which expresses the belief that the current packet 

window contains intrusive packets. The closer this value is to 

1 the more confident the algorithm is that an intrusion is 

present. 

The final classification is performed by comparing the real-

valued output to the sensitivity threshold. When the real-

valued output is above the sensitivity threshold, a network 

anomaly is reported for the specific communication stream. 

When the output value is below the sensitivity threshold the 

network traffic is marked as normal. The actual value of the 

sensitivity threshold is dynamically computed based on the 

cyber-security context computed by the IT2 FLS. Hence, the 

IT2 FLS encoding human domain knowledge is not used 

directly for detecting anomalies, instead it is used to only tune 

the performance of the anomaly detection algorithm via 

adjusting the sensitivity threshold. 

It should be noted here that the anomaly detection algorithm 

utilizes an assumption that a representative normal behavior 

training data set has been collected. In case, that a 

representative normal behavior training data set was not 

collected, the anomalous classification of the network traffic 

might only signalize that the observed network traffic is 

normal but it has not been included in the training data set. 

This assumption is a fundamental concept underlying the use 

of anomaly detection techniques. 

V. EXPERIMENTAL RESULTS 

This Section first describes the smart grid experimental test-

bed and then presents experimental results. 

A. Experimental Test-Bed 

A small campus grid (SCG) and sensor network that 

physically exists in the Center for Advance Energy Studies in 

Idaho Falls, Idaho was used as a smart grid test platform. The 

network consists of a heterogeneous mixture of devices 

including wireless sensors monitoring environmental 

conditions in the building, wind and solar renewable 

resources, and a variety of control system devices. The SCG is 

connected to a small wind turbine, a solar power station, and a 

wireless AMI infrastructure with two WAP’s. A representation 

of the sensor network and small campus grid is shown in Fig. 

7. Additionally, the network has several Windows based 

computers, web camera’s, a Rockwell Automation PLC and a 

National Instruments PLC. 

The SCG includes a wireless sensor network consisting of 

environmental sensors from three commercial vendor systems. 

The network contains wireless systems from Emerson, 

Honeywell and Arch Rock. Each system connects wirelessly 

to the sensors via a wireless access point. As with the AMI 

deployment these WAP gateways have a wired connection on 

one side of the network and wireless interfaces to the remote 

sensors on the other side. The network capture device has 

visibility on the wired side of the connection. Each wired 

WAP connection varies in the method of network protocols 

utilized on top of Ethernet. 

B. Experimental Results 

In order to obtain suitable testing data, the Nmap [24] and 

Nessus [25] software applications were used to generate 

anomalous network traffic behavior in an attempt to simulate 

instances of cyber attacks. Nmap is a network scanning tool 

that is commonly used to identify hosts, scan ports, operating 

systems and to determine applications that are listening on 

open ports. Nessus provides auditing capabilities, vulnerability 

assessments and profiling information. The simulated 

intrusion attempts included: ARP pings, SYN stealth scans, 

port scanning, open port identification and others. Cyber 

attacks ranged from long attacks composed of many packets to 

very short intrusion sequences.  

Training and testing datasets of experimental network traffic 

were recorded. The training data set contained 100,000 

packets recorded during normal network activity. Here, the 

normal network activity refers to a common network 

communication traffic flow without any disturbances. In order 

to obtain this normal training data set, isolated network traffic 

was maintained to prevent the possibility of the presence of 

any intrusive attempts. This data set was used only during the 

 
Fig. 6 Architecture of the proposed anomaly detection system.  

 
 

Fig. 7 Diagram of the smart grid experimental test-bed.  



training phase of the algorithms. The second data set contained 

200,000 recorded packets with simulated abnormal behavior 

along with normal behavior. This data set was not used during 

the training phase. 

For this specific experimental test bed, a set of six linguistic 

fuzzy rules was used to summarize the domain knowledge as 

shown in Table III. The first three rules were derived from the 

knowledge that the expected normal network traffic features 

steady behavior with only minor variations in the rate of 

transmitted packets. The second three rules then express the 

knowledge that the present system uses only a small number 

of communication protocols and an increased number of 

different communication protocols are a likely indication of 

possible intrusive attempt. 

With three selected communication streams, the training 

phase took 4.03s seconds of wall clock time while testing was 

achieved in 15.12s. The fuzzy logic models for individual 

communication streams were composed of 19, 57 and 2 

clusters, respectively. Fig. 8 depicts the results of the anomaly 

detection for the three selected communication streams. The 

dotted line depicts the dynamically calculated sensitivity 

threshold. It can be observed that the provided linguistic 

domain knowledge encoded in form of IT2 fuzzy rules allows 

for dynamic adjustment of the sensitivity threshold.  

The classification performance of the proposed anomaly 

detection system is compared to the classification performance 

with constant sensitivity threshold in Tables IV-VI. It can be 

observed that the proposed method achieves the best tradeoff 

between the rate of false positives and false negatives. In other 

words, the experimental results demonstrate that when 

relevant domain knowledge about the specific network system 

is available, it can be utilized to improve the classification 

performance of the network anomaly detection method via 

dynamically adjusting the sensitivity threshold. 

VI. CONCLUSION 

This paper presented a novel complex anomaly detection 

architecture for critical control systems. The proposed system 

applied a previously developed network security cyber-sensor 

method to individual selected communication streams. In 

 
TABLE III 

CYBER-SECURITY LINGUISTIC DOMAIN KNOWLEDGE 

R1: If Time of Window is Low then Sensitivity Threshold is Low 

R2: If Time of Window is Medium then Sensitivity Threshold is Low 

R3: If Time of Window is High then Sensitivity Threshold is High 

R4: If Number of Protocols is Low then Sensitivity Threshold is High 

R5: If Number of Protocols is Medium then Sensitivity Threshold is High 

R6: If Number of Protocols is High then Sensitivity Threshold is Low 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Classification performance of the proposed anomaly detection system for three selected communication streams (a)-(c). 

 



addition, the developed system dynamically adjusts the 

sensitivity threshold of each anomaly detection algorithm 

based on domain knowledge about the specific network 

system. This domain knowledge was encoded using Interval 

Type-2 Fuzzy Logic rules, which linguistically describe the 

relationship between various features of the network 

communication and the possibility of a cyber attack.  

The proposed anomaly detection system was implemented 

and tested on a smart-grid experimental test-bed. It was 

demonstrated that the system can learn normal behavior 

models for individual selected communication streams and 

perform accurate anomaly detection. In addition, it was also 

demonstrated that the availability of domain knowledge can 

significantly improve the performance of the anomaly 

detection method by dynamically adjusting the sensitivity 

threshold. 
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TABLE IV 

CLASSIFICATION PERFORMANCE FOR STREAM 1 

Threshold Correct Rate False Pos. False Neg. 

0.3 99.8539% 0.1461% 0.0000% 

0.6 99.8705% 0.1295% 0.0000% 

0.9 99.8788% 0.1212% 0.0000% 

IT2 FLS 99.8722% 0.1278% 0.0000% 

 TABLE V 
CLASSIFICATION PERFORMANCE FOR STREAM 2 

Threshold Correct Rate False Pos. False Neg. 

0.3 99.9037% 0.1217% 0.0275% 

0.6 99.5504% 0.1082% 1.3753% 

0.9 99.3799% 0.1082% 2.0079% 

IT2 FLS 99.9111% 0.1116% 0.0275% 

 TABLE VI 
CLASSIFICATION PERFORMANCE FOR STREAM 3 

Threshold Correct Rate False Pos. False Neg. 

0.3 99.8643% 0.2953% 0.0000% 

0.6 99.8960% 0.2265% 0.0000% 

0.9 99.8960% 0.2265% 0.0000% 

IT2 FLS 99.8960% 0.2265% 0.0000% 

 


