
A Direct Utility Adaptive Critic (DUAC) algorithm 

for power plant load management 
 

Udhay Ravishankar, Member IEEE, and Milos Manic, Member IEEE 

University of Idaho, Idaho Falls 

ravi4736@vandals.uidaho.edu, misko@ieee.org  

 

 
Abstract- This paper presents a Direct Utility Adaptive Critic 

(DUAC) algorithm applied to a power plant load management 
problem. The DUAC algorithm is an enhancement of the 
original Heuristic Dynamic Programming (HDP) Adaptive 

Critic Design (ACD) algorithm into a simpler and more robust 
controller. Typical ACD algorithms model dynamic systems 
with time-delayed states and action inputs and due to this the 

Action Network training procedure is a complex 
BackPropagation-Through-Time (BPTT) process. Also required 
in typical ACD algorithms is a dedicated Critic Network 

training process for different control sequences before the 
Action Network training procedure. The DUAC algorithm, 
presented in this paper, simplifies the Adaptive Critic algorithm 

by 1) eliminating the complex BPTT process for training the 
Action Network and 2) replacing the Critic Network with the 
user-defined utility function directly. Due to these changes the 

utility-action gradient typically required to train the Action 
Network is based on direct result of two utility values with 
respect to two action inputs. The replacement of the Critic 

Network with the user-defined utility function ensures better 
control accuracy since Critic Network modeling provides only 
approximations of the utility function. The DUAC algorithm was 

tested for time-varying consumer loads on an RMS voltage 
analogous s-domain model of the power plant created in 
Simulink using the SimPowerSystems toolbox. Test results 

indicated that the DUAC algorithm was able to derive an Action 
Network that controlled the power plant model to an output 
RMS voltage fluctuation variance of the order of no more than 

10-3. This result can prove to be an essential step in load 
balancing problems in Smart Grids.  

 

I. INTRODUCTION 

Load Management is a generic goal of a Smart Grid to 

ensure power output stability for any unpredictable load 

variations in the consumer side. The benefit of maintaining a 

stable power output response is to minimize the occurrence of 

instability in the grid caused by such unpredictable load 

variations. The benefit also propagates into minimized utility 

bills for abrupt switching of high power loads which is 

specifically the case of industrial loads. 

Load management problems are either tackled in a power 

grid topological scale [1] – [8] or in a generator scale [9] – 

[11]. Adaptive Critic Designs have also been used in such 

problems [7][8][12][13][14]. In this paper we consider the 

generator scale case because it is a smaller problem and an 

important step towards tackling bigger problems such as the 

grid topological case. In our setup, we have created a model 

power plant with a few consumer loads in Simulink using the 

SimPowerSystems toolbox. This model helps in visualizing 

the behavior of power plants for time-varying loads especially 

when there is a lack in data availability for such behaviors. 

The SimPowerSystem model power plant is considered as 

the actual power plant that provides data regarding power 

plant behaviors for time-varying loads. Before applying the 

proposed algorithm, i.e. the DUAC, on the SimPowerSystem 

model, an s-domain analogous model of a specific behavior 

of the plant was created. In this paper we consider the RMS 

voltage response of the SimPowerSystem power plant in 

developing the s-domain analogous model. 

The Direct Utility Adaptive Critic (DUAC) algorithm is 

designed based on Adaptive Critic Designs (ACD) introduced 

by Werbos in 1974 [15]. The DUAC is implemented using 

the Backpropagated Critic Architecture (BCA) shown in Fig. 

1 in section II. This architecture is one of the architectures 

introduced by Werbos in [16] and [17]. Prokhorov and 

Wunsch have discussed the implementation of adaptive critic 

algorithms for the BCA and other architectures in [18]. 

Typical adaptive critic algorithms implemented on ACDs are 

the Heuristic Dynamic Programming (HDP), the Dual 

Heuristic Dynamic Programming (DHP) and the Global Dual 

Heuristic Dynamic Programming (GDHP) listed in ascending 

order of advancement. The algorithm used for the DUAC is 

the HDP based. 

The rest of this paper proceeds as follows: Section II will 

discuss a background review on Adaptive Critic Designs 

followed by the introduction of the DUAC algorithm in 

section III. The power plant s-domain analogous model will 

be developed in section IV followed by the discussion of the 

neural network modeling of the power plant system in section 

V, which is an important part of the DUAC algorithm. 

Section VI will show test results of the DUAC algorithm and 

the paper finally concludes in section VII with future work. 

 

II. THE ADAPTIVE CRITIC DESIGN 

Adaptive Critic Design (ACD) belongs to the class of 

discounted discrete-time Markovian Decision Processes 

(MDP) [19]. MDPs are typically used in finding the optimal 

control policy for industrial and commercial processes. In 

MDP, the optimal control policy is determined based on the 

Bellman Equation of state transition matrices. The optimal 

policy in ACDs, on the other hand, is a function known as  

the Action Network based on the same Bellman Equation, but 



using a user defined utility function U as given in Eq. (1) 

[19]. 
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The Bellman function J(•) approximates the total utility 

value of future trials in the process by a discount factor γ. The 

advantage of using the discount factor is when k→∞ the 

Bellman function reaches a steady state value independent of 

k, meaning that it allows a quick approximation of the utility 

of future trials without iterating over k. 

Werbos introduced a couple of ACDs in [16] and [17]. The 

designs introduced in [16] and [17] are the Classical Critic 

Architecture and the Backpropagated Critic Architecture. In 

this section we will review the Backpropagated Critic 

Architecture as this is the architecture used for the DUAC 

algorithm. 

 

A. The Backpropagated Critic Architecture (BCA) 

The Backpropagated Critic Architecture (BCA) is shown in 

Fig. 1 [17]. It consists of a Critic Network, a Model Network 

and an Action Network. The Model Network makes the BCA 

a more advanced controller than the Classical Critic 

Architecture (which does not have a Model Network) as it 

provides the controller an estimate of the future system state 

R(t) it wishes to control from the current system state R(t-1) 

and control input u(t-1). The Critic Network is a neural 

network model of the user-defined utility function that inputs 

the estimated future system state R(t) through the Bellman 

Equation, described earlier in Eq. (1), which guides the 

Action Network. The Action Network is trained to store the 

optimal policy function using a HDP, DHP or GDHP 

approach. Since the HDP technique is used for the DUAC, 

the traditional HDP algorithm will be described in the 

following subsection. 

 

B. Heuristic Dynamic Programming (HDP) for ACD 

The HDP algorithm is the simplest ACD algorithm that 

requires the Critic Network to model the Bellman Equation of 

eq. (1). The Critic Network training is performed to derive the 

gradient ∂J/∂A (with A representing the set of possible 

control actions) by backpropagating a one from the output of 

the Critic Network through the control input of the Model 

Network, to train the Action Network as given in Eq. (2) [18]. 

In Eq. (2) the ηA is the learning constant. 
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From the principle of backpropagation, the ∂J/∂A is 

minimized when backpropagated into the Action Network. 

In the typical HDP algorithm the Critic Network training is 

performed using the error equation Eq. (3). 
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The Critic Network training requires different set of control 

sequences to ensure that it is properly trained. 

The DUAC algorithm is a modification of the HDP 

algorithm that simplifies the optimal Action Network 

derivation even when time-delayed inputs are present in the 

Model Network. This is discussed in the following section. 

 

III. THE DIRECT UTILITY ADAPTIVE CRITIC (DUAC) 

This section discusses in detail the modifications made on 

the traditional HDP algorithm into a simplified and yet a 

more robust control algorithm, the DUAC algorithm. 

For the DUAC algorithm, the Critic Network in the 

traditional HDP algorithm is replaced by the direct use of the 

user-defined utility function. This provides better control 

accuracy than the traditional HDP since neural networks 

provide only approximations of the utility function. The 

notion of replacing the Critic Network is based on the 

understanding of the Bellman Equation described earlier in 

Eq. (1). The understanding is developed by z-transforming 

the Bellman Equation which is given in Eq. (4). 

 
                  (a)                                                                  (b) 

Fig. 2.  (a) A 2D illustration of finding the optimal control action from a radial 
set A (the circle around C) at the current system state C. The point N is the 

optimal point to move to towards the target state T. (b) A graphical view of 

the utility function U, defined by the target state T, versus the radial set A. The 
action An in the radial set A is the optimal action A*. 
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Fig. 1.  The Backpropagated Critic Architecture [17]. 
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It is clear from Eq. (4), if γ is set to zero, the Bellman 

function is equivalent to the utility function itself. For any 

other 0<γ<1, the Bellman function is a converging total of the 

future utilities. The DUAC algorithm thus utilizes the 

property of zero discount factor. 

Since the Critic Network is replaced by the utility function 

directly, the optimal Action Network derivation process uses 

a modified perspective. The next subsection describes this 

modification without losing the generality. 

 

A. HDP for the DUAC 

To maintain the generality of the HDP algorithm, The 

DUAC algorithm utilizes a different perspective of the ∂J/∂A 

gradient discussed earlier in Section II. Fig. 2 describes this 

perspective. From Fig. 2 the Action Network is trained to find 

the optimal control input for the dynamic system under its 

current conditions to maintain the utility function to its 

minimum. This method of training is particularly useful when 

the system is subject to disturbances such as load for a power 

plant. Once the optimal actions are derived for particular 

disturbance signal, another Action Network can be trained to 

model the optimal control input as function of the disturbance 

signal. This latter Action Network can then be used as the 

controller for the system later on.  

In order to derive the optimal control action, it is clear from 

Fig. 3 that the Action Network must converge to the 

argument of the minimum (argmin) of the utility function 

against the set of possible control actions. The Error 

Backpropagation (EBP) algorithm readily does this in 

principle if the error is defined as ∂U/∂A, i.e. the Utility-

Action gradient, given in Eq. (5). Note that this time U is 

used instead of J. 
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 In this section, we will discuss the Action Network and its 

training methodology and leave the discussion of the Model 

Network to a later section. This is because the Model 

Network is system dependent and not general to the DUAC. 

 

B. The Action Network 

The Action Network can be implemented as a single-

hidden-layer-single-output-layer Multi-Layer-Perceptron 

Neural Network as shown in Fig. 3. The activation function 

for the hidden layer is the logsigmoidal function, or the 

unipolar soft activation function, to model the nonlinear 

output of the Action Network. The Action Network topology 

is system dependent, which will be described later. The 

weights following the output layer set the velocity, i.e. the 

rate at which the desired output response of plant should 

converge. Based on the architecture of Fig. 3, Eq. (4) can be 

rewritten as Eq. (6). In the Eq. (6), ηA is the learning rate 

while µA is the momentum rate. 
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C. Evaluating the Utility-Action gradient ∂U/∂A 

The Action Network is randomly initialized before 

performing the utility minimization. During the utility 

 
Fig. 3.  The Action Network Architecture. The input-hidden layer weights are 

W, hidden-output layer weights are G and the outputs are weighted by V 
representing the maximum control velocity bound. 

  

Pseudo Code of the DUAC: 

 
Let the Action Network be denoted as a function fA(R(t)) and the Model 

Network as fM(R(t),u(t)). Let σ be a constant < 1 and rand ~ uniform random 

number between 0 and 1. 
 

Phase I: Train Model Network 

 
1) Obtain training data of R(t) and u(t) from simulation of the system 

under consideration. 

2) Create a mapping R(t+1) = fM(R(t),u(t)). 
3) Validate the feedback system by connecting the state output of the 

Model Network to its state input through a time-delay.   

 
Phase II: Train Action Network to find optimal control action 

 

1) Initialize Action Network weights W and G and action u0(t) = 
σ•rand.  

2) Compute action u1(t) =  fA(R(t)). 

3) Compute future states R1(t+1) = fM(R(t), u1(t)) and R0(t+1) = fM(R(t), 
u0(t)). 

4) Evaluate utilities U(R1(t+1)) and U(R0(t+1)). 

5) Compute gradient ∂U/∂A = (U(R1(t+1)) – U(R0(t+1)))/(u1(t) – u0(t)). 
6) Backpropagate ∂U/∂A through fA(•). 

7) Store u0(t) = u1(t) and compute new action u1(t) =  fA(R(t)). 

8) Repeat steps 3) to 7) until termination criterion, pick the u(t) with 
minimum utility U(R(t+1)) and dispatch the u(t) to the system. 

 
Phase III: Train Action Network to model the Optimal Controller 

 

1) Initialize Action Network fA(R(t),L(t)) where L(t) is the disturbance 
signal. 

2) Train the Action Network to model the optimal action u*(t) =  

fA(R(t),L(t)). 
 

Fig. 4.  Pseudo Code for computing Utility-Action gradient for 

backpropagating. 
  



minimization, the current system state is inputted into the 

Action Network to give an input control action to the Model 

Network. Then another control action input is initialized to be 

some random value. The two control action inputs are 

inputted into the Model Network to provide estimates of the 

future system states. The utility values of the two estimated 

states are evaluated and the gradient ∂U/∂A is computed. This 

∂U/∂A is backpropagated through the Action Network which 

then gives a new control action input for the same current 

system state. Then a new ∂U/∂A is computed between the 

new control action input estimate and the previous control 

action input estimate. This process is repeated until ∂U/∂A 

converges to zero. The pseudo code for this process is given 

in Phase II of Fig. 4. Fig. 4 shows pseudo code of the overall 

DUAC algorithm. 

 

IV. THE TEST SYSTEM: S-DOMAIN MODEL OF THE PLANT 

A model power plant was created in Simulink using the 

SimPowerSystems Toolbox to generate data regarding the 

behavior of a power plant for time-varying loads. The model 

consists of a turbine under constant torque, a rectifier, a buck-

boost converter, an inverter, a transformer, a PID controller 

and a few loads. Based on the simulations of the Simulink 

modeled power plant (a sample shown in Fig. 5) an s-domain 

analogous model was created.  

In Fig. 5 the load profile shows magnitude of three-phase 

loads randomly switched on and off. The output Root-Mean-

Square (RMS) voltage can be seen to drop when the load 

increases and overshoot when the load decreases. The PID 

controller varies the duty-cycle ratio of a Pulse-Width-

Modulated (PWM) signal, which is the control input of the 

power plant, to stabilize the output RMS voltage with respect 

to the reference RMS voltage. 

The s-domain analogy model was created to replicate the 

RMS voltage response of the power plant with the PID 

controller. It can be clearly noted that the PID controller acts 

as a restoring force on the output RMS Voltage. Hence a 

mass-spring-damper system was used to model this behavior 

and is shown in Fig. 6. To derive the s-domain analogous 

model of the power plant, the PID controller’s s-domain 

transfer function was simplified to having only the Integral 

gain. This was done because the SimPowerSystem model’s 

PID controller was configured in PI configuration and 

removing the Proportional (P) gain, by setting it to zero, also 

restored the RMS voltage output of the plant. This response 

encouraged the simplification for analysis purpose only. 

Using the model of Fig. 6 and the aforementioned 

simplification, the power plant’s s-domain transfer function 

G(s) was derived as given by Eq. (7a). 
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The PID controller’s s-domain transfer function H(s) with 

only the Integral gain is given by Eq. (7b). 
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Then applying the G(s) and H(s) to the overall feedback 

system transfer function, the closed loop transfer function 

was derived as shown in Eq. (8). 
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Fig. 5. A sample Simulink simulation of the SimPowerSystem model power 
plant. 

  

 
Fig. 6. The generic model of the power plant with a PID control with all non-

zero gains (note that the Ki is modeled as an electronically controlled muscle 
arm). 

  

 
Fig. 7. The s-domain analogous model of the SimPowerSystem’s model 
power plant. 

  



 

In Eq. (8), the V(s) is the s-domain transform of the output 

RMS voltage while the L(s) is the transform of the consumer 

load profile. The right-hand-side of the bottommost Eq. (8), 

when inverse transformed to the time domain has a response 

equivalent the RMS voltage response of Fig. 5. 

Using the above modeling equations, a Simulink model of 

the SimPowerSystem’s model power plant and control system 

was created as shown on Fig. 7. For neural network modeling 

purpose, which will be discussed later in section V, the buck-

boost converter gain equation was changed to a boost 

converter gain equation and hence the 1/(1-u) function block 

following the PID(s) block instead of a u/(1-u) function block 

in Fig. 7. 

A typical plot of the Simulink system in Fig. 7 is shown in 

Fig. 8. It is worthy to note the similarities of Fig. 8 with Fig. 

5. 

 

V. NEURAL NETWORK MODELING OF THE PLANT 

For the DUAC algorithm to optimize the system under 

consideration, the algorithm must obtain some knowledge 

about the dynamics of the system. This was the essential idea 

of the Backpropagated Critic Architecture discussed earlier in 

section II. In our work we used a neural network to model the 

dynamics of the plant. 

The neural network model topology was designed with 

respect to the system under consideration. In section IV, the 

power plant was modeled as a first order Laplace Transfer 

Function. Hence a single linear neuron with a time-delay state 

feedback can be used to model the behavior of the power 

plant. The single neuron with state feedback is expected to 

contain the discrete-time coefficients of the equivalent 

continuous-time state-space model of the Laplace Transfer 

Function. Included with the linear neuron is a non-linear 

neural network that models the non-linearity of the boost 

converter. Although the SimPowerSystem power plant has a 

buck-boost converter, the s-domain analogous model system 

of Fig. 3 uses a boost converter gain equation. This was done 

because for a neural network to correctly model the transient 

dynamics of the continuous-time system, a zero initial 

condition was required for the system’s control signal. Since 

a buck-boost converter requires a non-zero initial condition 

on the control signal, the neural network failed to model the 

transient dynamics of the system in Fig. 7. 

Hence the Model Network for the DUAC algorithm 

consists of two neural networks connected in a cascaded 

fashion shown in Fig. 9. The Model Network was trained 

using the EBP algorithm. It can be noted that the Model 

Network response shown in Fig. 10 does not exactly match 

the response of the s-domain model, but they are similar. 

Since this paper mainly focuses on the DUAC algorithm, the 

trained Model Network was still used for optimization.  

 

VI. TEST RESULTS 

Figures 11 and 12 show sample test experiments of the 

DUAC algorithm on the Model Network modeled system. In 

each experiment the system was subjected to different load 

profiles varying between 1 to 100 Kilowatts. The DUAC 

algorithm was able to find the optimal control actions needed 

to stabilize the RMS voltage output for strong load variations 

as well as weak load variations. The DUAC algorithm took 

20 iterations during each time step to find the optimal control 

signal. During each time step, the Action Network was 

reinitialized to enable faster convergence towards the optimal 

control signal. 

 
Fig. 9.  The Model Network Architecture. D(t) is the PWM Duty-Cycle-Ratio 

control signal for the boost converter, L(t) is the load signal on the power plant 
and V(t) and V(t+1) are the current and future RMS voltage states 

respectively. 

  

 
Fig. 10. Simulation for validation of the Model Network for the analogy 

model system. 
  

 
Fig. 8. Simulation of the s-domain analogous model of the SimPowerSystem 
power plant model and control system. 

  



 

VII. CONCLUSIONS AND FUTURE WORK 

The DUAC algorithm was presented in this paper by 

modifying the traditional method of ACD into a simplified 

and more robust controller. The DUAC algorithm was 

implemented using the Backpropagated Critic Architecture 

with a modified Heuristic Dynamic Programming (HDP) 

method of training the Action Network’s optimal policy. Two 

test experiments indicated an output RMS voltage fluctuation 

variance of no more than 9.7964e-4 excluding the startup 

time-steps. The results are very encouraging towards using 

the DUAC algorithm for the SimPowerSystem model power 

plant as the next step.  
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Fig. 11. Test experiment I of the DUAC algorithm on the power plant model. 

  

 
Fig. 12. Test experiment II of the DUAC algorithm on the power plant 

model. 


