
1

Mining Bug Databases for Unidentified Software

Vulnerabilities

Dumidu Wijayasekara, Milos Manic

University of Idaho

Idaho Falls, ID, USA

wija2589@vandals.uidaho.edu, misko@ieee.org

Jason L. Wright, Miles McQueen

Idaho National Laboratory

Idaho Falls, ID, USA

jlwright@ieee.org, miles.mcqueen@inl.gov

Abstract— Identifying software vulnerabilities is becoming

more important as critical and sensitive systems increasingly rely

on complex software systems. It has been suggested in previous

work that some bugs are only identified as vulnerabilities long

after the bug has been made public. These vulnerabilities are

known as hidden impact vulnerabilities. This paper discusses

existing bug data mining classifiers and present an analysis of

vulnerability databases showing the necessity to mine common

publicly available bug databases for hidden impact

vulnerabilities.

We present a vulnerability analysis from January 2006 to

April 2011 for two well known software packages: Linux kernel

and MySQL. We show that 32% (Linux) and 62% (MySQL) of

vulnerabilities discovered in this time period were hidden impact

vulnerabilities. We also show that the percentage of hidden

impact vulnerabilities in the last two years has increased by 53%

for Linux and 10% for MySQL.

We then propose a hidden impact vulnerability identification

methodology based on text mining classifier for bug databases.

Finally, we discuss potential challenges faced by a development

team when using such a classifier.

Index Terms— Hidden impact vulnerabilities, Bug database

mining, Vulnerability discovery, Classifier

I. INTRODUCTION

 Software vulnerabilities are an increasing security focus as

critical and sensitive systems which operate critical

infrastructure become increasingly dependent on complex

software systems. Discovering these software vulnerabilities

as early as possible, at every stage of the software lifecycle, is

therefore of extreme importance in order to minimize the time

in which the vulnerabilities expose the systems to attack. This

includes the quicker and more effective identification of which

bugs may also be vulnerabilities.

 In [1], Arnold et al. defined hidden impact vulnerabilities as

those vulnerabilities identified as such only after the related

bug had been disclosed to the public. These software bugs are

disclosed to the public via bug databases and bug fixes, before

being identified as having a high security impact and being

labeled as vulnerabilities. Thus, even though a bug is known

to the community it may not be as quickly fixed by

developers, and a fix may not be applied in an appropriately

timely fashion by end-users, because the security implication

of the bug has not been correctly identified.

 Publicly available bug databases store and track information

about software bugs. Information contained in bug reports is

highly noisy and not in standard form [2], [3]. However, this

information has been successfully used for some classification

purposes [2], [3], [4].

 This paper first extends the work of Arnold [1] and clearly

demonstrates, empirically, that there is a need for improved

identification of which bugs are also vulnerabilities. Then we

address the feasibility and elaborate on the difficulties of

mining bug databases for discovery of potential hidden impact

vulnerabilities. The Linux kernel and MySQL bug databases

were chosen for analysis because they have been deployed for

many years, have extensive bug and vulnerability databases,

and their source code is available for future use in our

classification efforts.

Linux kernel vulnerabilities that were reported in the

MITRE CVE [5] database, during the time period from

January 2006 to April 2011 were analyzed. This analysis

showed a large portion of the most significant vulnerabilities

were hidden impact vulnerabilities and this number has

increased in the last two years.

A similar analysis of MySQL vulnerabilities reported in the

MITRE CVE database was conducted for the time period

January 2006 to April 2011. Similar to the Linux kernel, the

proportion of hidden impact vulnerabilities was significant and

the proportion has increased in the last two years for MySQL

as well.

After the empirical analysis of hidden impact

vulnerabilities, the practical difficulties of mining bug

databases are evaluated in a case study using the Redhat

Bugzilla bug database [6]. A vulnerability identification

methodology that utilizes text mining techniques to extract

information from bug databases and uses machine learning

techniques to identify vulnerabilities from this extracted

information is then described.

This manuscript has been authored by Battelle Energy Alliance, LLC

under Contract No. DE-AC07-05ID14517 with the U. S. Department of
Energy. The United States Government retains a nonexclusive, paid-up,

irrevocable, world-wide license to publish or reproduce the published form of

this manuscript, or allow others to do so, for United States Government

purposes.

2

The rest of the paper is organized as follows. Related work

on bug database mining and vulnerability discovery is

discussed in section II. Section III provides an analysis of

hidden impact vulnerabilities in the Linux kernel and the

MySQL application. Section IV analyzes a publicly available

bug database for use in data mining hidden impact

vulnerabilities. Section V proposes a hidden impact

vulnerability discovery tool and problems associated with such

a system. Section VI summarizes the conclusions and provides

a brief discussion of our future research.

II. RELATED WORK

This section highlights previous studies into different

methods of vulnerability discovery and mining bug databases.

A. Vulnerability discovery

Yamaguchi et al. used machine leaning and text mining

techniques to discover vulnerabilities in source code [7].

However, the classification results were below expectations

[7]. Similarly, Li and Leung also used machine learning

techniques to identify software defects in source code [8].

Many previous studies on vulnerability discovery focused

on static code analysis and static code analysis tools.

However, it has been shown that there are no universal static

analysis tools and static analysis by itself does not provide

satisfactory results for vulnerability discovery [9], [10], [11].

The existing tools are also very difficult to use because of the

large size of software distributions [12]. Schumacher et al.

showed the value of gathering information from vulnerability

databases to aid the discovery of vulnerabilities in software

[13]. In [14] Torri et al. evaluated 10 free and open source

static analysis tools on embedded C programs. Torri et al.

found that while the results were very poor, even the best

performing tool needed to be tweaked extensively to produce

good results, and therefore, this approach was impractical for

use in software development and vulnerability discovery [14].

Similar results were shown in [11] and [15].

Zitser et al. tested five static analysis tools on three open

source programs [16]. Low detection rates were reported for

most of the tools while the best performing tools reported very

high false positive rates (false alarm for every 12 to 46 lines of

source code) [16].

In [8], Li and Cui compared 7 free and open source static

analysis tools and concluded that each by itself did not provide

a satisfactory discovery of all vulnerabilities. Thus, it was

proposed that a variety of tools be used to compensate for the

deficiencies of each tool [8].

Austin and Williams showed that no single technique was

able to discover every type vulnerability by itself and

therefore, a combination of methods may be the optimal

means of vulnerability discovery [10].

B. Bug database mining

Previous studies have shown that the textual data contained

in bug reports may carry important information that can help

developers in the bug triaging process. Previous work on bug

database mining focuses on three main problems: 1) assigning

the correct person to fix a bug, 2) finding duplicate bug reports

and 3) assigning the correct severity to a reported bug.

In [17], [18] and [19], the authors used text mining to assign

the correct person to fix a bug. The correct person can be a

developer whose expertise is in that area, or a developer who

is responsible for the affected code. In [17] Cubranic and

Murphy used Naive Bayes to classify bugs contained in the

Eclipse bug database. Anvik et al. used a number of

classification techniques to classify bugs in the Eclipse and

Firefox databases [18]. In [19], Jeong et al. used a Markov

model for the same bug databases and showed better

classification accuracy.

Detection of duplicate bug reports is explored in [20], [21],

[22] and [23]. Runeson et al. used vector space and cosine

similarity measures to find redundant bugs in a Sony Ericsson

mobile bug database [20]. In [21], Wang et al. used similarity

measures to detect potential duplicate bugs for Eclipse and

Firefox bug databases. Wu et al. [23] also proposed a tool for

detection of duplicate bugs in Apache, Eclipse and Linux bug

databases.

In [2] and [3] Lamkanfi et al. used the textual description of

bug reports to classify severity of bugs. In [2] Lamkanfi et al.

classified Eclipse, GNOME and Mozilla bugs into three

classes of severity using Naive Bayes classifier. In [3]

Lamkanfi et al. compared classification algorithms for

classifying Eclipse and GNOME bug severity.

However, neither previous studies in vulnerability discovery

nor bug database mining focused on discovery of hidden

impact vulnerabilities.

III. HIDDEN IMPACT VULNERABILITY ANALYSIS

In this section an analyses of hidden impact vulnerabilities

for the Linux kernel and the MySQL database server are

presented. It is shown that a significant portion of

vulnerabilities are hidden impact vulnerabilities and the

number of hidden impact vulnerabilities has, if anything,

increased in recent years.

In [1], Arnold et al. defined hidden impact vulnerabilities as

those vulnerabilities identified some time after the related bug

has been disclosed to the public. This bug disclosure can be

via a patch which has been made available to the public or a

publicly accessible bug report. The importance of these

vulnerabilities, as elaborated in [1] is twofold. First, it is easier

for an attacker to use this disclosed information to discover a

potentially high impact exploit. Second, even though a patch is

available, systems may be at risk, because system

administrators tend not to apply lower severity patches that are

released for a system. This study focuses on the feasibility of

using the disclosed information, in the form of a bug report, to

discover a vulnerability before an attacker can take advantage

of it.

Hidden impact vulnerabilities for Linux kernel and MySQL

database server are analyzed in this section. For each software

package, vulnerabilities were divided into two groups

depending on when they were first reported: time period from

the 1st of January 2006 to the 31st of December 2008, which

will be called the first time period and the time period from

3

the 1st of January 2009 to the 30th of April 2011 which will

be called the second time period.

A. Linux Kernel Vulnerability Analysis

In their study Arnold et al. used a database of Linux kernel

vulnerabilities for the first time period (i.e. from the 1st of

January 2006 to the 31st of December 2008). For this time

period the Linux kernel had 218 vulnerabilities reported out of

which 56 (25.69%) had an impact delay of at least 2 weeks.

Impact delay was defined as the time from the public

disclosure of the bug in the form of a patch to the time a CVE

was assigned to the bug because it had now been identified as

a vulnerability. It was also shown that for any given day in the

time period there was an average of 8.5 hidden impact

vulnerabilities present that affected the Linux kernel.

The number of reported vulnerabilities in software has been

increasing over the past few years [5], [24]. In order to

evaluate whether the number of hidden impact vulnerabilities

has also increased over time, a similar analysis was performed

for Linux kernel vulnerabilities for the second time period (i.e.

from the 1st of January 2009 to the 30th of April 2011). For

this analysis specific rules were applied to the vulnerability

database downloaded from [5]. Vulnerabilities that affected 1)

multiple processors, 2) multiple distributions and 3) Linux

kernel 2.6 and above, were selected for the vulnerability

database for the time period. Vulnerabilities that affected only

a single processor were excluded because these vulnerabilities

affected only a small subset of users and it is difficult to

identify whether they were caused by a kernel issue. Similarly,

vulnerabilities that affected only one distribution were

excluded because there is no way of clarifying if the

vulnerability was due to a kernel issue. Vulnerabilities that

affected Linux kernel 2.6 and above were selected because it

was the latest version available in 2006. These rules also seem

to match the rules applied in [1]. Thus the vulnerability

database contained 185 vulnerabilities for the second time

period, which is a 15% reduction from the first time period.

However, the number of vulnerabilities with at least 2 weeks

of impact delay increased to 73 (39.46%). Fig. 1 shows the

number of hidden impact vulnerabilities with different impact

delays. Table I shows the number of vulnerabilities with at

least 2, 4 and 8 weeks of impact delay for the two time

periods.

Further, on any given day, there were 9.8 hidden impact

vulnerabilities in existence on average during the second time

period. Fig. 2 shows the number of hidden impact

vulnerabilities that existed on each day for the second time

period.

Thus, the number of hidden impact vulnerabilities in the

Linux kernel has increased in both percentage and magnitude

for the 2009 to 2011 time period. Furthermore, the average

number of hidden impact vulnerabilities in existence per each

day has also increased for the same time period.

B. MySQL Vulnerability Analysis

To expand on the knowledge gained from examining a

single product (the Linux kernel), the MySQL database server

was analyzed. Like Linux, MySQL has a public database of

bugs and a significant number of vulnerabilities in the MITRE

CVE database.

Using the same criteria as discussed in Section III.A for the

first time period, there were 37 vulnerabilities in the MITRE

CVE database out of which 22 (59.5%) had an impact delay of

Fig. 1. Number of hidden impact vulnerabilities by impact delay for Linux

kernel (January 2009 to April 2011)

Fig. 2. Number of hidden impact vulnerabilities that existed per day for the

Linux kernel (January 2009 to April 2011)

TABLE I. HIDDEN IMPACT VULNERABILITIES (LINUX KERNEL)

 2006 Jan.

 - 2008 Dec.

(First time

period)

2009 Jan.

 - 2011 Apr.

(Second time

period)

Total

Total 218 185 403

At least 2 weeks

of impact delay
56 (25.69%) 73 (39.46%) 129 (32.01%)

At least 4 weeks

of impact delay
38 (17.43%) 55 (29.73%) 93 (23.08%)

At least 8 weeks

of impact delay
31 (14.22%) 29 (15.68%) 60 (14.99%)

Fig. 3. Number of hidden impact vulnerabilities by impact delay for MySQL

(December 2003 to April 2011)

4

at least 2 weeks (see Table II). An average of 3.45 hidden

impact vulnerabilities affected the MySQL database server per

day for the same time period.

For the second time period, 29 vulnerabilities were reported

and 19 (65.5%) of these were hidden impact vulnerabilities

that had an impact delay of at least 2 weeks. Although the

number of hidden impact vulnerabilities has not increased in

absolute terms, it has increased percentagewise in the 2009 to

2011 time period.

Fig. 3 shows the number of vulnerabilities by impact delay

for the MySQL database server. Comparing Fig. 1 and Fig. 3

shows that the median impact delay time for MySQL is much

higher (11 weeks for Linux and 20 weeks for MySQL). Also,

the distribution is of a different shape which may reflect the

different priorities of the developers of the two projects.

Finally, Fig. 4 shows the number of hidden impact

vulnerabilities on a given day for MySQL for the time period

from January 2009 to April 2011. At any given day during the

second time period, on average there existed 3.75 hidden

impact vulnerabilities for the MySQL database server.

Thus, similar to Linux, MySQL hidden impact

vulnerabilities account for a significant portion of the total

number of vulnerabilities and the percentage of hidden impact

vulnerabilities has increased in the second time period.

IV. EVALUATION OF BUG DATABASES FOR USE IN DATA

MINING FOR VULNERABILITIES

 Bug databases for software are kept in order to keep track of

the bugs existing in the software. Publicly available bug

databases benefit from information provided by users with a

diverse set of technical backgrounds as well as programmers

and developers [25]. These bug databases allow developers to

identify previously unforeseen bugs in the software and at the

same time users can track the resolution process of each bug.

It has been shown that these databases are extremely useful in

increasing the quality and reliability of the software as well as

containing vital information that can be used for various

purposes such as improving future design requirements [4],

gathering vital feedback from users [25], and improving

software reliability [26], [27].

 In this section bug reports from Redhat Bugzilla database

are analyzed. The Redhat Bugzilla database was selected

because 1) it is one of the most extensive bug databases

available, 2) all other Bugzilla bug databases generally follow

the same format, 3) most of the Linux vulnerabilities

examined in this paper are associated with bugs in the Redhat

Bugzilla database, 4) at the time of writing the paper, Linux

Kernel Bugzilla database [28] was restricted from public

access due to a security breach. Although the Redhat Bugzilla

database "is not an avenue for technical assistance or support,

but simply a bug tracking system" [6], it has been shown that

certain details in the bug reports can be used for various forms

of classification as mentioned in Section II.A [2], [3], [4].

A. Bug Reports and Bug Life Cycle

 After a bug is reported, it is reviewed and the reported bug

is assigned a bug ID, which is a unique identifier and enters

the bug resolution process. Fig. 5, shows the typical life cycle

of a bug after it is reported.

 When a bug is reported, the reporter can assign as many

parameters to the bug report as he or she sees fit. These

parameters include terms such as severity, priority, product,

component and keywords. During the life cycle of the bug,

these parameters may be changed according to its nature and

severity. Apart from these set parameters, the person who

reports the bug must provide a title for the bug which is a short

description of the bug, and a comment which is a longer

description of the bug and should describe the bug in more

detail. The long description may include code snippets, how to

recreate the bug, the specifications of the hardware setup etc.,

which are meant to allow the developer to more easily identify

and rectify the bug.

 The status of the bug changes according to the position of

the bug in the life cycle, thus allowing users to be informed on

the progress of the bug. Further, comments can be added by

Fig. 4. Number of hidden impact vulnerabilities that existed per day for the

MySQL database (January 2009 to April 2011)

TABLE III. HIDDEN IMPACT VULNERABILITIES (MYSQL)

 2006 Jan.

 - 2008 Dec.

(First time

period)

2009 Jan.

 - 2011 Apr.

(Second time

period)

Total

Total 37 29 66

At least 2 weeks

of impact delay
22 (59.46%) 19 (65.52%) 41 (62.12%)

At least 4 weeks

of impact delay
21 (56.76%) 19 (65.52%) 40 (60.62%)

At least 8 weeks

of impact delay
17 (45.95%) 16 (55.17%) 33 (50%)

Fig. 5. Typical life cycle of a Bugzilla bug.

5

users and administrators to convey the progress and

development of the bug fix or other relevant facts.

 As of 2011-4-18 the Redhat Bugzilla database contained

202,896 entries. The first bug which is a test bug report was

added to the database on 1998-11-1. Table III shows the

distribution of bugs per year and the mean number of bugs per

day in the Redhat Bugzilla [6] database. The number of bugs

reported has been increasing (see Fig. 6 and 7), which might

be due to the surprising fact that mature releases of the same

software tend to have more bugs reported [27].

 The main problem with such bug reports is that most of the

parameters of the bug are set by the person who reports the

bug, thus leading to inconsistencies within the bug database

[23]. For example, the severity and priority of a bug may

change according to person and environment [23]. Also it has

been shown that Bugzilla typically uses too many severity

levels [29]. Similarly the bug may be reported by a normal

user, an expert, or automatically, thus, each entity will report

the bug according to their own level of expertise and

preference.

 Due to these factors previous studies on bug database

mining have focused on using the short and long descriptions

of the bugs, as they contain the most generalized information

about the bug [2], [3].

B. Bug Reports associated with Linux Vulnerabilities

 As this study investigates the possibility of using bug

reports in order to identify software vulnerabilities, it is

necessary to discover bug reports that are associated with

vulnerabilities. Since some bug reports do not state the

specific vulnerability it is associated with, the bug ID

associated with each vulnerability in the MITRE CVE [5]

database was used to identify these bugs.

 The vulnerability database contained vulnerabilities for the

Linux kernel from January 2006 to April 2011. By applying

the rules stated in Section III.A, the number of vulnerabilities

was reduced to 403. However, 72 vulnerabilities did not have

associated bug reports. As mentioned above, most of the

remaining vulnerabilities were associated with bug reports

from the Redhat Bugzilla [6] database. Only 15 vulnerabilities

were associated with bug reports from the Linux Kernel

Bugzilla database [28]. Out of these 15 bugs only 5 were

associated exclusively with bug reports from Linux Kernel

Bugzilla database [28]. Therefore out of the original 388

MITRE CVE listed vulnerabilities, 326 were associated with

bugs from the Redhat Bugzilla database [6].

 From the remaining 326 vulnerabilities, 197 were non

hidden impact vulnerabilities while 129 were hidden impact

vulnerabilities.

 Although all the remaining 326 vulnerabilities had a bug ID

associated with them, 152 of the bug IDs either did not match

a bug ID in the Redhat Bugzilla [6] database or the bug reports

were not accessible. Therefore, only 76 hidden impact

vulnerabilities and 98 non-hidden impact vulnerabilities were

matched with a bug report (see Table IV).

V. CLASSIFICATION FOR VULNERABILITY IDENTIFICATION VIA

BUG DATABASES

 Bug reports in publicly available bug databases are

extremely varied due to the fact that the bug reporting systems

are not standardized and the expertise and requirements of the

bug reporters vary. However, previous work on bug triaging

and classification successfully makes use of the short and long

descriptions of bug reports.

 Thus, we propose a bug classification methodology that

TABLE III. NUMBER OF REPORTED BUGS PER YEAR IN THE REDHAT

BUGZILLA [6] DATABASE

Year
Number of bug

reports

Number of bugs

per day

From Nov.1998 336 5.5

1999 3,788 10.4

2000 5,846 16

2001 7,839 21.5

2002 9,200 25.3

2003 8,497 23.3

2004 11,951 32.7

2005 12,428 34

2006 15,283 41.9

2007 17,263 47.3

2008 20,916 57.3

2009 27,052 74.1

2010 43,301 118.6

to April 2011 19,185 139

Unknown 11

Total 202.896 44.5

Fig. 6. Number of bugs reported in the Redhat Bugzilla database [6]

Fig. 7. Average number of bugs per day reported in the Redhat Bugzilla

database [6]

TABLE IV. LINUX KERNEL VULNERABILITIES ASSOCIATED WITH BUG

REPORTS

Description Number

Number of hidden impact vulnerabilities with bug

reports in Redhat Bugzilla
76

Number of non-hidden impact vulnerabilities with bug
reports in Redhat Bugzilla

98

Number of vulnerabilities with bug reports that are not

accessible
152

Number of vulnerabilities with bug reports exclusively
from Linux Kernel Bugzilla

5

Number of vulnerabilities with no bug reports

associated with them
72

Total 403

6

uses the short and long descriptions of bug reports in publicly

available bug databases, and advanced text mining techniques

coupled with machine learning algorithms to aid discovery of

hidden impact vulnerabilities. The proposed methodology,

illustrated in Fig. 8, will extract the short and long descriptions

from a reported bug and generate a feature vector via text

mining. The text mining will involve: tokenizing, removal of

stop-words, combining synonyms and hyponyms, stemming

and matrix enhancing. Furthermore a static code analysis of

the location or module the bug was reported in will add to the

feature vector. The classifier will then classify the reported

bug as a normal bug or a vulnerability using the feature vector.

 The implementation of the proposed classifier was initiated

for the Linux kernel vulnerabilities by using the Redhat

Bugzilla bug database as the source of bug descriptions. The

bug reports in the database were divided into three classes:

normal bugs (~200,000), bugs that are vulnerabilities (98), and

bugs that are hidden impact vulnerabilities (76). The set of

vulnerabilities considered were vulnerabilities reported from

2006 to 2011, and the earliest bug report that was associated

with a vulnerability was from 2004. Therefore, the set of

normal bugs considered for the classifier contained bugs

reported from 2004 to 2011. Thus according to Table III, the

normal set contained 167,390 bugs.

 This general classifier faces two main problems: first the

large dimensionality of the feature vector and second the base-

rate fallacy problem. The following Sub-Sections illustrates

these two problems.

A. Generation of the feature vector

 Because of the large number of unique words contained in

the textual descriptions of bugs and the large number of bugs

considered, the dimensionality of the feature vector will be

large. Such a high dimensionality will increase the training

time of the classifier as well as the memory and processor

requirement. Thus, in order to reduce the dimensionality of the

feature vector without losing the most significant information

in the bug report, the following methodology was used to

extract the feature vector.

 First, the long and short descriptions of the bugs were

extracted. Tokenization was used to extract the unique words

in the descriptions. In the tokenization process special

characters and numbers were removed, and capitalization and

other text formatting was also removed from the text. Because

of the large number of normal bugs, a random sample of 4000

bugs were used for the extraction of unique words. Table V

shows the number of unique words in each category of bug.

 Second, stop words were removed from the extracted

unique word lists. Stop words are words that are commonly

used in the English language and do not carry any information.

By removing stop words, the number of unique words was

reduced without loss to the information contained in the text.

 Third, Wordnet [30] was used to identify synonyms and

hyponyms and combine these. Synonyms and hyponyms are

words that carry the same information in a different form. This

step combines words that carry similar information and further

reduced the number of unique words.

 Porter stemming [31] was performed as the fourth step. In

this step words are stemmed into their most basic form.

Similar to combining synonyms and hyponyms this step

combined words that carry similar information, and further

reduced the number of unique words.

 As the final step for generating the term document matrix

the unique words that occur in less than 10% of the records in

each category were removed. This step removes words that are

less generalized and reduced the number of unique words

further.

 The reduction of the size of the feature vector after each

step of the text mining process can be seen in Table V. The

resulting feature vector contains words that are most

generalized to the bug database. Due to the small ratio

between the number of bugs that are hidden impact

vulnerabilities and the number of normal bugs, textual

information from each category was extracted separately and

finally combined to obtain the feature vector.

 As illustrated in Table V, the initial number of unique

words is very large, thus, making the feature vector too large.

However, by utilizing Wordnet and Porter stemming the

number of unique words were reduced, and after removing the

keywords that occur in less than 10% of the bugs, the length of

the feature vector was reduced to 633.

 By utilizing the feature vector, the term-document matrix is

generated. However, this matrix is extremely sparse. Thus, for

this application, techniques such as TF-IDF for matrix

enhancing will be used to improve the term-document matrix.

B. The Base-Rate fallacy problem

 In [32] Axelsson performed a base-rate fallacy test for

intrusion detection systems (IDS) and illustrated the problems

in classifying intrusions. Axelsson pointed out the small ratio

between the number of intrusions and normal traffic affect the

outcome in such a way that the user will be overwhelmed by

the number of false positives. Since the ratio between hidden

impact vulnerabilities and normal bugs in bug databases is

very low (129/167,390 = 7.71 X 10
-4

), a similar base-rate

fallacy evaluation was performed. However, it has to be noted

that the number of hidden impact vulnerabilities used for this

Fig. 8.The proposed vulnerability discovery methodology

7

calculation is a conservative estimate since 1) although all the

bugs reported for 2004 and 2005 were included in the normal

bug set, hidden impact vulnerabilities discovered for that time

period were not included, and 2) the normal bug set may

include bugs that will eventually be discovered as

vulnerabilities in the future.

 For the base-rate fallacy analysis, the following

nomenclature will be used:

YgivenXofyprobabilitYXP

XofyprobabilitXP

XnotX

nerabilityvulaasbugatectsdeclassifiertheeitectiondeD

nerabilityvulimpacthiddenV











)|(

)(

)..(

Thus, by using the above naming convention, true positive rate

can be denoted as)|(VDP and the false positive rate can be

denoted as)|(VDP  .

 For classification of vulnerabilities the Bayesian detection

rate is the probability that a bug is a vulnerability given that

the classifier detects the bug as a vulnerability, i.e.)|(DVP .

In order to increase the Bayesian detection rate the number of

false positives must be reduced. By means of Bayes' theorem

the Bayesian detection rate can be expressed as:

)|()()|()(

)|()(
)|(

VDPVPVDPVP

VDPVP
DVP




 (1)

 The following probabilities are known:

41071.7

167390

129
)(VP (2)

99923.01071.71)(1)(4  VPVP (3)

 By using equations (2) and (3), equation (1) can be

rewritten as:

)|(99923.0)|(1071.7

)|(1071.7
)|(

4

4

VDPVDP

VDP
DVP










 (4)

The Bayesian detection rate expressed in equation (4) is

dominated by the factor 0.99954, i.e. the high probability that

a bug is not a vulnerability. Thus in order to achieve a

Bayesian detection rate that is sufficient, the false positive rate

must be low. Fig. 9 plots the false positive rate against the

Bayesian detection rate, for different values of true positive

rates ()|(VDP). Fig. 9 shows that as the false positive rate

increases, the Bayesian detection rate decreases.

 The Bayesian detection rate is vital when dealing with

human users: if the Bayesian detection rate is too low, the

users will be overwhelmed by the number of false positives

and thus reducing the effectiveness of the classifier. It is not

possible to guess what the sufficient level of Bayesian

detection rate will be for the classifier. However, by using the

upper bound in Fig. 9. it is possible to gain an understanding

of the maximum false positive rate which is acceptable from

the classifier. For example, if a Bayesian detection rate of 0.01

can be tolerated by the development team, which means that

only one out of 100 detections is an actual vulnerability,

according to Fig. 9, a maximum false positive rate of 0.076 is

acceptable. This means that on average for any given day in

2011, where 139 bugs were reported per day (see Table III),

around 11 (0.076 * 139) bugs will be falsely identified as a

vulnerability by the classifier. Similarly, if one out of 10

detections needs to be an actual vulnerability, which means a

Bayesian detection rate of 0.1, to achieve this, the maximum

acceptable false positive rate is 0.0069. This translates to

falsely identifying around one bug per day (0.0069 * 139) for

any given day in 2011. Thus, the lower boundary of false

positive rate that the proposed classifier must obtain can be

determined using Fig. 9.

VI. CONCLUSION

More effective vulnerability discovery and identification is

an important factor in the software life cycle as it will reduce

the security exposure of vital systems. The earlier a reported

bug is identified as a vulnerability the more effective

developers can be in identifying which bugs have higher

priority for patch creation (vulnerabilities have a high

priority), and the more effective system owners can be in

choosing which patches should be applied quickly.

TABLE V. NUMBER OF KEYWORDS IN EACH CLASS OF THE DATASET

Type of bug

Total number of

unique words after

tokenization

After

removing stop

words

After combining

synonyms and

hyponyms

After Porter

stemming

After removing words

that occur in less than

10% of bugs

Non hidden impact

vulnerabilities

Short description 335 308 272 268 8

Long description 2595 2468 1848 1794 159

Hidden impact
vulnerabilities

Short description 325 297 264 260 8

Long description 2144 2026 1564 1525 210

Normal bugs
Short description 6161 6039 4536 4349 90

Long description 9981 9843 8067 7825 158

Total 21541 20981 16551 16021 633

Fig. 9. Bayesian detection rate for classifying vulnerabilities.

8

An analysis of the most significant Linux kernel

vulnerabilities and MySQL vulnerabilities showed a

significant number of vulnerabilities that affected the Linux

kernel (39.4%) and the MySQL database server (62.23%)

were hidden impact vulnerabilities and it was shown that the

percentage of hidden impact vulnerabilities has increased in

the last two years. Thus there is a necessity to use bug

databases to identify hidden impact vulnerabilities in software.

A further analysis of the Redhat Bugzilla Linux bug

database showed the difficulties of data mining such

databases. However an analysis of previous research into bug

triaging and classification showed that the information

contained in bug reports can be used for classification

purposes. This paper also proposed a system that utilizes bug

reports to identify hidden impact vulnerabilities. Potential

problems faced by a development team when using the

proposed classifier were also addressed in the paper.

As future work the proposed system will be implemented

for discovering vulnerabilities in the Linux kernel, MySQL

and other third party software. The system will use advanced

text mining techniques and machine learning algorithms to

classify bugs and vulnerabilities. In order to further enhance

the classification accuracy, attributes of the source code itself

and other aspects of the software development process will be

incorporated into the classifier.

REFERENCES

[1] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G. Thomas, A.
Kaseorg, “Security Impact Ratings Considered Harmful,” in Proc. of the

12th Conf. on Hot Topics in Operating Systems , USENIX, May 2009.

[2] A. Lamkanfi, S. Demeyer, E. Giger, B. Goethals, “Predicting the
severity of a reported bug,” in Proc. of the 7th IEEE Working Conf. on

Mining Software Repositories (MSR 2010), May 2010, pp.1–10.

[3] A. Lamkanfi, S. Demeyer, Q. D. Soetens, T. Verdonck, “Comparing

Mining Algorithms for Predicting the Severity of a Reported Bug,” in

Proc. of the 15th European Conf. on Software Maintenance and

Reengineering (CSMR), Mar. 2011, pp.249–258 .
[4] A. J. Ko, B. A. Myers, D. H. Chau, "A Linguistic Analysis of How

People Describe Software Problems,” in Proc. of the 2006 IEEE Symp.

on Visual Languages and Human-Centric Computing (VL/HCC 2006),
Sep. 2006, pp. 127–134.

[5] The MITRE Corporation (1 Nov. 2011), Common Vulnerabilities and

Exposures (CVE) [Online]. Available: http://cve.mitre.org/.
[6] Redhat, Inc. (1 Nov. 2011), Redhat Bugzilla Main Page [Online].

Available: https://bugzilla.redhat.com/.

[7] F. Yamaguchi, F. 'FX' Lindner, K. Rieck, “Vulnerability Extrapolation:
Assisted Discovery of Vulnerabilities using Machine Learning,” in Proc.

of the 5th USENIX Workshop on Offensive Technologies (WOOT),

USENIX, Aug. 2011.
[8] L. Li, H. Leung, “Mining Static Code Metrics for a Robust Prediction of

Software Defect-Proneness,” in Proc of the 2011 Int. Symp. on

Empirical Software Engineering and Measurement (ESEM ‘11), Sep.
2011, pp. 207–214.

[9] P. Li, B. Cui, “A comparative study on software vulnerability static

analysis techniques and tools,” in Proc. of the IEEE Int. Conf. on
Information Theory and Information Security (ICITIS), Dec. 2010,

pp.521–524.

[10] A. Austin, L. Williams “One Technique is Not Enough: A Comparison
of Vulnerability Discovery Techniques,” in Proc. of the 2011 Int. Symp.

on Empirical Software Engineering and Measurement (ESEM '11), Sep.

2011, pp. 97–106.
[11] D. Kester, M. Mwebesa, J. S. Bradbury, “How Good is Static Analysis

at Finding Concurrency Bugs?” in Proc of the 10th IEEE Int. Working

Conf. on Source Code Analysis and Manipulation (SCAM ’10), Sep.
2010, pp. 115–124.

[12] W. M. Khoo, S. Aloteibi, R. Anderson, M. Meeks, “Hunting for

vulnerabilities in large software: the OpenOffice suite,” Cambridge
University press, Jun. 2010.

[13] M. Schumacher, C. Haul, M. Hurler, A. Buchmann, “Data Mining in

Vulnerability Databases,” in Proc of 7th Workshop ”Sicherheit in
vernetzten Systemen", Mar. 2000.

[14] L. Torri, G. Fachini, L. Steinfeld, V. Camara, L. Carro, É. Cota, “An

Evaluation of Free/Open Source Static Analysis Tools Applied to
Embedded Software,” in Proc of the 11th Latin American Test

Workshop (LATW ’10), Mar. 2010, pp. 1–6.

[15] K. Kratkiewicz, R. Lippmann, “Using a Diagnostic Corpus of C
Programs to Evaluate Buffer Overflow Detection by Static Analysis

Tools,” in Proc of Workshop on the Evaluation of Software Defect

Detection Tools, Jun. 2005, pp. 62–71.
[16] M. Zitser, R. Lippmann, T. Leek “Testing Static Analysis Tools Using

Exploitable Buffer Overflows From Open Source Code,” in Proc. of the

12th Int. Symp. on Foundations of Software Engineering (FSE ’04),
ACM SIGSOFT, Nov. 2004, pp. 97–106.

[17] D. Cubranic, G. C. Murphy, “Automatic bug triage using text

categorization,” in Proc. of the 16th Int. Conf. on Software Engineering
and Knowledge Engineering, KSI Press, Jun. 2004, pp. 92-97.

[18] J. Anvik, L. Hiew, G. C. Murphy, “Who Should Fix This Bug?” in Proc.

of the 28th Int. Conf. on Software Engineering (ICSE ’06), May 2006,
pp. 361–370.

[19] G. Jeong, S. Kim, T. Zimmermann, “Improving bug triage with bug

tossing graphs,” in Proc. of the 7th Joint Meeting of the European
Software Engineering Conf. and the ACM SIGSOFT (ESEC/FSE ’09),

Aug. 2009, pp. 111–120.
[20] P. Runeson, M. Alexandersson, O. Nyholm, O, “Detection of Duplicate

Defect Reports Using Natural Language Processing,” in Proc. of the

29th Int. Conf. on Software Engineering (ICSE 2007), 20-26 May 2007,
pp.499–510.

[21] X. Wang, L. Zhang, T. Xie, J. Anvik, J. Sun, “An Approach to Detecting

Duplicate Bug Reports using Natural Language and Execution
Information,” in Proc. of the 30th Int. Conf. on Software Engineering

(ICSE '08), May 2008, pp. 461–470.

[22] T. Prifti, S. Banerjee, B. Cukic, “Detecting Bug Duplicate Reports
through Local References,” in Proc of the 7th Int. Conf. on Predictive

Models in Software Engineering (PROMISE ’11), Sep. 2011, pp. 8:1–

8:9.
[23] L. Wu, B. Xie, G. Kaiser, R. Passonneau, “BugMiner: Software

Reliability Analysis Via Data Mining of Bug Reports,” in Proc. of the

23rd Int. Conf. on Software Engineering and Knowledge Engineering
(SEKE), Jul. 2011, pp. 95–100.

[24] H. Shahriar, M. Zulkernine, “Classification of Static Analysis-based

Buffer Overflow Detectors,” in Proc of the 4th Int. Conf. on Secure
Software Integration and Reliability Improvement Companion, Jun.

2010, pp. 94–101.

[25] J. Noll, S. Beecham, D. Seichter, “A Qualitative Study of Open Source
Software Development: the OpenEMR Project,” in Proc of the Int.

Symp. on Empirical Software Engineering and Measurement (ESEM

’11), Sep. 2011, pp. 30–39.
[26] M. F. Ahmed, S. S. Gokhale, “Linux Bugs: Life Cycle and Resolution

Analysis,” in Proc of The 8th Int. Conf. on Quality Software (QSIC ’08),

Aug. 2008, pp.396–401.
[27] M. F. Ahmed, S. S. Gokhale, “Linux Bugs: Life Cycle, Resolution and

Architectural Analysis,” in Information Software Technology, vol. 5,

no. 11, pp. 1618–1627, Nov. 2009.

[28] Linux Kernel Organization (1 Nov. 2011), The Linux Kernel Archives

[Online]. Available: http://www.kernel.org/.

[29] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, G. Robles,
“Towards a simplification of the bug report form in Eclipse,” in Proc. of

the Int. Working Conf. on Mining Software Repositories (MSR '08),

May 2008, pp. 145–148.
[30] C. Fellbaum, WordNet: An Electronic Lexical Database, Cambridge,

MA: MIT Press, 1998.

[31] M. F. Porter, “An algorithm for suffix stripping,” in Program, vol. 14,
no. 3, pp. 130−137, 1980.

[32] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion

detection,” in ACM Transactions on Information and System Security
(TISSEC), vol. 3, no. 3, pp. 186–205, Aug. 2000.

[33] T. Menzies, A. Marcus, “Automated Severity Assessment of Software

Defect Reports,” in Proc of the IEEE Int. Conf. on Software
Maintenance, Sep. 2008, pp. 346-355.

http://cve.mitre.org/
https://bugzilla.redhat.com/
http://www.kernel.org/

