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Abstract— Identifying software vulnerabilities is becoming 

more important as critical and sensitive systems increasingly rely 

on complex software systems. It has been suggested in previous 

work that some bugs are only identified as vulnerabilities long 

after the bug has been made public. These vulnerabilities are 

known as hidden impact vulnerabilities. This paper discusses 

existing bug data mining classifiers and present an analysis of 

vulnerability databases showing the necessity to mine common 

publicly available bug databases for hidden impact 

vulnerabilities.  

We present a vulnerability analysis from January 2006 to 

April 2011 for two well known software packages: Linux kernel 

and MySQL. We show that 32% (Linux) and 62% (MySQL) of 

vulnerabilities discovered in this time period were hidden impact 

vulnerabilities. We also show that the percentage of hidden 

impact vulnerabilities in the last two years has increased by 53% 

for Linux and 10% for MySQL.  

We then propose a hidden impact vulnerability identification 

methodology based on text mining classifier for bug databases. 

Finally, we discuss potential challenges faced by a development 

team when using such a classifier. 

 
Index Terms— Hidden impact vulnerabilities, Bug database 

mining, Vulnerability discovery, Classifier 

 

I. INTRODUCTION 

 Software vulnerabilities are an increasing security focus as 

critical and sensitive systems which operate critical 

infrastructure become increasingly dependent on complex 

software systems. Discovering these software vulnerabilities 

as early as possible, at every stage of the software lifecycle, is 

therefore of extreme importance in order to minimize the time 

in which the vulnerabilities expose the systems to attack. This 

includes the quicker and more effective identification of which 

bugs may also be vulnerabilities.  

 In [1], Arnold et al. defined hidden impact vulnerabilities as 

those vulnerabilities identified as such only after the related 

bug had been disclosed to the public. These software bugs are 

disclosed to the public via bug databases and bug fixes, before 

being identified as having a high security impact and being 

labeled as vulnerabilities. Thus, even though a bug is known 

to the community it may not be as quickly fixed by 

developers,  and a fix may not be applied in an appropriately 

timely fashion by end-users, because the security implication 

of the bug has not been correctly identified.  

 Publicly available bug databases store and track information 

about software bugs. Information contained in bug reports is 

highly noisy and not in standard form [2], [3]. However, this 

information has been successfully used for some classification 

purposes [2], [3], [4]. 

 This paper first extends the work of Arnold [1] and clearly 

demonstrates, empirically, that there is a need for improved 

identification of which bugs are also vulnerabilities. Then we 

address the feasibility and elaborate on the difficulties of 

mining bug databases for discovery of potential hidden impact 

vulnerabilities.  The Linux kernel and MySQL bug databases 

were chosen for analysis because they have  been deployed for 

many years, have extensive bug and vulnerability databases, 

and their source code is available for future use in our 

classification efforts. 

Linux kernel vulnerabilities that were reported in the 

MITRE CVE [5] database, during the time period from 

January 2006 to April 2011 were analyzed. This analysis 

showed a large portion of the most significant vulnerabilities 

were hidden impact vulnerabilities and this number has 

increased in the last two years.  

A similar analysis of MySQL vulnerabilities reported in the 

MITRE CVE database was conducted for the time period 

January 2006 to April 2011. Similar to the Linux kernel, the 

proportion of hidden impact vulnerabilities was significant and 

the proportion has increased in the last two years for MySQL 

as well.  

After the empirical analysis of hidden impact 

vulnerabilities, the practical difficulties of mining bug 

databases are evaluated in a case study using the Redhat 

Bugzilla bug database [6]. A vulnerability identification 

methodology that utilizes text mining techniques to extract 

information from bug databases and uses machine learning 

techniques to identify vulnerabilities from this extracted 

information is then described.  
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The rest of the paper is organized as follows. Related work 

on bug database mining and vulnerability discovery is 

discussed in section II. Section III provides an analysis of 

hidden impact vulnerabilities in the Linux kernel and the 

MySQL application. Section IV analyzes a publicly available 

bug database for use in data mining hidden impact 

vulnerabilities. Section V proposes a hidden impact 

vulnerability discovery tool and problems associated with such 

a system. Section VI summarizes the conclusions and provides 

a brief discussion of our future research. 

II. RELATED WORK 

This section highlights previous studies into different 

methods of vulnerability discovery and mining bug databases. 

A. Vulnerability discovery 

Yamaguchi et al. used machine leaning and text mining 

techniques to discover vulnerabilities in source code [7]. 

However, the classification results were below expectations 

[7]. Similarly, Li and Leung also used machine learning 

techniques to identify software defects in source code [8].  

Many previous studies on vulnerability discovery focused 

on static code analysis and static code analysis tools. 

However, it has been shown that there are no universal static 

analysis tools and static analysis by itself does not provide 

satisfactory results for vulnerability discovery [9], [10], [11]. 

The existing tools are also very difficult to use because of the 

large size of software distributions [12]. Schumacher et al. 

showed the value of gathering information from vulnerability 

databases to aid the discovery of vulnerabilities in software 

[13]. In [14] Torri et al. evaluated 10 free and open source 

static analysis tools on embedded C programs. Torri et al. 

found that while the results were very poor, even the best 

performing tool needed to be tweaked extensively to produce 

good results, and therefore, this approach was impractical for 

use in software development and vulnerability discovery [14]. 

Similar results were shown in [11] and [15]. 

Zitser et al. tested five static analysis tools on three open 

source programs [16]. Low detection rates were reported for 

most of the tools while the best performing tools reported very 

high false positive rates (false alarm for every 12 to 46 lines of 

source code) [16].   

In [8], Li and Cui compared 7 free and open source static 

analysis tools and concluded that each by itself did not provide 

a satisfactory discovery of all vulnerabilities. Thus, it was 

proposed that a variety of tools be used to compensate for the 

deficiencies of each tool [8]. 

Austin and Williams showed that no single technique was 

able to discover every type vulnerability by itself and 

therefore, a combination of methods may be the optimal 

means of vulnerability discovery [10].  

B. Bug database mining 

Previous studies have shown that the textual data contained 

in bug reports may carry important information that can help 

developers in the bug triaging process. Previous work on bug 

database mining focuses on three main problems: 1) assigning 

the correct person to fix a bug, 2) finding duplicate bug reports 

and 3) assigning the correct severity to a reported bug. 

In [17], [18] and [19], the authors used text mining to assign 

the correct person to fix a bug. The correct person can be a 

developer whose expertise is in that area, or a developer who 

is responsible for the affected code. In [17] Cubranic and 

Murphy used Naive Bayes to classify bugs contained in the 

Eclipse bug database. Anvik et al. used a number of 

classification techniques to classify bugs in the Eclipse and 

Firefox databases [18]. In [19], Jeong et al. used a Markov 

model for the same bug databases and showed better 

classification accuracy. 

Detection of duplicate bug reports is explored in [20], [21], 

[22] and [23]. Runeson et al. used vector space and cosine 

similarity measures to find redundant bugs in a Sony Ericsson 

mobile bug database [20]. In [21], Wang et al. used similarity 

measures to detect potential duplicate bugs for Eclipse and 

Firefox bug databases. Wu et al. [23] also proposed a tool for 

detection of duplicate bugs in Apache, Eclipse and Linux bug 

databases.  

In [2] and [3] Lamkanfi et al. used the textual description of 

bug reports to classify severity of bugs. In [2] Lamkanfi et al. 

classified Eclipse, GNOME and Mozilla bugs into three 

classes of severity using Naive Bayes classifier. In [3] 

Lamkanfi et al. compared classification algorithms for 

classifying Eclipse and GNOME bug severity. 

However, neither previous studies in vulnerability discovery 

nor bug database mining focused on discovery of hidden 

impact vulnerabilities. 

III. HIDDEN IMPACT VULNERABILITY ANALYSIS 

In this section an analyses of hidden impact vulnerabilities 

for the Linux kernel and the MySQL database server are 

presented. It is shown that a significant portion of 

vulnerabilities are hidden impact vulnerabilities and the 

number of hidden impact vulnerabilities has, if anything, 

increased in recent years.  

In [1], Arnold et al. defined hidden impact vulnerabilities as 

those vulnerabilities identified some time after the related bug 

has been disclosed to the public. This bug disclosure can be 

via a patch which has been made available to the public or a 

publicly accessible bug report. The importance of these 

vulnerabilities, as elaborated in [1] is twofold. First, it is easier 

for an attacker to use this disclosed information to discover a 

potentially high impact exploit. Second, even though a patch is 

available, systems may be at risk, because system 

administrators tend not to apply lower severity patches that are 

released for a system. This study focuses on the feasibility of 

using the disclosed information, in the form of a bug report, to 

discover a vulnerability before an attacker can take advantage 

of it. 

Hidden impact vulnerabilities for Linux kernel and MySQL 

database server are analyzed in this section. For each software 

package, vulnerabilities were divided into two groups 

depending on when they were first reported: time period from 

the 1st of January 2006 to the 31st of December 2008, which 

will be called the first time period and the time period from 
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the 1st of January 2009 to the 30th of April 2011 which will 

be called the second time period. 

A. Linux Kernel Vulnerability Analysis 

In their study Arnold et al. used a database of Linux kernel 

vulnerabilities for the first time period (i.e. from the 1st of 

January 2006 to the 31st of December 2008). For this time 

period the Linux kernel had 218 vulnerabilities reported out of 

which 56 (25.69%) had an impact delay of at least 2 weeks. 

Impact delay was defined as the time from the public 

disclosure of the bug in the form of a patch to the time a CVE 

was assigned to the bug because it had now been identified as 

a vulnerability. It was also shown that for any given day in the 

time period there was an average of 8.5 hidden impact 

vulnerabilities present that affected the Linux kernel. 

The number of reported vulnerabilities in software has been 

increasing over the past few years [5], [24]. In order to 

evaluate whether the number of hidden impact vulnerabilities 

has also increased over time, a similar analysis was performed 

for Linux kernel vulnerabilities for the second time period (i.e. 

from the 1st of January 2009 to the 30th of  April 2011). For 

this analysis specific rules were applied to the vulnerability 

database downloaded from [5]. Vulnerabilities that affected 1) 

multiple processors, 2) multiple distributions and 3) Linux 

kernel 2.6 and above, were selected for the vulnerability 

database for the time period. Vulnerabilities that affected only 

a single processor were excluded because these vulnerabilities 

affected only a small subset of users and it is difficult to 

identify whether they were caused by a kernel issue. Similarly, 

vulnerabilities that affected only one distribution were 

excluded because there is no way of clarifying if the 

vulnerability was due to a kernel issue. Vulnerabilities that 

affected Linux kernel 2.6 and above were selected because it 

was the latest version available in 2006. These rules also seem 

to match the rules applied in [1]. Thus the vulnerability 

database contained 185 vulnerabilities for the second time 

period, which is a 15% reduction from the first time period. 

However, the number of vulnerabilities with at least 2 weeks 

of impact delay increased to 73 (39.46%). Fig. 1 shows the 

number of hidden impact vulnerabilities with different impact 

delays. Table I shows the number of vulnerabilities with at 

least 2, 4 and 8 weeks of impact delay for the two time 

periods. 

Further, on any given day, there were 9.8 hidden impact 

vulnerabilities in existence on average during the second time 

period. Fig. 2 shows the number of hidden impact 

vulnerabilities that existed on each day for the second time 

period.  

Thus, the number of hidden impact vulnerabilities in the 

Linux kernel has increased in both percentage and magnitude 

for the 2009 to 2011 time period. Furthermore, the average 

number of hidden impact vulnerabilities in existence per each 

day has also increased for the same time period.  

B. MySQL Vulnerability Analysis 

To expand on the knowledge gained from examining a 

single product (the Linux kernel), the MySQL database server 

was analyzed. Like Linux, MySQL has a public database of 

bugs and a significant number of vulnerabilities in the MITRE 

CVE database. 

Using the same criteria as discussed in Section III.A for the 

first time period, there were 37 vulnerabilities in the MITRE 

CVE database out of which 22 (59.5%) had an impact delay of 

 
 

Fig. 1. Number of hidden impact vulnerabilities by impact delay for Linux 

kernel (January 2009 to April 2011) 

 
 

Fig. 2. Number of hidden impact vulnerabilities that existed per day for the 

Linux kernel (January 2009 to April 2011) 

TABLE I. HIDDEN IMPACT VULNERABILITIES (LINUX KERNEL) 

 2006 Jan. 

 - 2008 Dec. 

(First time 

period) 

2009 Jan. 

 - 2011 Apr. 

(Second time 

period) 

Total 

Total 218 185 403 

At least 2 weeks 

of impact delay 
56 (25.69%) 73 (39.46%) 129 (32.01%) 

At least 4 weeks 

of impact delay 
38 (17.43%) 55 (29.73%) 93 (23.08%) 

At least 8 weeks 

of impact delay 
31 (14.22%) 29 (15.68%) 60 (14.99%) 

 

 
 

Fig. 3. Number of hidden impact vulnerabilities by impact delay for MySQL 

(December 2003 to April 2011) 
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at least 2 weeks (see Table II). An average of 3.45 hidden 

impact vulnerabilities affected the MySQL database server per 

day for the same time period. 

For the second time period, 29 vulnerabilities were reported 

and 19 (65.5%) of these were hidden impact vulnerabilities 

that had an impact delay of at least 2 weeks. Although the 

number of hidden impact vulnerabilities has not increased in 

absolute terms, it has increased percentagewise in the 2009 to 

2011 time period. 

Fig. 3 shows the number of vulnerabilities by impact delay 

for the MySQL database server. Comparing Fig. 1 and Fig. 3 

shows that the median impact delay time for MySQL is much 

higher (11 weeks for Linux and 20 weeks for MySQL). Also, 

the distribution is of a different shape which may reflect the 

different priorities of the developers of the two projects. 

Finally, Fig. 4 shows the number of hidden impact 

vulnerabilities on a given day for MySQL for the time period 

from January 2009 to April 2011. At any given day during the 

second time period, on average there existed 3.75 hidden 

impact vulnerabilities for the MySQL database server.  

Thus, similar to Linux, MySQL hidden impact 

vulnerabilities account for a significant portion of the total 

number of vulnerabilities and the percentage of hidden impact 

vulnerabilities has increased in the second time period. 

IV. EVALUATION OF BUG DATABASES FOR USE IN DATA 

MINING FOR VULNERABILITIES  

 Bug databases for software are kept in order to keep track of 

the bugs existing in the software. Publicly available bug 

databases benefit from information provided by users with a 

diverse set of technical backgrounds as well as programmers 

and developers [25]. These bug databases allow developers to 

identify previously unforeseen bugs in the software and at the 

same time users can track the resolution process of each bug. 

It has been shown that these databases are extremely useful in 

increasing the quality and reliability of the software as well as 

containing vital information that can be used for various 

purposes such as improving future design requirements [4], 

gathering vital feedback from users [25], and improving 

software reliability [26], [27]. 

 In this section bug reports from Redhat Bugzilla database 

are analyzed. The Redhat Bugzilla database was selected 

because 1) it is one of the most extensive bug databases 

available, 2) all other Bugzilla bug databases generally follow 

the same format, 3) most of the Linux vulnerabilities 

examined in this paper are associated with bugs in the Redhat 

Bugzilla database, 4) at the time of writing the paper, Linux 

Kernel Bugzilla database [28] was restricted from public 

access due to a security breach. Although the Redhat Bugzilla 

database "is not an avenue for technical assistance or support, 

but simply a bug tracking system" [6], it has been shown that 

certain details in the bug reports can be used for various forms 

of classification as mentioned in Section II.A [2], [3], [4].  

A. Bug Reports and Bug Life Cycle 

 After a bug is reported, it is reviewed and the reported bug 

is assigned a bug ID, which is a unique identifier and enters 

the bug resolution process. Fig. 5, shows the typical life cycle 

of a bug after it is reported.  

 When a bug is reported, the reporter can assign as many 

parameters to the bug report as he or she sees fit. These 

parameters include terms such as severity, priority, product, 

component and keywords. During the life cycle of the bug, 

these parameters may be changed according to its nature and 

severity. Apart from these set parameters, the person who 

reports the bug must provide a title for the bug which is a short 

description of the bug, and a comment which is a longer 

description of the bug and should describe the bug in more 

detail. The long description may include code snippets, how to 

recreate the bug, the specifications of the hardware setup etc., 

which are meant to allow the developer to more easily identify 

and rectify the bug. 

 The status of the bug changes according to the position of 

the bug in the life cycle, thus allowing users to be informed on 

the progress of the bug. Further, comments can be added by 

 
 

Fig. 4. Number of hidden impact vulnerabilities that existed per day for the 

MySQL database (January 2009 to April 2011) 

TABLE III. HIDDEN IMPACT VULNERABILITIES (MYSQL)  

 2006 Jan. 

 - 2008 Dec. 

(First time 

period) 

2009 Jan. 

 - 2011 Apr. 

(Second time 

period) 

Total 

Total 37 29 66 

At least 2 weeks 

of impact delay 
22 (59.46%) 19 (65.52%) 41 (62.12%) 

At least 4 weeks 

of impact delay 
21 (56.76%) 19 (65.52%) 40 (60.62%) 

At least 8 weeks 

of impact delay 
17 (45.95%) 16 (55.17%) 33 (50%) 

 

 
 

Fig. 5. Typical life cycle of a Bugzilla bug. 
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users and administrators to convey the progress and 

development of the bug fix or other relevant facts. 

 As of 2011-4-18 the Redhat Bugzilla database contained 

202,896 entries. The first bug which is a test bug report was 

added to the database on 1998-11-1. Table III shows the 

distribution of bugs per year and the mean number of bugs per 

day in the Redhat Bugzilla [6] database. The number of bugs 

reported has been increasing (see Fig. 6 and 7), which might 

be due to the surprising fact that mature releases of the same 

software tend to have more bugs reported [27].  

 The main problem with such bug reports is that most of the 

parameters of the bug are set by the person who reports the 

bug, thus leading to inconsistencies within the bug database 

[23]. For example, the severity and priority of a bug may 

change according to person and environment [23]. Also it has 

been shown that Bugzilla typically uses too many severity 

levels [29]. Similarly the bug may be reported by a normal 

user, an expert, or automatically, thus, each entity will report 

the bug according to their own level of expertise and 

preference.  

 Due to these factors previous studies on bug database 

mining have focused on using the short and long descriptions 

of the bugs, as they contain the most generalized information 

about the bug [2], [3].  

B. Bug Reports associated with Linux Vulnerabilities 

 As this study investigates the possibility of using bug 

reports in order to identify software vulnerabilities, it is 

necessary to discover bug reports that are associated with 

vulnerabilities. Since some bug reports do not state the 

specific vulnerability it is associated with, the bug ID 

associated with each vulnerability in the MITRE CVE [5] 

database was used to identify these bugs. 

 The vulnerability database contained vulnerabilities for the 

Linux kernel from January 2006 to April 2011. By applying 

the rules stated in Section III.A, the number of vulnerabilities 

was reduced to 403. However, 72 vulnerabilities did not have 

associated bug reports. As mentioned above, most of the 

remaining vulnerabilities were associated with bug reports 

from the Redhat Bugzilla [6] database. Only 15 vulnerabilities 

were associated with bug reports from the Linux Kernel 

Bugzilla database [28]. Out of these 15 bugs only 5 were 

associated exclusively with bug reports from Linux Kernel 

Bugzilla database [28]. Therefore out of the original 388 

MITRE CVE listed vulnerabilities, 326 were associated with 

bugs from the Redhat Bugzilla database [6].  

 From the remaining 326 vulnerabilities, 197 were non 

hidden impact vulnerabilities while 129 were hidden impact 

vulnerabilities. 

 Although all the remaining 326 vulnerabilities had a bug ID 

associated with them, 152 of the bug IDs either did not match 

a bug ID in the Redhat Bugzilla [6] database or the bug reports 

were not accessible. Therefore, only 76 hidden impact 

vulnerabilities and 98 non-hidden impact vulnerabilities were 

matched with a bug report (see Table IV). 

V. CLASSIFICATION FOR VULNERABILITY IDENTIFICATION VIA 

BUG DATABASES 

 Bug reports in publicly available bug databases are 

extremely varied due to the fact that the bug reporting systems 

are not standardized and the expertise and requirements of the 

bug reporters vary. However, previous work on bug triaging 

and classification successfully makes use of the short and long 

descriptions of bug reports.  

 Thus, we propose a bug classification methodology that 

TABLE III. NUMBER OF REPORTED BUGS PER YEAR IN THE REDHAT 

BUGZILLA [6] DATABASE  

Year 
Number of bug 

reports 

Number of bugs 

per day 

From Nov.1998 336 5.5 

1999 3,788 10.4 

2000 5,846 16 

2001 7,839 21.5 

2002 9,200 25.3 

2003 8,497 23.3 

2004 11,951 32.7 

2005 12,428 34 

2006 15,283 41.9 

2007 17,263 47.3 

2008 20,916 57.3 

2009 27,052 74.1 

2010 43,301 118.6 

to April 2011 19,185 139 

Unknown 11  

Total 202.896 44.5 

 

 

 
 

Fig. 6. Number of bugs reported in the Redhat Bugzilla database [6] 

 

 
 

Fig. 7. Average number of bugs per day reported in the Redhat Bugzilla 

database [6] 

TABLE IV. LINUX KERNEL VULNERABILITIES ASSOCIATED WITH BUG 

REPORTS 

Description Number 

Number of hidden impact vulnerabilities with bug 

reports in Redhat Bugzilla 
76 

Number of non-hidden impact vulnerabilities with bug 
reports in Redhat Bugzilla 

98 

Number of vulnerabilities with bug reports that are not 

accessible 
152 

Number of vulnerabilities with bug reports exclusively 
from Linux Kernel Bugzilla 

5 

Number of vulnerabilities with no bug reports 

associated with them 
72 

Total 403 
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uses the short and long descriptions of bug reports in publicly 

available bug databases, and advanced text mining techniques 

coupled with machine learning algorithms to aid discovery of 

hidden impact vulnerabilities. The proposed methodology, 

illustrated in Fig. 8, will extract the short and long descriptions 

from a reported bug and generate a feature vector via text 

mining. The text mining will involve: tokenizing, removal of 

stop-words, combining synonyms and hyponyms, stemming 

and matrix enhancing. Furthermore a static code analysis of 

the location or module the bug was reported in will add to the 

feature vector. The classifier will then classify the reported 

bug as a normal bug or a vulnerability using the feature vector. 

 The implementation of the proposed classifier was initiated 

for the Linux kernel vulnerabilities by using the Redhat 

Bugzilla bug database as the source of bug descriptions.  The 

bug reports in the database were divided into three classes: 

normal bugs (~200,000), bugs that are vulnerabilities (98), and 

bugs that are hidden impact vulnerabilities (76). The set of 

vulnerabilities considered were vulnerabilities reported from 

2006 to 2011, and the earliest bug report that was associated 

with a vulnerability was from 2004. Therefore, the set of 

normal bugs considered for the classifier contained bugs 

reported from 2004 to 2011. Thus according to Table III, the 

normal set contained 167,390 bugs.  

 This general classifier faces two main problems: first the 

large dimensionality of the feature vector and second the base-

rate fallacy problem. The following Sub-Sections illustrates 

these two problems. 

A. Generation of the feature vector 

 Because of the large number of unique words contained in 

the textual descriptions of bugs and the large number of bugs 

considered, the dimensionality of the feature vector will be 

large. Such a high dimensionality will increase the training 

time of the classifier as well as the memory and processor 

requirement. Thus, in order to reduce the dimensionality of the 

feature vector without losing the most significant information 

in the bug report, the following methodology was used to 

extract the feature vector. 

 First, the long and short descriptions of the bugs were 

extracted. Tokenization was used to extract the unique words 

in the descriptions. In the tokenization process special 

characters and numbers were removed, and capitalization and 

other text formatting was also removed from the text. Because 

of the large number of normal bugs, a random sample of 4000 

bugs were used for the extraction of unique words. Table V 

shows the number of unique words in each category of bug.  

 Second, stop words were removed from the extracted 

unique word lists. Stop words are words that are commonly 

used in the English language and do not carry any information. 

By removing stop words, the number of unique words was 

reduced without loss to the information contained in the text.  

 Third, Wordnet [30] was used to identify synonyms and 

hyponyms and combine these. Synonyms and hyponyms are 

words that carry the same information in a different form. This 

step combines words that carry similar information and further 

reduced the number of unique words. 

 Porter stemming [31] was performed as the fourth step. In 

this step words are stemmed into their most basic form. 

Similar to combining synonyms and hyponyms this step 

combined words that carry similar information, and further 

reduced the number of unique words.  

 As the final step for generating the term document matrix 

the unique words that occur in less than 10% of the records in 

each category were removed. This step removes words that are 

less generalized and reduced the number of unique words 

further. 

 The reduction of the size of the feature vector after each 

step of the text mining process can be seen in Table V. The 

resulting feature vector contains words that are most 

generalized to the bug database. Due to the small ratio 

between the number of bugs that are hidden impact 

vulnerabilities and the number of normal bugs, textual 

information from each category was extracted separately and 

finally combined to obtain the feature vector. 

 As illustrated in Table V, the initial number of unique 

words is very large, thus, making the feature vector too large. 

However, by utilizing Wordnet and Porter stemming the 

number of unique words were reduced, and after removing the 

keywords that occur in less than 10% of the bugs, the length of 

the feature vector was reduced to 633. 

 By utilizing the feature vector, the term-document matrix is 

generated. However, this matrix is extremely sparse. Thus, for 

this application, techniques such as TF-IDF for matrix 

enhancing will be used to improve the term-document matrix. 

B. The Base-Rate fallacy problem 

 In [32] Axelsson performed a base-rate fallacy test for 

intrusion detection systems (IDS) and illustrated the problems 

in classifying intrusions. Axelsson pointed out the small ratio 

between the number of intrusions and normal traffic affect the 

outcome in such a way that the user will be overwhelmed by 

the number of false positives. Since the ratio between hidden 

impact vulnerabilities and normal bugs in bug databases is 

very low (129/167,390 = 7.71 X 10
-4

), a similar base-rate 

fallacy evaluation was performed. However, it has to be noted 

that the number of hidden impact vulnerabilities used for this 

 
 

Fig. 8.The proposed vulnerability discovery methodology 
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calculation is a conservative estimate since 1) although all the 

bugs reported for 2004 and 2005 were included in the normal 

bug set, hidden impact vulnerabilities discovered for that time 

period were not included, and 2) the normal bug set may 

include bugs that will eventually be discovered as 

vulnerabilities in the future. 

 For the base-rate fallacy analysis, the following 

nomenclature will be used: 

YgivenXofyprobabilitYXP

XofyprobabilitXP

XnotX

nerabilityvulaasbugatectsdeclassifiertheeitectiondeD

nerabilityvulimpacthiddenV











)|(

)(

)..(

 

Thus, by using the above naming convention, true positive rate 

can be denoted as )|( VDP  and the false positive rate can be 

denoted as )|( VDP  .    

 For classification of vulnerabilities the Bayesian detection 

rate is the probability that a bug is a vulnerability given that 

the classifier detects the bug as a vulnerability, i.e. )|( DVP . 

In order to increase the Bayesian detection rate the number of 

false positives must be reduced. By means of Bayes' theorem 

the Bayesian detection rate can be expressed as: 

 

 )|()()|()(

)|()(
)|(

VDPVPVDPVP

VDPVP
DVP




   (1) 

 

 The following probabilities are known: 

 

 
41071.7

167390

129
)( VP   (2) 

 

 
99923.01071.71)(1)( 4  VPVP   (3) 

 

 By using equations (2) and (3), equation (1) can be 

rewritten as: 

 

 )|(99923.0)|(1071.7

)|(1071.7
)|(

4

4

VDPVDP

VDP
DVP










 (4) 

 

The Bayesian detection rate expressed in equation (4) is 

dominated by the factor 0.99954, i.e. the high probability that 

a bug is not a vulnerability. Thus in order to achieve a 

Bayesian detection rate that is sufficient, the false positive rate 

must be low. Fig. 9 plots the false positive rate against the 

Bayesian detection rate, for different values of true positive 

rates ( )|( VDP ). Fig. 9 shows that as the false positive rate 

increases, the Bayesian detection rate decreases. 

 The Bayesian detection rate is vital when dealing with 

human users: if the Bayesian detection rate is too low, the 

users will be overwhelmed by the number of false positives 

and thus reducing the effectiveness of the classifier. It is not 

possible to guess what the sufficient level of Bayesian 

detection rate will be for the classifier. However, by using the 

upper bound in Fig. 9. it is possible to gain an understanding 

of the maximum false positive rate which is acceptable from 

the classifier. For example, if a Bayesian detection rate of 0.01 

can be tolerated by the development team, which means that 

only one out of 100 detections is an actual vulnerability, 

according to Fig. 9, a maximum false positive rate of 0.076 is 

acceptable. This means that on average for any given day in 

2011, where 139 bugs were reported per day (see Table III), 

around 11 (0.076 * 139) bugs will be falsely identified as a 

vulnerability by the classifier. Similarly, if one out of 10 

detections needs to be an actual vulnerability, which means a 

Bayesian detection rate of 0.1, to achieve this, the maximum 

acceptable false positive rate is 0.0069. This translates to 

falsely identifying around one bug per day (0.0069 * 139) for 

any given day in 2011. Thus, the lower boundary of false 

positive rate that the proposed classifier must obtain can be 

determined using Fig. 9. 

VI. CONCLUSION 

More effective vulnerability discovery and identification is 

an important factor in the software life cycle as it will reduce 

the security exposure of vital systems.  The earlier a reported 

bug is identified as a vulnerability the more effective 

developers can be in identifying which bugs have higher 

priority for patch creation (vulnerabilities have a high 

priority), and the more effective system owners can be in 

choosing which patches should be applied quickly.  

TABLE V. NUMBER OF KEYWORDS IN EACH CLASS OF THE DATASET 

Type of bug 

Total number of 

unique words after 

tokenization 

After 

removing stop 

words 

After combining 

synonyms and 

hyponyms 

After Porter 

stemming 

After removing words 

that occur in less than 

10% of bugs 

Non hidden impact 

vulnerabilities 

Short description 335 308 272 268 8 

Long description 2595 2468 1848 1794 159 

Hidden impact 
vulnerabilities 

Short description 325 297 264 260 8 

Long description 2144 2026 1564 1525 210 

Normal bugs 
Short description 6161 6039 4536 4349 90 

Long description 9981 9843 8067 7825 158 

Total 21541 20981 16551 16021 633 

 

 
 

Fig. 9. Bayesian detection rate for classifying vulnerabilities. 
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An analysis of the most significant Linux kernel 

vulnerabilities and MySQL vulnerabilities showed a 

significant number of vulnerabilities that affected the Linux 

kernel (39.4%) and the MySQL database server (62.23%) 

were hidden impact vulnerabilities and it was shown that the 

percentage of hidden impact vulnerabilities has increased in 

the last two years. Thus there is a necessity to use bug 

databases to identify hidden impact vulnerabilities in software.  

A further analysis of the Redhat Bugzilla Linux bug 

database showed the difficulties of data mining such 

databases. However an analysis of previous research into bug 

triaging and classification showed that the information 

contained in bug reports can be used for classification 

purposes. This paper also proposed a system that utilizes bug 

reports to identify hidden impact vulnerabilities. Potential 

problems faced by a development team when using the 

proposed classifier were also addressed in the paper. 

As future work the proposed system will be implemented 

for discovering vulnerabilities in the Linux kernel, MySQL 

and other third party software. The system will use advanced 

text mining techniques and machine learning algorithms to 

classify bugs and vulnerabilities. In order to further enhance 

the classification accuracy, attributes of the  source code itself 

and other aspects of the software development process will be 

incorporated into the classifier. 
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