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Abstract—Due to modern pervasive wireless technologies and 

high-performance monitoring systems, the spatio-temporal 

information plays an important role in areas such as intelligent 

transportation systems (ITS), surveillance, scheduling, planning 

or industrial automation. The security or criminal/terrorist 

threat prevention in modern ITS, are one of today’s most 

relevant concerns. This paper presents an algorithm for online 

spatio-temporal risk assessment in urban environments. In its 

first phase, the algorithm uses online Nearest Neighbor 

Clustering (NNC) algorithm to identify a set of significant places. 

In the second phase, a fuzzy inference engine is employed to 

quantify the level of risk that each significant place poses to the 

place of interest (e.g. vehicle, person, building or an object of 

high assets). The contributions of the presented algorithm are as 

follows: i) recognition and extraction of the set of the most 

significant places, ii) dynamic adaptation of the solution to time-

dependent traffic distributions, iii) parametric control by 

adjusting geographical proximity threshold, significance 

threshold and discount factor, and iv) online risk assessment. The 

performance of the algorithm was demonstrated on a problem of 

traffic density estimation and risk assessment in virtual urban 

environment.  

 
Index Terms— Clustering, Fuzzy Control, Traffic Analysis, 

Pattern Recognition, Risk Assessment 

I. INTRODUCTION 

ODERN Intelligent Transportation Systems (ITS) rely 

heavily on processing spatio-temporal information. This 

information is then used to predict the future traffic densities 

and flow [1]-[5], determine road congestion patterns [6], 

generate evacuation plans [7] or evaluate security risks [8]. 

 Modern pervasive wireless technologies as well as high-

performance monitoring systems are capable of collecting the 

spatio-temporal information. Typically, in case of an ITS the 

amount of input information is overwhelming. Moreover, 

previous input data soon become obsolete in dynamic 

environments. Hence, the online analysis of the obtained 

dynamic spatio-temporal data constitutes a complex problem. 

 In general, the traffic distribution can be monitored by three 

types of sensors: point, space and mobile sensors [2]. The 

spatio-temporal information from mobile sensors, such as GPS 

is considered in this paper [9]. For example, GPS devices 

 
Manuscript received 2nd July 2009, Received in revised form 4th February 

2010, Accepted 5th September 2010. 
O. Linda is with the University of Idaho, Idaho Falls, ID 83402 USA 

(phone: 208-227-3919; e-mail olinda@ uidaho.edu).  

M. Manic is with the University of Idaho, Idaho Falls, ID 83402 USA (e-
mail: misko@ieee.org). 

mounted on 4000 and 100 taxis have been used in Shanghai 

and in Guanhzhou City, respectively [18], [19]. Similarly, 

buses equipped with GPS mobile sensors were utilized for 

data collection in [20]. In these applications the collected data 

are utilized for traffic status monitoring and for travel time 

prediction. 

  Computational intelligence techniques have recently drawn 

significant attention among ITS researchers [1], [4], [6], [10]-

[12]. Accurate models for traffic prediction and modeling can 

be constructed using machine learning paradigms, such as 

artificial neural networks, fuzzy inference systems or 

clustering techniques. For instance, distributed clustering 

algorithms for data-gathering in mobile sensor network 

minimizing the energy dissipation were presented in [21]. 

Grid-based interpolation of data from mobile distributed 

sensors with objective function minimization was used for 

nuclear threat detection [23]. The Risk-adjusted Nearest 

Neighbor Hierarchical clustering (RNNH) [22] adjusts the 

clustering parameters based on the kernel densities of the 

baseline factors applied to a grid. When compared to the 

reviewed work [21]-[23], the algorithm presented in this 

manuscript combines clustering with Fuzzy Inference System 

(FIS) into an online hybrid algorithm for ITS risk assessment. 

Instead of the kernel-based adjustment of RNNH control 

parameters, the presented algorithm uses fast flat-partition 

NNC, which is then adjusted by the FIS. 

 The presented algorithm is based on the previously 

developed DSTiPE algorithm [13]. It computes an online 

solution to the problem of pattern extraction from dynamic 

spatio-temporal input data and its risk assessment. First, the 

algorithm uses a modified online Nearest Neighbor Clustering 

(NNC) algorithm to extract the set of significant places. A 

discount factor is introduced to model the significance decay 

for continuously aging previous information. In order to 

maintain computationally tractable solution, a significance 

threshold is proposed to prune the solution between 

consecutive iterations. In the second phase, FIS is utilized to 

quantify the level of risk that each significant place poses to 

the object of interest. 

 The presented algorithm is applicable to many areas of ITS. 

It enhances the input data for traffic prediction and traffic flow 

modeling algorithms [1]-[5], [8], [10]. Further, the extracted 

patterns of dangerous places are essential for accurate itinerary 

planning [14]. The computed risk assessment can be utilized 

by a traffic flow control system, by a container terminal 

management or by an evacuation planner [7], [15].  
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 The rest of the paper is organized as follows. Section II 

provides review of the NNC algorithm and the FIS. Section III 

describes the online spatio-temporal extraction of significant 

places. The fuzzy risk assessment of significant places is 

discusses in Section IV. Experimental results are reported in 

Section V and the conclusion is given in Section VI.  

II. BACKGROUND 

This section gives a brief overview of the Nearest Neighbor 

Clustering (NNC) algorithm and the Fuzzy Inference System 

(FIS). 

A. Nearest Neighbor Clustering 

The NNC algorithm constitutes an unsupervised clustering 

technique, which does not make any upfront assumptions on 

the number of clusters. Instead, the clustering process is driven 

by the established maximum cluster radius parameter. This 

approach is especially suitable for traffic pattern analysis, 

where the radius can be set according to the desired spatial 

resolution of the solution. 

The input dataset X composed of N patterns can be denoted 

as: 

   m
iN xxxX 


,...,,1  (1) 

 

Here, m denotes the dimensionality of the problem. Hence, 

vector ix
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Each cluster is a prototype of similar instances, subject to a 

certain similarity measure (e.g. Euclidean distance). Each 

cluster is defined by its center of gravity (COG) and its weight 
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. The weight w reflects the number of patterns 

previously assigned to particular cluster. Cluster Pi can be 

denoted as: 
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The NNC algorithm is initialized by creating a starting 

cluster P1 at the location of the first input pattern 1x


. Next, 

input patterns from dataset X are sequentially selected and 

their prototypes are determined. Considering input pattern ix


, 

the nearest cluster Pa is determined as follows: 
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Here, C denotes the number of currently identified clusters. 

Using the maximum cluster radius parameter - rad, the input 

pattern ix


 is assigned to cluster Pa if   radxcdist ia 


, . 

Cluster Pa is then updated as: 
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If   radxcdist ia 


, , a new cluster is created at the location 

of input pattern ix


, and its weight is set to 1. 

B. Fuzzy Inference System 

 Fuzzy logic became popular in many engineering areas due 

to its ability to cope with linguistic uncertainty originating in 

the imprecise and vague meaning of words. The core of the 

FIS consists of linguistic fuzzy rules. Hence, two main 

advantages of FIS can be recognized: i) the ability to 

incorporate the human operator’s experience and knowledge, 

and ii) the interpretability of the system in a human 

understandable form. 

 In general, FIS is composed of four main parts – input 

fuzzification, fuzzy inference engine, fuzzy rule base and 

output defuzzification. Here, the Mamdani FIS is considered. 

This Mamdani type of FIS uses output fuzzy sets for the 

consequent part of each fuzzy rule. The fuzzy rule base is 

populated with fuzzy linguistic rules Rk in the implicative form 

as: 

 

 Rule Rk: IF x1 is kA1 AND … AND xn is k
nA  

               THEN yk is B
k
 (5)

 
  

Here, symbol B
k
 denotes the output fuzzy set and n is the 

dimensionality of the input.  

Using the multiplication product as the t-norm operator, the 

degree of fulfillment of the rule Rk can be calculated as: 
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The crisp output y is obtained by applying the weighted 

average defuzzification: 
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 Here, symbol K denotes the total number of fuzzy rules 

in the system and yi denotes the mean of the output fuzzy set. 

III. ONLINE EXTRACTION OF SPATIO-TEMPORAL SIGNIFICANT 

PLACES 

The presented algorithm is composed of two phases. In the 

first phase, a set of significant places is constructed. In the 

second phase, the significant places are evaluated for the level 

of risk they are posing to the object of interest. 

The previously developed DSTiPE algorithm, determines 

the set of significant places by clustering the input patterns in 

the combined spatio-temporal domain [13]. The calculated 

model was based on a static input data and provided a 

stationary fixed solution.  

However, in many applications an online solution is 

required to track the dynamic input data. This paper presents 

an algorithm for tracking such dynamic time-dependent 



 

 

solutions. Unlike the previously published DSTiPE algorithm, 

the new algorithm does not work in the combined input-output 

space. Instead, it first discretizes the time domain and then 

analyzes the spatial data at particular time sample. 

A. Spatio-Temporal Calculation of Significant Places  

In this section, the concept of spatio-temporal significant 

place is formalized. Consider dataset X of input patterns ix


, 

denoting a spatial location of objects of interest in the 2D 

Euclidean space. Hence, (1) can be written as: 
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Upon expanding the computation to the time domain, the 

input vectors ix


 as well as their number N can vary over time: 
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The significance S of spatial location ic


 can be defined as 

the total amount of time spent by the monitored objects at that 

location: 
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Here, symbol T denotes the considered time interval and 

function f determines the presence of pattern jx


 at location ic


 

at time t. 

The significance of certain location ic


 can be extended to a 

significance of certain cluster Pi. The radius of cluster Pi has 

to be taken into consideration. In case of the spatio-temporal 

pattern extraction, the established maximum cluster radius is 

expressed in form of the geographical proximity threshold  . 

Any input pattern within the proximity   of ic


 contributes to 

the overall significance of cluster Pi. 
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Here symbol   denotes the sphere of influence of cluster 

Pi  (defined by its COG ic


and the geographical proximity 

threshold  ) and function f determines the presence of input 

pattern jx


 at certain location p


 
at time t. 

When analyzing the dynamic time-dependent traffic 

patterns the most recent available data provide the most 

significant information. In the presented model, the 

information gain of the input patterns decay as the events 

become older and do not reflect the current state any more. In 

(11) all available input patterns have the same influence on the 

solution; regardless of the time elapsed since they were 

recorded. This discrepancy is alleviated by introducing a 

discount factor  1...0 . Then, the discounted significance S
*
 

of cluster Pi can be determined as follows:  
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Here, symbol denotes the present time. The older the 

available information, the closer is the exponentiated discount 

factor  to zero and the greater is the suppression of the 

influence of pattern )(tx j


. 

B. Online Spatio-Temporal Clustering Algorithm 

This section presents an online spatio-temporal clustering 

algorithm, which constitutes an iterative solution to the 

integral form given in (12). It extends the original DSTiPE 

algorithm and computes a dynamic online solution [13]. Here, 

the time domain is discretized and the solution is continuously 

updated. Further, in order to keep the dynamic solution 

computationally tractable, pruning of insignificant places is 

introduced. 

Consider an environment with freely moving objects. The 

behavior of these objects is studied during time interval T. 

Using time step t , the time domain can be discretized as: 
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Observing the environment at time ti yields a set of input 

patterns: 
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The algorithm maintains a set of significant places Q. Each 

significant place is denoted by a cluster Pi with its COG ic


and 

weight wi. Three beforehand specified input parameters 

control the iterative computation: geographical proximity 

threshold  , discount factor   and significance threshold  .  

The online spatio-temporal clustering algorithm utilizes the 

NNC algorithm and can be described as follows: 

 

Initial Step: Start with an empty initial solution  0)( 0 tQ . 

Step 1: At time ti record set X(ti) of N(ti) input patterns. 

Step 2: Initialize the NNC algorithm with the set of clusters 

from the previous iteration Q(ti-1). Apply the algorithm to the 

input dataset X(ti). Use the geographical proximity threshold 

  as the maximum cluster radius. 

Step 3: Prune the obtained solution Q(ti) by discarding 

insignificant clusters, subject to the significance threshold  : 

 

 )(,...,1,

)(

\)(

)( i

ji

jji

i tCj

wiftQ

wifPtQ

tQ 


















 (15) 

 

 Here C(ti) denotes the number of clusters at time ti. 



 

 

Step 4: Apply the discount factor   to the weight of every 

cluster in the pruned solution Q(ti): 
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Step 5: Proceed to next time sample ti+1  and go to Step 1. 

 

The solution of the integral equation (12) was decomposed 

into three parts. First, the spatial integration over cluster Pi is 

encoded directly in the NNC algorithm. Every input pattern 

that is within the geographical proximity   of cluster Pi 

increases its weight and contributes to its significance. 

Second, the integration over time interval T is approximated 

by the iterative solution using the discretized time domain. 

Finally, the exponentiated discount factor   is also handled 

by the iterative solution. Here, the weights of the clusters from 

the previous iterations are repeatedly multiplied by factor  , 

thus leading to a continuous decay of the information weight.  

The geographical proximity threshold   should be set to 

the diameter of the areas of interest. The discount factor 

determines the rate at which old information is removed from 

the system. Values close to 1 should be used when older 

information is to be maintained in the solution. Lower values 

of   result in fast adaptability of the solution and fast removal 

of the obsolete past information. Finally, the significance 

threshold   prunes the extracted clusters between the 

iterations and should be set according to the level of 

significance that is desirable in the solution. The actual values 

depend on the accumulated significance of clusters, which is 

mainly governed by the amount of objects being monitored 

and their velocities with respect to the sampling rate of the 

environment. 

It should be pointed out that the proposed solution to the 

online spatio-temporal clustering problem constitutes a flat 

partitioning approach. Hence, the algorithm does not directly 

provide the multi-resolution view of the problem available for 

hierarchical clustering methods. However, this flat partition 

approach was chosen because of the desire to design a 

dynamic algorithm capable of fast adaptability to time-

dependent data. The flat partition was favored, because 

clusters need to be easily updated, inserted or removed, which 

is substantially more difficult with the hierarchical approach. 

IV. FUZZY SPATIO-TEMPORAL RISK ASSESSMENT 

 In the second phase of the presented algorithm, the risk 

level of individual significant places is evaluated. 

The output of the first phase of the algorithm is a set of 

significant places. The potential risk of each significant place 

depends on the given problem. In the proposed algorithm, the 

risk of each significant place is assessed with respect to a 

certain object of interest (e.g. important building, secured 

location, crossroad, or a vehicle).  

The presented algorithm uses FIS for a risk assessment of 

each significant place. The FIS was chosen for its 

implementation simplicity, computational inexpensiveness and 

ability to model non-linear multidimensional functions. 

Furthermore, unlike classic mathematical modeling 

techniques, the FIS can be conveniently designed using 

available expert’s knowledge. 

Two inputs were selected for the implemented FIS: 1) 

distance between the significant place and the object of 

interest 2) the significance of the place itself. The shorter the 

distance between the significant place and the object of 

interest, the more danger/risk is imposed on the object. The 

greater the significance of the significant place, the more risk 

it poses to the object of interest. Alternatively, other inputs can 

be used to fit the specific application. For instance, if the 

average traffic densities are available for the given 
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Fig. 1 Input fuzzy sets of concepts Distance (a) and Significance (b) and 

output fuzzy sets for the concept of Risk (c). 

  

 
 

Fig. 2 Traffic simulation environment of downtown area of Idaho Falls, Idaho. 

  



 

 

environment, they could be used as an additional input for the 

FIS, reflecting the baseline traffic. This constitutes one of the 

main advantages of the implemented FIS, which can be easily 

extended to incorporate additional inputs.   

Five evenly spaced triangular fuzzy sets were used to model 

the linguistic variable distance D̂  (Close, Medium Close, 

Medium, Medium Far, Far) as well as the linguistic variable 

significance Ŝ  (Low, Medium Low, Medium, Medium High, 

High). The output fuzzy sets were evenly spaced in the output 

domain [0, 1]. They are depicted in Fig. 1 

The range of values of distance D̂ is set according to the 

dimensions of the monitored environment. The range of values 

of significance Ŝ depends on the sampling rate of the 

environment. For the simplicity sake, Ŝ is denoted as a 

multiple of the significance threshold , as in Fig. 1(b). 

V. EXPERIMENTAL RESULTS 

 Three test cases will be presented in this section to 

demonstrate the performance of the online dynamic solution 

as well as the parametric control of the algorithm.  

 A virtual model of the downtown of the city of Idaho Falls, 

Idaho was implemented as a testing environment for the 

presented algorithm. The application displays the urban 

environment based on the aerial map. Set of vehicles is freely 

moving through the streets. Each vehicle randomly chooses its 

destination from the set of accessible nodes using probability 

distribution defined by the user. The environment is sampled 

at equidistant time intervals, yielding a set of input patterns 

(each input pattern denotes the position of certain vehicle at 

the given time).  

 The presented online spatio-temporal clustering algorithm is 

used to extract the set of significant places and to maintain this 

set throughout the following iterations. An example of the 

virtual model of the urban environment with the simulated 

vehicles is shown in Fig. 2. 

A. Significant Places Extraction 

 Fig. 3(a) shows an aerial view of the implemented urban 

environment. The actual traffic density is visualized by a grey 

scale histogram. The grey tone of the road symbolizes the 

density of the traffic. The darker the tone, the greater the 

density is. The main roads and crossroads with the most 

congested traffic are clearly visible. 

   
(a)                        (b) 

 

Fig. 3 Histograms of traffic densities (a) and the set of extracted significant places (b). 
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Fig. 4 Set of extracted significant places for geographical proximity threshold 20 meters (a), 40 meters (b) and 60 meters (c). 

  



 

 

 The online spatio-temporal clustering algorithm was applied 

to this experimental data. The resulting set of extracted 

significant places is presented in Fig. 3(b). Each significant 

place is displayed as a circle, with its radius equal to the 

specified geographical proximity threshold  . The center of 

the sphere is located at the COG of particular cluster. The 

significance of each cluster is denoted by its grey tone. The 

darker the grey, the more significant the cluster is. Similarly, 

near white grey tones denote relatively insignificant clusters. 

 By observing Fig 3(a) and 3(b), it can be seen that the set of 

extracted significant places correctly reflects the underlying 

traffic density distribution.  

 It is important to note that the algorithm dynamically adapts 

to the changing traffic patterns. In this manner only the most 

recent and valid view of the solution is presented to the user. 

 
 

Fig. 5 Dependency of the number of clusters on the values of the significance threshold and the discount factor. 
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Fig. 6 Histograms of traffic densities (a), (c) and the extracted significant places (b), (d). 

  



 

 

This constitutes one of the main contributions of the presented 

algorithm when compared to the original DSTiPE algorithm 

[13]. The DSTiPE algorithm only provided a static solution 

based on the available data, but lacked the adaptability to 

time-dependent problems. 

B. Parametric Control 

 The three main control parameters play an essential role in 

controlling the computed solution. The geographical proximity 

threshold  , the discount factor   and the significance 

threshold   can be modified “on the fly” and the solution will 

adjust accordingly. The following two test scenarios 

demonstrate the influence of particular parameters. 

 First, the geographical proximity threshold   was modified 

online. Starting from relatively low value of 20 meters, the 

threshold was continually increased up to 60 meters. The 

effect of such parameter modulation is displayed in Fig. 4(a)-

(c). 

 Fig. 4(a) shows the set of extracted significant places for 

20 meters. Because this value is used as the maximum 

cluster radius for the NNC algorithm, it results in a high 

number of clusters with smaller diameters. Fig. 4(b) shows the 

updated solution for 40 meters. Fig. 4(c) shows the 

solution for the maximum tested value of 60 meters. Here 

only few clusters were generated covering large areas of the 

environment. 

 It can be noted that the granularity of the solution is 

inversely proportional to the value of the geographical 

proximity threshold . Generated clusters need to maintain 

certain level of significance in order to survive into the next 

iteration (specified by the significance threshold ). When 

their radius is increased, neighboring clusters start competing 

for input patters, which results in natural elimination of the 

number of extracted significant places. 

 Next, the dependency of the number of clusters on the 

significance threshold   and on the discount factor   was 

demonstrated in Fig. 5. It can be observed that lower values of 

 and greater values of   lead to generation of more clusters.  

 Further, the time complexity of the presented algorithm is 

linearly dependent on the number of clusters. Hence, it can be 

seen that the discount factor and the significance threshold can 

be used for maintaining computational tractability of the 

solution. The appropriate values of these parameters mainly 

depend on the sampling rate of the data, the hardware 

parameters of the computer and on the required response 

latency of the system. 

C. Fuzzy Spatio-Temporal Risk Assessment 

Two scenarios of the computation of the risk of individual 

significant places with regards to the object of interest are 

demonstrated in Fig. 6(a), (c) and Fig. 6(b), (d). Symbol   
denotes the selected building of interest (e.g. nuclear plant, 

bank, embassy, airport, etc.). The implemented fuzzy 

inference engine evaluates the level of risk (potential 

danger) of each identified significant place towards this 

object of interests based on their mutual distance and 

significance. The obtained risk is denoted by the grey tone of 

the visualized clusters. The darker the tone, the greater is the 

risk of particular significant places.  

 The evaluation of all the extracted significant places is 

displayed in Fig. 6(a) and Fig. (c). It can be seen that both 

distance and significance influence the risk assessment of each 

cluster. Fig. 6(b) and Fig. 6(d) show the reduced set of 

significant places. Here, a relevance threshold enables the 

identification of only the most significant places.   

VI. CONCLUSION 

This paper presented an algorithm for online spatio-

temporal risk assessment for ITS. In the first phase, the 

algorithm extracted a set of spatio-temporal significant places. 

In the second phase, the fuzzy inference engine was 

implemented for calculation of the risk level that each 

significant place imposes on the object of interest.  

The algorithm was applied to traffic density estimation and 

risk assessment in a virtual traffic urban environment of the 

city of Idaho Falls, Idaho. It was demonstrated that the 

algorithm correctly recognized and extracted spatial areas with 

the highest traffic density. Using a specified object of interest, 

the fuzzy inference engine evaluated the level of risk of each 

significant place. Furthermore, the algorithm allows “on the 

fly” adjustments of control parameters. 

The future work directions will include the following. 

Consideration of using additional FIS inputs (e.g. baseline 

traffic densities) and incorporating hierarchical clustering.   
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