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Abstract— Type-2 Fuzzy Logic Controllers (T2 FLCs) have 

been recently applied in many engineering areas. While 

understanding the control potentials of T2 FLCs can still be 

considered an open question, researchers commonly claim 

superiority of T2 FLCs based on a limited exploration of the 

space of design parameters. The contribution of this work is 

based on a problem-driven design of uncertainty-robust Interval 

T2 (IT2) FLCs. The presented methodology starts with a baseline 

optimized T1 FLC. Next, a group of IT2 FLCs is designed using 

partially-dependent approach by symmetrically blurring the 

membership functions around the original T1 fuzzy sets. This 

constrained design space allows for its systematic exploration and 

analysis. The performance of the designed controllers was 

evaluated on delta parallel robot hardware under two kinds of 

commonly encountered uncertainties: i) sensory noise and ii) 

uncertain system parameters. The experimental results showed 

that IT2 FLCs provide improved control performance against T1 

FLCs when appropriate design of IT2 fuzzy sets is performed. In 

addition, it was demonstrated that excessive amount of “type-2 

fuzziness” in the IT2 FLC design leads in rapid performance 

degradation. 

 
Index Terms— Delta Parallel Robot, Interval Type-2 Fuzzy 

Logic Control, Robustness, Uncertainty Handling 

I. INTRODUCTION 

YPE-1 Fuzzy Logic Controllers (T1 FLCs) have been 

successfully applied in various engineering areas over the 

last 40 years [1]-[6]. This fact can be attributed to their ability 

to cope with the linguistic uncertainty originating in the 

imprecise and vague meaning of words. However, when 

various kinds of dynamic uncertainties are encountered, the 

control performance of T1 FLCs can significantly deteriorate 

[7]. The various sources of uncertainty were identified as 

follows: i) uncertainty in the linguistic knowledge used to 

construct the FLC (different designers have different opinions 

about the optimal behavior), ii) uncertainty about the correct 

outputs of the system, iii) uncertainty associated with noisy 

inputs, and iv) uncertainty about the data that were used to 

tune the parameters of the control system. These sources of 

uncertainty can lead to significant performance degradation of 

the T1 FLC. This degradation is primarily due to the T1 fuzzy 

membership functions themselves, which become fixed once 

the design process is finalized. 

 As an extension to T1 fuzzy logic, the Type-2 (T2) fuzzy 

logic was originally proposed by Zadeh [8]. T2 FLCs have 

experienced a widespread of research interest from many 

 
 

researchers in the past decade [7], [9]-[13]. T2 FLCs found 

successful application in many engineering areas, 

demonstrating their ability to outperform T1 FLCs in presence 

of dynamic uncertainties [14]-[18]. The fundamental 

difference between T1 and T2 FLCs is in the model of 

individual fuzzy sets. T2 fuzzy sets employ membership 

degrees that are themselves fuzzy sets. This additional 

uncertainty dimension provides new degrees of freedom for 

modeling dynamic uncertainties. 

 However, the understanding and correctness of the design 

process of T2 FLCs can still be considered an open question. 

In addition, a qualitative comparison of T1 and T2 FLCs and a 

complex assessment of the real potentials of T2 fuzzy logic is 

currently an active area of research [19]. Nevertheless, it is 

very common that researchers claim superiority in terms of 

both performance and uncertainty robustness of T2 FLCs 

based on a limited exploration of the space of design 

parameters. However, as previously demonstrated, T2 FLCs 

might exhibit slower responsiveness and excessive dumping of 

the output signal in specific scenarios (e.g. autonomous robot 

navigation) [11], [17]. It is natural to expect that with the 

increased amount of “type-2 fuzziness” in the controller’s 

design, such negative effects will be further accentuated.  

 This manuscript provides a systematic analysis of the 

performance and uncertainty robustness of T2 FLCs [20]. The 

investigated fuzzy controllers were used for position control of 

parallel delta robot [21]. The robustness of a system was 

defined in the work of Biglarbegian et al as the maximum 

deviation of the output as a result of the deviations of the 

inputs [22]. In this manuscript, the uncertainty robustness of a 

system is understood as its ability to retain satisfactory 

performance despite perturbations of its input or parameters.  

In this work, the Interval T2 (IT2) FLCs were considered 

[13]. The IT2 FLC assumes only interval membership grades 

for each T2 fuzzy set. This constitutes a significant 

simplification of the controller’s design process. In order to 

allow for a systematic analysis, the space of design parameters 

was further constrained by using the partially-dependent 

design of IT2 FLC [7]. The partially-dependent design can be 

broken into two steps as follows: i) construct an optimal T1 

FLC using one of the well-established optimization techniques 

(e.g. genetic algorithms), ii) blur the T1 fuzzy membership 

functions inserting “type-2 fuzziness” into the controller 

design. While this design methodology of IT2 FLC is 

significantly constrained and clearly not optimal, it allows for 

systematic exploration and understanding of the space of 
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available design parameters. The authors believe that the 

presented study of this constrained set of IT2 FLCs provides 

important conclusions about the design process, which are 

widely applicable to fuzzy logic control.  

 In this paper, an experimental setup of three IT2 FLCs was 

used for position control of the end-effector of a 3DOF 

parallel delta robot. Such systems are applicable in many 

engineering areas, including robotic tele-operation, remote 

welding, and industrial control [23], [24]. This specific robotic 

architecture was chosen for its suitability for the systematic 

uncertainty robustness evaluation. The controllers’ 

performance was tested on different levels of uncertainties 

consisting of injected noise and variable system parameters. 

 The rest of the paper is organized as follows. Section II 

provides background review of T1 and IT2 fuzzy logic 

control. The utilized 3DOF delta parallel robot is introduced in 

Section III. Section IV discusses the design of the fuzzy logic 

controllers. Finally, the results are presented in Section V and 

the paper is concluded in Section VI. 

II. T1 AND IT2 FUZZY LOGIC CONTROLLERS 

 This section provides a review of T1 and IT2 FLCs. 

A. Type-1 Fuzzy Logic Control 

 T1 FLCs have been successfully applied to many 

engineering problems [1], [7]. The main advantage of T1 

FLCs is the ability to encode knowledge via linguistic fuzzy 

rules, which can be easily understood and constructed by 

humans. Furthermore, T1 FLCs can cope with ambiguity, 

imprecision and uncertainty in linguistic expressions. 

In general, a T1 FLC is composed of four major parts – 

input fuzzification, fuzzy inference engine, fuzzy rule base 

and output defuzzification [7]. In this paper, the Mamdani-

type FLC is considered [25]. This type of controller maintains 

a fuzzy rule base populated with fuzzy linguistic rules in an 

implicative form. As an example, consider rule Rk: 

 

 IF x1 is kA1
AND … AND xn is k

nA THEN yk is B
k
 (1)

 
  

Here, symbol k

jA and B
k
 denote the j

th
 input fuzzy set and 

the output fuzzy set, n is the dimensionality of the input vector 

x


, and yk is the associated output variable. System’s inputs are 

first fuzzified using the fuzzy membership function (e.g. 

Gaussian, triangular, trapezoidal, etc.). The fuzzification of 

input xi into fuzzy set k

iA  results in a fuzzy membership grade 

)( iA
xk

i

 . Using the minimum t-norm, the degree of firing of 

rule Rk can be computed as follows: 
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The output of each fuzzy rule is computed by applying the 

rule firing strength via the t-norm operator (e.g. minimum or 

product) to the associated rule consequent. Next, the output 

fuzzy sets from all rules are aggregated using the t-conorm 

operator (e.g. the maximum operator), resulting in an output 

fuzzy set B. Detailed description of the fuzzy inference 

process can be found in [7]. 

Finally, the defuzzification of the output fuzzy set B yields a 

crisp output value y. Several defuzzification techniques can be 

found in literature [7]. The centroid defuzzifier method was 

selected in this work. Assuming that the output domain is 

discretized into N samples the crisp output value y is obtained 

as: 
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B. Interval Type-2 Fuzzy Logic Control 

The IT2 FLCs are considered in this paper because of their 

computational inexpensiveness and ease of implementation 

[13]. A block diagram of T2 FLC is depicted in Fig. 1. The 

major difference of T2 FLC when compared to T1 FLC is that 

at least one implemented fuzzy sets must be of type 2. The 

fuzzy inference engine then uses the T2 fuzzy inference 

methods to compute the T2 fuzzy output. Finally, the T2 FLC 

contains the output processor, which first type-reduces the 

fuzzy output before obtaining the crisp output through the 

process of defuzzification. 

The number of design parameters of IT2 FLCs is 

substantially smaller when compared to the full-blown general 

T2 FLCs. An IT2 fuzzy set A
~

 can be expressed as follows: 
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 Here, x and u are the primary and secondary variables, and 

Jx is the primary membership of x. All secondary membership 

grades of the IT2 fuzzy set A
~

 are equal to 1. By instantiating 

the variable x into a specific value x’, the vertical slice of the 

IT2 fuzzy set can be obtained as: 
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 The domain of the primary memberships Jx defines the 

Footprint-Of-Uncertainty (FOU) of fuzzy set A
~

: 
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Fig. 1 Type-2 fuzzy logic control system [7]. 



 

 The FOU of an IT2 fuzzy set is schematically depicted in 

Fig. 2. Alternatively, the FOU of an IT2 fuzzy set A
~

can be 

completely described by its upper and lower membership 

functions: 
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 This constitutes a substantial simplification when compared 

to the general T2 fuzzy sets. Here, only two T1 fuzzy 

membership functions (the upper and the lower boundary of 

the FOU) are needed to fully describe the IT2 fuzzy set. This 

simplification is then transferred through the inference 

mechanism of the IT2 FLC taking advantage of the modified 

interval T2 fuzzy join and meet operations [7]. The interval 

join and meet operations work exclusively with the FOU of 

the IT2 fuzzy sets, thus removing much of the computational 

burden associated with processing of general T2 fuzzy sets. 

 In order to obtain a crisp output value, the resulting IT2 

output fuzzy set B
~

 is first type reduced and then defuzzified. 

The centroid of the IT2 fuzzy set B
~

 can be defined as [26]: 
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 Here, every combination N ...,,1 forms an embedded fuzzy 

set. The centroid 
B

C ~  is an interval T1 fuzzy set, which can be 

completely described by its left and right end points yl and yr: 
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The important switching points L and R can be calculated 

using the Karnik-Mendel iterative procedure [27]. Using the 

boundary values of the centroid 
B

C ~ , the final crisp defuzzified 

value y can be computed as the mean of the centroid interval: 
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III. 3DOF DELTA PARALLEL ROBOT 

In this paper, the IT2 FLC is applied to the problem of 

precise and uncertainty robust position control of a 3DOF 

delta parallel robot [28]-[30]. In general, parallel robotic 

architectures feature increased structural rigidity and available 

workload when compared to their sequential counterparts. 

However, parallel robots also suffer from constrained 

workspace and increased complexity of the kinematic and 

dynamic mechanism [21], [28]. 

The utilized robotic platform consists of the Novint Falcon 

haptic device [31]. This force-controlled delta parallel robot 

configuration has three degrees of freedom that are force-

feedback and tactile sensation enabled. Working frequency of 

1kHz and position resolution of 400 dpi within the robot’s 

workspace allows for smooth control of the multi-robot 

system as well as fluent perception of the generated haptic 

force. A detailed specification of the robot was reported in 

[21]. The Novint Falcon haptic device is depicted in Fig. 3. 

The Falcon haptic device typically serves as a 3DOF input 

device. However, due to the presence of force-feedback, the 

flow of the control signal can be reversed creating a 3DOF 

robotic manipulator. The Falcon device can then be viewed as 

a 3DOF delta parallel robot. From a robotic control point of 

view the Novint Falcon constitutes a suitable experimental 

platform as its sampling frequency of 1kHz and smooth 

actuation allow for very precise position sensing and high 

fidelity motion control. The application of the Falcon device 

for research as a robotic manipulator was investigated in [21]. 

The Falcon’s programmable interface abstracts the user from 

the inverse kinematics of the robot, which provides convenient 

control of robot’s motion on the three motion axis – x, y, z. 

IV. IT2 FLC DESIGN FOR 3DOF DELTA PARALLEL ROBOT 

This section describes the initial baseline design of the T1 

FLC for position control of the delta parallel robot and its 

subsequent extension to IT2 FLC. The robustness of the 

constructed IT2 FLC is then evaluated with respect to the 

baseline T1 FLC. The design methodology can be summarized 

in three steps as follows: 

 

Step 1: Manually design an initial T1 FLC. 

 

Step 2: Tune the parameters of the initial T1 FLC using one of 

the available optimization techniques (here the Particle Swarm 

Optimization (PSO) algorithm was used). 

 

 

Fig. 2 Interval type-2 fuzzy set A
~

.  

 
 

Fig. 3 Novint Falcon haptic device [21]. 



 

Step 3: Extend the T1 FLC into an IT2 FLC using the partially 

dependent design. 

 

Individual steps are described below. 

A. Initial T1 FLC Design 

For the position control of the delta parallel robot, the fuzzy 

Proportional-Derivative (PD) controller was considered. Here, 

the control signal out(t) at time t is proportional to the 

measured error signal e(t) and its time derivative )(te . The 

error is calculated as the difference between the end-effector’s 

actual and desired position y(t) and )(ˆ ty . A schematic view of 

the fuzzy PD control system connected to the robotic platform 

is presented in Fig. 4. The figure also depicts the two 

considered sources of uncertainty, the uncertain parameters of 

the robotic system and the uncertainty in the robot’s position 

sensing. 

The fuzzy PD controller is commonly adopted in 

engineering applications for its several advantages: i) it can be 

constructed using linguistic knowledge about the controlled 

system, ii) it features more design degrees of freedom, and iii) 

it was shown to produce smoother and more robust control 

behaviors [32].  

In this paper, the fuzzy controller was designed using two 

trapezoidal input fuzzy sets {negative, positive} for describing 

the input signals error e and error derivative e . The 

controller’s output signal out was modeled using three 

triangular output fuzzy sets {negative, zero, positive}. The 

fuzzy rule base presented in Table I lists the four linguistic 

fuzzy rules for the position control. This rule base constitutes a 

commonly adopted set of rules for fuzzy PD controllers. As 

derived in [32], the fuzzy PD controller can be understood as a 

composition of multiple classical PD controllers with variable 

gains.  

In this specific application, three fuzzy PD controllers were 

implemented for each motion axis x, y, z of the 3DOF delta 

parallel robot. The error of the controller was calculated as the 

difference between the desired and the actual position of the 

robot’s end-effector. The initial parameters of the T1 fuzzy 

sets were manually adjusted to produce stable and continuous 

initial robot’s performance [33]. The initial design of the input 

and output fuzzy sets for position control on the robot’s x-axis 

is depicted in Fig. 5(a)-(c). Similarly, the T1 FLCs were 

 
 

Fig. 4 The fuzzy PD control system of the delta parallel robot.  

TABLE I 

FUZZY RULE TABLE 

Rule 1: 
IF error IS negative AND error derivative IS negative 

THEN out IS negative 

Rule 2: 
IF error IS negative AND error derivative IS positive 

THEN out IS zero 

Rule 3: 
IF error IS positive AND error derivative IS negative 

THEN out IS zero 

Rule 4: 
IF error IS positive AND error derivative IS positive 

THEN out IS positive 

 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

 
 (g) (h) (i) 

Fig. 5 Fuzzy control for the robot’s x-axis: initial design of T1 FLC (a)-(c), optimized design of the T1 FLC (d)-(f) and the IT2 FLC constructed via the 

partially-dependent approach (g)-(i)  



 

designed for robot’s y and z axes. 

Next, the tools of evolutionary computation were used to 

further optimize the performance of the T1 FLC. Here, the 

PSO algorithm was used to tune the parameters of the fuzzy 

membership functions of all three T1 FLCs. The linguistic 

rules of the controllers remained fixed during the parameter 

tuning process. The PSO algorithm is a biologically and 

physically inspired paradigm, which has been successfully 

applied to many optimization problems [34]. Fig. 5(d)-(f) 

depict the architecture of the optimized T1 FLC for the robot’s 

x-axis. Fig. 6(a) shows the associated output control surface. 

Note that other optimization techniques could be applied in 

this step (e.g. gradient descent [35]). 

B. IT2 FLC Design 

In general, there are two available strategies for designing 

IT2 FLCs [7]. First, the controller can be designed via fully-

independent approach, where the entire IT2 FLC is designed 

from a scratch. Secondly, the partially-dependent approach 

can be used when an initial T1 FLC is constructed first. This 

initial T1 FLC is then extended into the IT2 FLC via a 

blurring process. Hence, the IT2 FLC builds on the 

architecture of the original T1 FLC providing additional 

performance improvements.  

The partially-dependent IT2 FLC design was favored in this 

work for two primary reasons. First, this approach reduces the 

number of design parameters. Second, the constructed IT2 

FLC can be objectively compared to the initial baseline T1 

FLC. In order to allow for systematic exploration of the design 

space, the simplified version of the partially-dependent design 

was used, where triangular and trapezoidal fuzzy sets with 

identical symmetrical spreads were implemented. 

The partially-dependent design approach can be described in 

two steps as follows. First, for each fuzzy set of the optimized 

T1 FLC the maximum allowable spread is determined 

ensuring continuous control behavior [33]. Next, a blurring 

parameter ]0.1,0.0[ , specifying the portion of the 

maximum spread, is used to construct the fuzzy sets of the IT2 

FLC. Note that blurring parameter 0.0 reduces the IT2 

FLC to the original T1 FLC, whereas blurring parameter 

0.1  implements IT2 fuzzy set with the maximum amount 

of blur and the widest FOUs of individual fuzzy sets. An 

illustrative example is depicted in Fig. 7 for the case of 

trapezoidal and triangular membership functions blurred with 

the blurring parameter 5.0 .  

Identical value of the blurring parameter was used for all 

fuzzy membership function of the entire IT2 FLC. In this 

manner, the number of design parameters of the partially-

dependent approach was reduced to a single parameter – the 

blurring parameter  . Fig. 5(g)-(i) depict the resulting IT2 

FLC designed with the blurring parameter 5.0 for the x-

axis. Fig. 6(b) plots the associated output control surface. It 

can be observed that the IT2 FLC offers substantially 

smoother control performance. 

V. EXPERIMENTAL RESULTS 

This Section presents the experimental analysis of the 

performance and uncertainty robustness of the designed fuzzy 

position controllers for the delta parallel robot. First, the 

performance of a group of IT2 FLCs under varying levels of 

sensory noise was studied. Next, the robustness of the FLCs 

was evaluated under uncertain system parameter. Finally, the 

performance of the located uncertainty robust IT2 FLCs was 

verified by an experimental study. At the end of this Section, a 

discussion of the results is given. 

 
 (a) (b) 

Fig. 6 The output surface of the optimized T1 FLC (a) and the IT2 FLC constructed via the partially-dependent approach (b). 

 
 (a) (b) 

Fig. 7 Illustration of the partially-dependent symmetrical blurring of T1 fuzzy membership functions with blurring parameter  = 0.5 for trapezoidal (a) 

and for triangular (b) fuzzy membership functions. 



 

A. Sensory Uncertainty 

In this experiment, the performance of a set of IT2 FLCs 

under varying levels of sensory uncertainty was studied. A 

group of twenty-one IT2 FLCs was constructed by applying an 

increasing blurring parameter  to the original optimized T1 

FLC covering the entire range of [0.0, 1.0]. Each designed 

controller was tested under dynamically changing level of 

sensory noise with amplitude ranging from 0% to 10% of the 

measured input signal. This range of noise was considered to 

appropriately cover the range of potential disturbances. This 

experimental methodology allowed for a systematic analysis 

of the constrained Noise/Blur (N/B) space. As such, an 

important insight into the performance quality and the 

uncertainty robustness of different IT2 FLCs for the delta 

parallel robot was obtained.  

The sensory noise was implemented as white noise injected 

to the input measurements. Each constructed IT2 FLC was 

tested five times for each level of uncertainty in order to 

reduce the statistical variance of the results. The RMSE of the 

entire testing run was recorded for all controllers on all three 

robot’s control axis. The testing runs consisted of applying a 

sinusoidal signal to all 3DOF of the robot. 

The value of the blurring parameter and the noise amplitude 

correspond to a unique position in the N/B space. The 

experimental testing assigns the achieved RMSE of the robot’s 

position controllers to each such point. The discretization of 

the intervals of possible values blurring parameter   and 

possible noise amplitudes allowed for systematic 

reconstruction of the distribution of RMSE values in N/B 

space. This experimentally constructed RMSE distribution 

provides a clear picture about the performance quality and 

uncertainty robustness of each IT2 FLC architecture for the 

specific uncertainty level. 

Fig. 8 shows the RMSE values in the N/B space for all three 

FLCs on individual control axis of the robot as well as the 

accumulated RMSE for the 3D position control. The RMSE 

values are color-encoded with white/black tones representing 

the smallest/largest achieved RMSE values. For an ease of 

understanding, the best three IT2 FLC designs are depicted 

with black dots for each noise amplitude level. The value of 

the noise amplitude was normalized into a unit interval. By 

observing the location of the black points, the most robust IT2 

FLC designs with respect to the sensory uncertainty levels can 

be found. 

 
 (a) (b) 

 
 (c) (d) 

Fig. 8 The RMSE values in the Noise/Blur space for the 3DOF delta parallel robot position control (a), the x-axis control (b), the y-axis control (c), and the 

z-axis control (d) (the black points depict 3 levels of blur with the lowest RMSE for the each noise level). 



 

B. System Parameters Uncertainty 

In this next experiment, the performance of a set of IT2 

FLCs under varying levels of system parameters’ uncertainty 

was studied. Identical group of twenty-one IT2 FLCs was 

constructed as in the previous experiment. Each designed 

controller was tested under different levels of system 

parameters’ uncertainty. This experiment methodology 

allowed for a systematic analysis of the entire uncertain 

Parameter/Blur (P/B) space. The uncertain system parameters’ 

were implemented as a simulated variable friction on robot’s 

motor drives. In this implementation the control performance 

of the IT2 FLC was deteriorating due to its inability to 

produce appropriate control signal to position the robot’s end-

effector accordingly to the set-point. Each constructed IT2 

FLC was tested five times for each level of parameter 

uncertainty. Again the RMSE of the test runs was recorded for 

all controllers on all three robot’s control axis. 

Fig. 9 shows the RMSE values in the P/B space for all three 

FLCs on individual control axis of the robot together with the 

accumulated RMSE surface of the 3D trajectory tracking 

performance. The RMSE value is also color-encoded as in the 

previous experiment. The value of the amplitude of the 

uncertainty in system parameters was normalized into a unit 

interval. Similarly, the best three controller designs were 

depicted with black dots for each system parameters’ 

uncertainty level. By observing the location of the black 

points, the most robust IT2 FLC designs with respect to 

uncertain system parameters can be determined. 

C. IT2 FLC Robustness Testing 

In this experiment, the constructed RMSE distributions in 

the N/B and P/B spaces were utilized for selecting the most 

uncertainty robust IT2 FLCs. The performance of the selected 

controllers was then verified. 

Firstly, the performance of the T1 and IT2 FLC for robot’s 

x-axis under the normalized noise level of 0.8 was studied. 

Following the RMSE distribution depicted in Fig. 8(b), the 

optimal blurring parameter value was set as 0.85. Both T1 and 

IT2 FLCs were applied to position control of the delta parallel 

robot tracking the input sinusoidal signal. The recorded and 

the desired trajectories are depicted in Fig. 10(a)-(b). Fig. 

10(c) compares the absolute position error generated by both 

controllers. 

 
 (a) (b) 

 
 (c) (d) 

Fig. 9 The RMSE values in the uncertain Parameters/Blur pace for the 3DOF delta parallel robot position control (a), the x-axis control (b), the y-axis 

control (c), and the z-axis control (d) (the black points depict 3 levels of blur with the lowest error for the each parameters’ uncertainty level). 



 

Secondly, the performance of the T1 and IT2 FLC for 

position control of the x-axis under the normalized system 

parameters’ uncertainty of 0.7 was studied. Based on the 

RMSE distribution in P/B space shown in Fig. 9(b), the IT2 

FLC was constructed with the blurring parameter of 0.85. This 

value provided the most uncertainty-robust design. The 

recorded and the desired trajectories are depicted in Fig. 11(a)-

(b). Fig. 11(c) compares the absolute position error generated 

by both controllers. Similar results can be obtained for the y 

and z control axes but are omitted due to limited space. 

Table II provides statistical summary of the performance 

evaluation of the constructed T1 and IT2 FLCs. The mean 

values of the position control RMSE averaged over 20 runs 

together with the standard deviations for all control axes x, y 

and z are provided, denoted as Errx, Erry and Errz respectively. 

In addition, the combined mean and the standard deviation of 

the position tracking error Errx,y,z in the combined x, y, z 3D 

space are reported.  

 
(a) 

 
(b) 

 
(c) 

Fig. 10 The x-axis position control performance for the T1 FLC (a) and the IT2 FLC with amount of blur 0.85 (b) for a normalized noise level of 0.8. 

The position error of both controllers is depicted in (c). 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 The x-axis position control performance for the T1 FLC (a) and the IT2 FLC with amount of blur 0.85 (b) for a normalized parameters’ 

uncertainty level of 0.7. The position error of both controllers is depicted in (c). 

 



 

D. Discussion 

The presented experiments analyzed the performance 

quality and uncertainty robustness of the IT2 FLCs applied to 

the position control of the delta parallel robot. Several 

observations can be drawn from the presented results. 

The distribution of the RMSE values in the N/B space (Fig. 

8) demonstrated the robustness of the IT2 FLCs when dealing 

with dynamic sensory noise. For both x and y control axes the 

increasing value of blurring parameter led to performance 

improvements all the way to reaching its peak point of 0.85. 

Quite interestingly, exceeding this peak point resulted in rapid 

performance deterioration, worsening in many cases below the 

performance of the original T1 FLC. This behavior can be 

attributed to the excessively wide FOUs and overly strong 

dumping of the controllers’ response [17]. In addition, it can 

be observed that incorporating IT2 fuzzy logic into the design 

of the z-axis motion controller did not provide performance 

improvement. Instead, performance deterioration was 

experienced. This observation can be explained by the 

difference between individual robot’s control axes, where the 

control motion in the z-axis (front-back) must overcome the 

combined friction of all three motor drives. Hence, additional 

output dumping by the IT2 FLC lead to performance 

deterioration. Clearly, the benefits in terms of performance 

quality and robustness provided by the IT2 FLC are 

application dependent, which is consistent with the recent 

study published by Biglarbegian et al [22]. Similar 

conclusions can be drawn from the distribution of the RMSE 

values in the P/B space depicted in Fig. 9.  

Finally, Fig. 10 and Fig. 11 validated the increased 

robustness of the selected IT2 FLCs. In both cases, the control 

performance of the IT2 FLC can be found to feature increased 

precision and robustness in presence of different sources of 

dynamic uncertainties. In addition, the plotted position error in 

Fig. 10(c) and Fig. 11(c) illustrates significantly smaller error 

amplitudes and reduced position overshooting for the IT2 

FLC. The summarized average performance in Table II 

validates the previous observations. 

VI. CONCLUSION 

This paper provided a problem-driven design methodology 

together with a systematic assessment of the performance 

quality and uncertainty robustness of IT2 FLCs. The method 

was evaluated on the problem of position control of delta 

parallel robots. In order to allow for systematic exploration of 

the problem domain, the constrained partially-dependent 

design of IT2 FLC was used. Two primary sources of system 

uncertainty were considered: sensory noise and the uncertain 

system parameters. 

The systematic analysis of the space of design parameters 

and uncertainty levels provided important insights into the 

real-world performance quality and uncertainty robustness of 

IT2 FLCs. The three main conclusion points of the presented 

work can be summarized as follows: i) it was concluded that 

the IT2 FLC provides improvements in terms of both 

performance and robustness compared to T1 FLC, when 

appropriate design of IT2 fuzzy sets is performed, ii) 

increasing the amount of “type-2 fuzziness” monotonically 

improves the uncertainty robustness of the IT2 FLC up to its 

peak point, and iii) exceeding the optimal amount of “type-2 

fuzziness” and excessively blurring the fuzzy membership 

functions can lead to rapid performance degradation.  
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