
 
 

 
 

  
Abstract— Mobile robot teleoperation has been used in many 

areas of industrial automation, such as explosives disposal, 
nuclear waste manipulation, freight handling or transportation. 
Here, the commonly provided audio-visual feedback often 
resulted in an inadequate perception of the remote environment. 
Haptic augmentation was shown to improve and positively 
enhance the control of the mobile robot. This paper presents a 
novel Self-Organizing Fuzzy Adaptive Mapping algorithm 
(SOFAMap) for a haptic teleoperation of mobile robots. The 
SOFAMap algorithm was specifically developed for a mobile 
robot with a rotational sonar sensory system, constituting an 
alternative to a traditionally used multi-sonar array. The main 
contributions of this work are: 1) development of a specific self-
organizing environment mapping structure inspired by the 
Growing Neural Gas algorithm; 2) incorporating a fuzzy 
controller into the algorithm to adapt to robot’s motion; 3) 
resolving typical issues such as sensor noise, communication time 
delay and low sampling rate. The experimental testing was 
performed in both virtual environment and on a real robotic 
platform, consisting of a Lego NXT mobile robot and a Novint 
Falcon 3-DOF haptic interface. The results showed that a high-
fidelity haptic feedback can be successfully generated using a 
simpler and more affordable rotational sonar sensory system, as 
opposed to the typical multi-sonar array. Further, it was 
demonstrated that the SOFAMap algorithm improves the 
operator’s awareness of unstructured environments, making it 
applicable to wide range of mobile robot teleoperation systems. 
 

Index Terms— Fuzzy Control, Mobile Robot Teleoperation, 
Self-Organization, Sonar Sensor, Haptic Interface. 
 

I. INTRODUCTION 
OBOT teleoperation as an active area of research 
significantly contributes to an increasing use of robots in 

industrial automation as well as in operations under hazardous 
conditions [1]-[2]. It is widely used in applications, where the 
presence of the human operator in the unstructured and 
possibly contaminated environments is not desirable.  
  However, the teleoperation of mobile robots constitutes a 
difficult task. The low quality of the information delivered to 
the operator has a negative impact on the perception of the 
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remote environment and often leads to incorrect decisions [3]. 
For instance, relying exclusively on the video feedback 
commonly leads to disorientation, incorrect depth estimation 
or failure to detect obstacles in unstructured environments. 
These negative effects of the separation of the operator from 
the point of action become even more significant in 
applications where precise maneuvering is required. 
 Recently, haptic interfaces have been used to enhance the 
perception of the operator [4]-[7]. Haptic devices can 
significantly increase the notion of telepresence and provide 
additional sensory feel that can improve the depth judgment 
and obstacle awareness [5], [8]. Further, the force-feedback 
applied against the control motion, prevents the operator from 
imposing additional danger to the robot by performing an 
incorrect maneuver. 
 A typical problem associated with haptic teleoperation is 
variable communication time delay [9]-[11]. The desired 
teleoperation system must maintain stability and transparency 
despite strong variations of time delays and packet losses in 
the communication network. In addition, the delayed haptic 
feedback can cause significant disturbances in the operator’s 
perception [12]. 
 Multimodal control interfaces, such as systems combining 
audio-visual and haptic feedback, substantially increase the 
safety of mobile robot teleoperation applications. For instance, 
safe control is essential for robotic operations in hazardous 
environments, search and rescue response, disposal of 
explosives and nuclear power plant maintenance or radioactive 
waste manipulation [13]-[14]. Further, safe driving systems 
are important in many industrial applications such as freight 
handling or transportation [15].   
 The mobile robot teleoperation system augmented by the 
haptic feedback requires a high fidelity haptic display as well 
as an accurate sensory system to map the robot’s environment. 
Multi-sonar array constitutes a traditionally used input sensory 
system for multi-directional obstacle detection [2]. 
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Fig. 1. Robot in an unstructured environment and the corresponding image 
obtained from the rotational sonar sensory system. The robot’s direction is 
denoted by the arrow in both images. 



 
 

 
 

Deficiencies of such input system are its large physical 
dimensions, high communication bandwidth requirements and 
high price. This paper considers an alternative of a rotational 
sonar sensory system, preferred for its small size, low-cost and 
suitability even for small-sized, low-cost robotic platforms. 
The presented algorithm alleviates the tradeoffs for the low 
cost, such as considerable measurement errors and low 
sampling rate. Fig. 1 shows an example of the environment 
mapping with a rotational sonar sensor. Measurement errors 
due sensor imprecision are apparent when comparing the 
sampled points with the real environment.  
 This paper presents the Self-Organizing Fuzzy Adaptive 
Mapping algorithm (SOFAMap) for haptic teleoperation of 
mobile robots. The introduced algorithm was specifically 
developed to cope with the weak points of the rotational sonar 
sensory system. The core of the algorithm is a self-organizing 
neural network structure inspired by the Growing Neural Gas 
algorithm (GNG) [16], [17]. Firstly, by minimizing the 
approximation error with respect to the input data, the 
SOFAMap algorithm locally optimizes the resolution of the 
modeled environment. Secondly, it contains an inherent 
mechanism for adjusting to a variable time delay. Thirdly, a 
built-in intelligent fuzzy controller is used to adapt the 
constructed model to robot’s motion. These improvements, 
embedded in the SOFAMap algorithm, together result in a 
high-fidelity haptic teleoperation system for a mobile robot. 
 Significant amount of work has been already done in the 
area of robotic environment mapping. For instance, refer to the 
work of Thrun or Thorpe [18]-[19]. However, unlike in the 
referred work, the presented algorithm comprises a specific 
approach for modeling of the robot’s surrounding with 
emphases on the consequent generation of haptic feedback.
 The rest of the paper is organized as follows. Section II 
introduces the SOFAMap algorithm. Section III describes the 
generation of the haptic force-feedback using the constructed 
SOFAMap structure. Section IV experimentally evaluates the 
performance of the implemented system. Finally, conclusion is 
given in section V. 

II. THE SELF-ORGANIZING FUZZY ADAPTIVE MAPPING 
ALGORITHM (SOFAMAP) 

 This section describes the SOFAMap algorithm, a fuzzy-
neural approach for robot’s environment mapping. The 
algorithm is inspired by the Growing Neural Gas algorithm 
(GNG). An adaptive environment model is being constructed 

online, incrementally processing the incoming inputs from the 
rotational sonar sensory system. The self-organizing neural 
structure is coupled with a fuzzy controller to further enhance 
the accuracy of the model considering the limitations of the 
system such as the communication time delay. 

A. Related Background 
 The GNG algorithm was proposed by Fritzke [16]. It was 
originally inspired by the neural gas algorithm presented by 
Martinetz and Schulten [20]. As a clustering and vector 
quantization technique, the GNG algorithm is capable of 
overcoming some of the limitations of the standard self-
organizing maps. It is a combination of an incrementally 
growing structure and a winner take all approach. The GNG 
algorithm is able to adapt itself to the local dimensionality and 
density of the input data. Inherently, it is robust against noise. 
 Fig. 2 demonstrates the ability of the GNG algorithm to 
expand and accurately model an arbitrary data distribution. It 
can be observed that the resolution of the GNG network 
resembles the density of the input data distribution.  
  The rotational sonar sensory system used in this paper 
consists of sonic range finder mounted on a continuous servo 
motor. The servo motor periodically swings around the 
reference forward direction. The servo motor is equipped with 
an internal rotation sensor measuring the current angular 
displacement relatively to the pre-set reference direction.  
 Sonar sensor has typically a limited range of sight and the 
distance and angle measurements contain a considerable error. 
The sampling rate is constrained by the actual communication 
time delay. Multiple scans are necessary for obtaining a 
complete image of the environment. Further, the rotational 
sonar sensory system is attached to a mobile robot. Coupled 
with the robot’s motion, the angular and distance error of past 
measurements significantly increase.   
 Fig. 3 shows a schematic representation of the rotational 
sonar sensory system. The xy-coordinate system is defined 
relatively to the position and direction of the robot. The 
maximum range of sight is denoted by the symbol R (for the 
actual sonic sensor user R = 2m). Measurement Mt consists of 
angle tα̂  and distance td̂  from the sensor to the nearest 
obstacle in the given direction. 

B. The SOFAMap Algorithm 
 The boundary of the robot’s view is approximated with a 
polyline structure. The polyline is calculated relatively to the 

 

 
 

Fig. 2. The GNG network learns the topology of the input dataset. 
 

Fig. 3. Schematic representation of the rotational sonar sensory system. 



 
 

 
 

robot’s location and direction of movement. Line segments are 
connected via neurons. However, the segments between 
neurons only define topological neighbors for particular 
neurons, rather than propagating input signals as it is the case 
with classical artificial neural networks. Every neuron ni 
maintains distance ri and angle iα with respect to the sonar 
sensor and its local error variable errori and weight wi. In the 
rest of the paper this polyline will be referred to as the 
SOFAMap structure. 
 Unlike the original GNG network, the introduced 
SOFAMap structure is a heterogeneous architecture with two 
types of neurons: base neurons and adaptive neurons. The base 
neurons hold a regular, stable but coarse boundary of the 
whole view. The base neurons are never removed from the 
structure. They constitute the lowest level of detail of the 
constructed environment model. The adaptive neurons are 
dynamically inserted into the structure to locally increase the 
resolution in the unstructured segments of the robot’s view. 
Additionally, the adaptive neurons can be dynamically 
removed from the structure should the resolution be decreased. 
Fig. 4 illustrates the SOFAMap structure consisting of both 
base and adaptive neurons. 
 The SOFAMap algorithm goes as follows: 
Init Step: Initialize the SOFAMap structure using only the 
base neurons. They are uniformly distributed around the view 
and positioned at the maximum sight distance from the sonar 
sensor. The error variables are initialized to zero. 
Step 1: At time t a new measurement Mt, consisting of the 
measured distance from the sensor to the obstacle td̂  and the 
angle tα̂ , is obtained by the rotational sonar sensory system: 
 
 }ˆ,ˆ{ ttt dM α=  (1)  
 
Step 2: Find neuron na with the smallest angular distance from 
the measurement tα̂ . 
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 Here N denotes the number of neurons currently in the 
structure. 
Step 3: Compute the new distance ra,t of neuron na from the 
sensor according to: 
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 Here Φ  denotes a weight that discounts the previous value 
of distance ra,t-1. The value of Φ  is determined by a fuzzy 
controller based on the speed and the turning rate of the 
mobile robot. The computation of Φ  will be explained in 
details after the description of the algorithm. Upon updating 
the distance ra,t, the computed value of Φ  is stored as the 
weight wa of neuron na. 
Step 4: Update the local error variable errora of neuron na:  
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 Here xI and yI denote the x and y coordinates of the 
intersection of a line at angle tα̂  from the sonar sensor and the 
SOFAMap structure as shown in Fig. 4. 
Step 5: Discount the locally accumulated error errori and the 
weight wi of every neuron in the SOFAMap structure: 
 
 Nierrorerror errtiti ...,,2,1,1,, == − δ  (5) 
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 Here errδ  and wδ  are heuristically determined discount 
rates for the local error and the weight, respectively. In the 
original GNG algorithm, parameter errδ  was set to 0.995, 
which was used here as well [16].  In order to adapt to variable 
time delay, (6) was introduced. The coefficient wδ  is raised to 
the power of the relative angular difference between the 
current sample tα̂  and its previous value 1ˆ −tα . Higher time 
delay results in lower sampling rate. Consequently, the 
exponent in (6) will become greater and the past 
measurements will have lower weight. The value of parameter 

wδ  has to be chosen with respect to the performance of the 
actual hardware used. Too low values would result in unstable 
behavior, while too high values cause slow adaptability to the 
changes in the environment. Value 0.99 was used here. 
Step 6: Remove all adaptive neurons with weight wi less than 
the established minimum weight threshold wmin. Threshold 
wmin has to be experimentally determined in order to obtain 
stable solution. 
Step 7: If the number of sampled measurements is an integer 
multiple of heuristically determined parameter λ , insert a new 
neuron as follows (here 20=λ ): 
 7.1 Find neuron nq with the highest accumulated local 
 error:  
  }...,,2,1),(max:{ Nierrornn i

i
iq ==  (7)  

 
 7.2 Insert new neuron nr between neuron nq and its 
 neighbor nf with the largest accumulated error. Set the 
 distance dr and angle rα  of the new neuron nr as 
 follows: 

Fig. 4. Example of the constructed SOFAMap structure consisting of both
base and adaptive neurons.  
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  Here xI and yI denote the x and y coordinates of the
 intersection point of a line at angle rα  from the sonar 
 sensor and the SOFAMap structure. 
 7.3 Multiply the local error variable errorq of neuron nq 
 with parameter β  to reduce the accumulated error.  
 Initialize the local  error errorr of neuron nr with the new 
 value of error  errorq. 
 
   β1,, −= tqtq errorerror  (10) 

 
 tqtr errorerror ,, =  (11) 
 

Here, parameter β  was set to 0.5, following the 
 original GNG implementation in [22]. 

 7.4 Initialize the weight wr of the new neuron nr to  the 
weight of neuron nq. 

 qr ww =  (12) 
 
Step 8: When new sonar measurement is acquired, go to 

step 1. 
   The value of Φ (3) follows the rate at which the 
surroundings of the robot changes. This rate is proportional to 
the speed and turning rate of the robot. The faster the 
surrounding of the robot changes, the less relevant the 
measurements obtained in the past are. On the other hand, if 
the robot remains stationary, past measurements remain 
relevant. 
 In the original GNG algorithm, this weight was fixed at the 
beginning of the algorithm and remained constant during the 
whole training process [16]. In the presented SOFAMap 
algorithm, the weight Φ (3) is calculated dynamically using a 
fuzzy controller.  The controller uses two input fuzzy 
representations of speed and turning rate to calculate the 
output Φout , as shown in Fig. 5. The implemented fuzzy 
controller is a Mamdani type controller with a multiplication 
product used as the t-norm operator. Fig. 6 shows the 
implemented fuzzy control surface. More weight is assigned to 
the turning rate as it affects the constructed view faster, 
compared to robot’s speed. The output Φout  is used to 
calculate the weight Φ (3): 
 
 ( ) Mout k

Φ=Φ  (13) 
 
 Here, parameter k controls the exponential trend of the 
weight Φ  (k > 1) and M describes the relative importance of 
the previous measurements versus the new one. (13) was 
constructed in order to transform the output of the fuzzy 
controller into the appropriate adaptive learning rate (3). Here, 
parameters k and M were chosen as 2 and 4, respectively. 
Similarly to parameter wδ , M should be chosen with respect to 
the actual hardware implementation, as improper values might 
result in unstable behavior. 
 High values of Φ  (robot is stationary) result in only slow 
adjustment towards the new inputs. On the other hand, low 
values of Φ  (robot is moving) cause a fast adaptation to the 
most recent measurements.  

C. SOFAMap Algorithm Analysis 
 This section discusses the computational complexity of the 
SOFAMap algorithm and gives a proof of its convergence 
towards the boundary of the robot’s surrounding.  
 Analysis of the computational complexity is fairly 
straightforward. Step 1 and 4 as well as the fuzzy controller in 
step 3 are computed in constant time. Searching for the nearest 
neuron in step 2, updating all neurons in step 5, and removing 
low weight neurons in step  6 can be performed in time O(N), 
where N denotes the number of neurons in the structure. Step 
7 is carried out once every λ  iterations and it consist of 
finding the neuron with the highest error and then finding its 
neighbor with the highest error. This can be also performed in 
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Fig. 5. Fuzzy representation of speed (a), turnin rate (b) and the output of the
fuzzy controller (c). 

Fig. 6. Fuzzy control surface. 



 
 

 
 

time O(N). Hence, the computational complexity T can be 
expressed as: 
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 Therefore, a single update of the SOFAMap algorithm runs 
with a linear asymptotic complexity of O(N), where N denotes 
the number of neurons in the structure. 
 During robot’s motion the fuzzy controller adaptively 
reduces the weight of previous measurements in order to 
quickly adapt to the changing environment. As the robot 
becomes stationary, the SOFAMap structure starts adapting to 
the current environment. It can be shown that processing 
additional measurements reduces the error of the model, while 
the robot remains stationary. 
 Suppose that at time t, neuron a located at distance ra,t from 
the sensor, is being updated by measurement dt. Its error Erra,t 
can be defined as the difference between distance ra,t and 
measurement dt. Hence, the error Erra,t of neuron a at time t 
and the error Erra,t-1 at time t-1 can be defined as follows: 
 
 ttata drErr −= ,,  11,1, −−− −= ttata drErr  (15) 
 
 It can be shown that Erra,t < Erra,t-1. By substituting (3) for 
ra,t in (15), the following inequality is formulated: 
 

 11,
1,

1 −−
− −<−
+Φ

+Φ
ttat

tta drd
dr

 (16) 

 
 This can be simplified as follows: 
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 Finally, since the robot is stationary, measurements dt and 
dt-1 can be considered equal. Clearly, they might differ due to 
the fact, that single neuron a captures a whole interval of 
measurements at various angles around itself. However as 
more neurons are added into the stationary SOFAMap 
structure, this difference is minimized. Hence, (19), proves 
that the error of the SOFAMap structure is continuously 
minimized as the robot remains stationary. 

III. HAPTIC AUGMENTATION FOR ROBOT TELEOPERATION 
 For the mobile robot haptic teleoperation, two degrees of 
freedom of the control motion were considered: controlling 
the speed and the turning rate of the robot. By combining the 

speed and turning rate, a Cartesian planar control space was 
created. The control space is shown in Fig. 7. Here the point 
(0, 0) denotes the stationary state of the robot (zero speed and 
zero turning rate). This control space was restricted by the 
maximum speed and the maximum turning rate into a circular 
zone around the origin of the coordinate system. By moving 
the cursor in the control space, the operator can smoothly 
control the speed and the turning rate of the robot. As further 
shown in Fig. 7 the SOFAMap structure is projected onto the 
control space. 
 In the presented work, the amplitude FM of the generated 
force feedback was modeled using a sigmoidal function. 
Sigmoidal function was chosen for its smooth shape and 
simple control mechanism. The force FM  is determined by the 
penetration depth Δ of the cursor position into the boundary of 
the view, which is defined by the SOFAMap algorithm: 
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 Here, constant κ  determines the stiffness of the perceived 
penetration, constant ε  sets the interval around the polyline, 
where the force is applied and the variable Δ  denotes the 
penetration depth computed as: 
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 Here xI and yI denote the coordinates of the intersection 
point of a line connecting the cursor with the origin and the 
SOFAMap structure. Coordinates xC and yC define the position 
of the cursor. Fig. 8 illustrates the calculation of the 
penetration depth. 
 The computed force MF  is applied along the vector from 
the cursor to the origin of the control space as follows: 
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Fig. 7. The Cartesian control space with the projected SOFAMap structure.
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 In this way, the generated force-feedback provides a haptic 
sensation of obstacles in robot’s view. 

IV. EXPERIMENTAL TESTING 
  The SOFAMap algorithm was implemented in both 
virtual environment and on a real robotic platform. A multiple 
tests were conducted in order to demonstrate the performance 
and the behavior of the presented method. 

A.  Experimental Test Bed 
 The Lego NXT robotic platform was used as a scaled-down 
prototype version of industrially exploited mobile robots [21]. 
The constructed robot had dimensions 25cm x 20cm x 20cm. 
In addition, a virtual environment was implemented in order to 
simulate the mobile robot and the rotational sonar sensory 
system. In both cases, the system was interfaced via the 

Novint Falcon force-feedback haptic device [22], [23]. This 
control device comprises a force-controlled parallel delta robot 
configuration, which has three force-feedback and tactile 
sensation enabled degrees of freedom. Working frequency of 
1kHz and position resolution of 400 dpi within the 4” x 4” x 
4” workspace enables smooth control of the multi-robot 
system as well as fluent perception of the generated haptic 
force. The experimental test bed is shown in Fig. 9. The Lego 
NXT robot was connected via Bluetooth to an Intel Core 2 
laptop at 2 GHz with 2GB RAM.  
 The SOFAMap algorithm was developed first in the virtual 
environment using a simulated mobile robot and an 
approximate model of the rotational sonar sensory system. 
Consequently, the developed algorithm was implemented on 
the Lego NXT robotic platform to validate the proposed 
solution under the real world conditions. The advantages of 
the initial development in the virtual environment were as 
follows: 1) the ability to model an ideal sonar sensor, free of 
range and angular noise; 2) the ability to arbitrarily modify the 
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Fig. 11. The simulated robot in the virtual environment (a) and the projected angular density of neurons for particular SOFAMap structure (b). 

 
 

Fig. 8. Calculation of the penetration depth Fig. 9. The LegoNXT mobile robot with rotational sonar sensory system and
the Novint Falcon force-feedback haptic interface.  
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Fig. 10. The SOFAMap structure modeling the robot’s environment (a) using only base neurons (b) and using adaptive neurons (c). 



 
 

 
 

simulated communication time delay and sampling rate of the 
sensor; 3) the ease of setting and dynamically modifying 
system conditions and observing the behavior of the system.  

B.  Adaptive Environment Mapping 
   Firstly, the level of detail of the environment model 
constructed with the SOFAMap algorithm was investigated. 
The accurate model of robot’s view is essential for providing 
the operator with a correct and high-fidelity haptic feedback. 
 Fig. 10(a)-10(b) show the robot in a cluttered environment 
and the appropriate constructed SOFAMap structure 
containing only the base neurons. The whole o180  view is 
covered with six evenly distributed base neurons. As 
demonstrated, the low-resolution structure gives the operator a 
basic notion about the environment. However, features such as 
the narrow corridor were not captured in the model.  
 Fig. 10(c) demonstrates the adaptation of the SOFAMap 
algorithm to the sampled sonar data. The structure adaptively 
self-organizes and a substantially more accurate model of the 
environment is constructed. It can be observed from Fig. 10(c) 
that the constructed SOFAMap structure now accurately 
reflects the narrow corridor. 
 The SOFAMap algorithm locally adapts the resolution of 
the model to optimize the level of detail with respect to the 
number of neurons in the structure. For example, simple 
elements, such as straight walls, require only low resolution of 
the constructed model, while more irregular elements such as 
corners or corridors require more neurons.   
 Fig. 11(a)–11(b) illustrates the simulated robot in the virtual 
environment and the adapted resolution of the SOFAMap 
structure, respectively. To visualize the angular density of 
neurons in the structure, the positions of particular neurons 
were projected onto a semi-circle around the sampled view. It 
is apparent that the resolution is adaptively increased around 
corners and corridors, whereas long and straight segments of 
walls do not require mapping of such a high fidelity. 

C.  Adaptation to Robot’s Movement 
 The SOFAMap algorithm minimizes the error of the 
environment model by inserting new neurons into the structure 
and by removing old ones. Through this mechanism, the 
resolution of the model is being increased in areas where more 
neurons are needed for more precise description of the robot’s 
surrounding. 
 New neurons are inserted into the structure at a constant 
rate of one neuron per λ  iterations. However, the rate at 
which old neurons are removed is adaptively adjusted. 
Removing neurons at a faster rate than they are inserted, 
results in resolution decrease. In a similar manner, the 
resolution of the model will be increased when the frequency 
of removing old neurons is lower than the rate at which 
neurons are inserted. 
 The implemented fuzzy controller measures the speed and 
the turning rate of the robot. Its output value directly 
influences the rate of removing neurons from the structure by 
computing particular value of weight Φ  (3). Fig. 12 plots the 
output value of the intelligent fuzzy controller versus the 
speed and the turning rate of the robot. Fig. 13 demonstrates 
the behavior of the resolution of the SOFAMap structure as 
the speed and turning rate of the robot dynamically changes. It 

can be observed that for low amplitude of robot’s speed and 
turning rate, the resolution of the SOFAMap structure is 
increasing until it converges to an optimal value, given the 
additional constraints of the system (e.g. actual time delay or 
sampling rate). At this point the rate of inserting new neurons 
becomes equal to the rate of removing old neurons from the 
structure. As the amplitude of the speed and the turning rate 
increase, the fuzzy controller starts calculating lower weights 
Φ  for the adaptive neurons. Consequently, the rate of 
removing old neurons increases and overtakes the rate of 
adding new neurons. The resolution of the structure decreases 
until only base neurons are left in the structure.     

D.  Adaptation to Communication Time Delay 
 The communication time delay plays an important role in 
the SOFAMap algorithm. It directly influences the rate at 
which data can be sampled from the rotational sensory system. 
Especially during robot’s motion, the communication delay 
limits the resolution of the sampled information. 
Consequently, the SOFAMap algorithm has to consider the 
rate of obtaining new sonar measurements and adjust its 

Fig. 12. The response of the fuzzy controller to the speed and turning rate of 
the robot. 

Fig. 13. The resolution of the constructed structure as a function of the speed
and the turning rate of the robot. 
 

Fig. 14. The behavior of the resolution of the SOFAMap structure as a 
function of the communication time delay. 
 



 
 

 
 

resolution accordingly. This is necessary in order to build the 
most accurate environment model with the highest level of 
detail possible. 
 Fig. 14 illustrates the behavior of the resolution of the 
SOFAMap structure as a function of the communication time 
delay. The variable time delay was simulated by adding a 
pause command to the program code. As the communication 
time delay increases, the resolution decreases and eventually 
only base neurons are left in the structure. When the 
communication delay is low and hence a lot of samples are 
obtained, the algorithm adaptively increases the resolution of 
the constructed environment model. This is a result of the 
relation between the sampling rate and the weight assigned to 
particular neurons established in (6). 

E.  Haptic Force-Feedback 
 A force field is calculated in order to demonstrate the haptic 
feedback delivered to the operator.  The force field is a 3-

dimensional plot, capturing the amplitude of the force for the 
whole planar control space. Fig. 15 displays the computed 
force fields along with the robot’s environment and the 
constructed SOFAMap structure. From the examples in Fig. 
15 it can be observed that the sigmoidal function provides a 
smooth increase of force as the operator is pushing further 
against the constructed boundary. Also, it is apparent that the 
generated force-feedback restricts the movement of the 
operator and protects hazardous maneuvering in unstructured 
environments. For instance, in Fig. 15(d) the speed of the 
robot is decreased when driving against a wall. Similarly, in 
Fig. 15(c) the operator is aware of the wall on the right side of 
the robot by sensing the haptic input. The generated force-
feedback prevents turning against the obstacle.  

V. CONCLUSION 
This paper presented a novel self-organizing fuzzy based 

haptic teleoperation approach for mobile robots. The 
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Fig. 15. The generated haptic force field for the virtual environment (a) and a real robot (b-d). 

 



 
 

 
 

introduced SOFAMap algorithm was specifically developed 
for a rotational sonar sensory system to alleviate some of the 
deficiencies of the traditionally used multi-sonar array. 
Despite utilizing only sparse sonar measurements, the operator 
is provided with a high fidelity haptic feedback. The 
SOFAMap algorithm also addresses the typical problems of 
teleoperation systems: sensor noise, variable communication 
time delay and low sampling rate. The resolution of the 
constructed model adapts to the irregularity of the 
environment. In addition, the resolution of the model also 
reflects the variable communication time delay and the actual 
sonar sampling rate. Furthermore, a built-in fuzzy controller is 
used to compensate for robot’s motion. 

The performance of the system was evaluated in a virtual 
environment as well as on a real robotic platform. The model 
of robot’s view, constructed online by the SOFAMap 
algorithm, was shown to locally optimize its resolution with 
respect to the geometry of the robot’s surroundings. Further, 
the visualization of the SOFAMap generated haptic force 
demonstrated the ability of the algorithm to accurately capture 
the unstructured environment. The ability of the system to 
adapt to a variable communication time delay and compensate 
for robot’s motion was also illustrated.     
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