

Abstract - This manuscript presents FuSnap, a fuzzy logic

based controller that monitors and controls the snapshot process
of a logical storage volume in a disk array. As disks do not
linearly respond to the arrival rate of user accesses, FuSnap
makes use of fuzzy logic as the means to achieve better control of
their response time. The goal of the FuSnap controller is to
reduce the response time caused by the copy-on-writes that occur
during the snapping of a storage logical volume. The FuSnap
controller, based on the response time of user accesses, makes the
decision on whether to proceed with a copy-on-write or a
redirect-on-write when a source logical volume is being copied to
a snapshot logical volume. The benefits of FuSnap approach are
twofold. Firstly, significant reductions in response time of user
requests are obtained with the FuSnap approach over the
traditional Copy-on-Write snap approach. Secondly, these
reductions in response time make the point-in-time copy of data a
process less disruptive for database users. FuSnap was verified
with two setups using HPUX workstations, one setup with 8 and
the other with 32 disks.

Index Terms— Disk Arrays, Embedded Systems, Fuzzy
Control, Fuzzy Logic.

I. INTRODUCTION

NAPSHOT of logical volumes is an area of research of high
interest for storage companies that aim at improving the

availability of the data while at the same time providing data
replication [1], [6]. Logical volume snapshot is a feature that
translates into easier backup management, faster recovery, and
reduced exposure to data loss [1], [2]. The snapshot feature is
typically provided by storage companies like IBM (Tivoli
Storage Manager), HP (Business Copy), EMC (SnapView),
NetApp (SnapDrive), and Hitachi (Copy-on-Write Snapshot)
[3]-[8]. Furthermore, logical volume snapshots make data
mining of the data stored in storage devices easier by enabling
users to take “snapshots” of the data at certain points in time.

By using the snapshot feature, users can create a point-in-
time copy of a logical volume or LU (Logical Unit). From the
user’s standpoint, the snapshot feature creates an instant copy

Manuscript received January 13, 2009. Accepted for publication June 17,

2010.
Copyright © 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

Guillermo Navarro is with Hewlett Packard, Boise, ID 83714 USA (e-mail:
guillermo.navarro@ hp.com).

Milos Manic is with the University of Idaho, Idaho Falls, ID 83402 USA
(e-mail: misko@ieee.org).

of the original logical volume. This gives users the means to
preserve a point-in-time copy (the snapshot) of the data in a
source logical volume. If the data in the source gets corrupted
or lost, the user can go back to the snapshot and recover the
data from that point in time. The original volume with the
data to be replicated will be referred to as the source volume,
or just the source, for short. The copy of the original volume
will be referred to as the snapshot volume, or the snapshot, for
short.

Improvements in the management of snapshot replication
have been proposed in [9]-[13]. Performance improvement in
terms of data transfer have been shown in [14] by Guangjun.
Shah proposed a Logical Volume Manager 2 (LVM2) scheme
that is an optimization of LVM that improved the read
performance of the snapshot volume by 40% in [15].
Variations of the basic snapshot algorithm such incremental or
iterative snapshots have been proposed before in [16]-[18].
Brinkman et al. proposed a scheme for snapshot in cluster
environments [19].

Fuzzy control has been used with Proportional and Integral
(PI) control before. Perry et al. in [20] proposed the design of
a PI fuzzy logic controller for dc-dc conversion. Precup et al.
in [21] presented a merge of fuzzy and iterative learning
control for fuzzy control systems focused on Takagi-Sugeno
PI fuzzy controllers. Luo et al. proposed in [22] a fuzzy-PI-
based control strategy for static synchronous compensator
used in electric power distribution systems. Sun et al. in [23]
make use of fuzzy logic reasoning to optimize the gains of PI
controller as part of the fuzzy logic based control for flywheel
energy storage equipment. Fuzzy control can also be applied
to other type of controllers such as proportional and derivative
(PD) and proportional, integral and derivative (PID). In [24]
Su et al. present the design of a two-input-single-output PD
fuzzy controller for nonlinear systems. Wang et al. in [25]
propose the design of a control scheme for static var
compensators using fuzzy PID for the close loop section.
Mostefai et al. in [26] presents a fuzzy observer-based control
strategy for the compensation of nonlinear friction in a robot
joint structure. Precup et al. in [27] propose a new fuzzy
control solution employing 2 degrees of freedom PI fuzzy
control for a class or servo systems.

This manuscript presents a FuSnap, a fuzzy PI control
algorithm that drastically improves the response time of the
user requests (reads or writes) during the snapshot process.
The organization of this paper is as follows: Section II
presents the copy-on-write and redirect-on-write snapshot

FuSnap: Fuzzy Control of Logical Volume
Snapshot Replication for Disk Arrays

Guillermo Navarro, Member, IEEE, Milos Manic, Senior Member, IEEE

S

techniques. Section III presents a model for the snapshot and
the modified process. Section IV presents the fuzzy control
algorithm. Section V presents the experimental results.
Section VI presents the conclusions.

 II. BACKGROUND OF POINT-IN-TIME COPY TECHNOLOGIES

The FuSnap controller improves the response time during
the snapshot process by providing an intelligent way of
combining two snapshot technologies: 1) Copy-on-Write
(CoW) and 2) Redirect-on-Write (RoW). These two snapshot
technologies will be described in two following subsections.
The classification of snapshot techniques will be based mostly
on the classification provided by Simitci in [1] and Xiao in
[2].

A. Copy-on-Write (CoW)

Source logical volumes are divided into DBv data blocks,
where Bv is the total number of data blocks composing the
source volume. Right after the snapshot volume is created, the
pointers to data blocks on each volume (source and snapshot),
point to the source volume (these pointers to data blocks are in
some papers also referred to as metadata [15]). This is
illustrated in Fig. 1(a). If the user reads a block of data that
has not been written to since the creation of the snapshot
volume, the data will be read from the source volume. On the
other hand, if the user reads a data block that has been written
to since the creation of the snapshot, the data will be read from
the snapshot volume. For the purposes of clarity, the first user
write to a data block after the snapshot volume has been
created will be referred to as the first user write.

If a first user write occurs to one of the data blocks in the
source volume, for example Dj, then this block of data must be
copied to the snapshot volume before that first user write
occurs so that the original point-in-time data block Dj is
preserved. Once the first user write occurs, the Dj data block
in the source volume is modified so it is now referred to as the
updated Dj’ data block. This snapshot technology is called
copy-on-write because every first user write to the source
volume causes the disk array to copy the original data block
from the source to the snapshot volume before proceeding
with the user write. The copy of a data block to the snapshot
volume before the first user write can occur adds an extra
delay to that first user write, as it has to wait for the copy. The
extra delay is called the copy-on-write penalty. When a data
block from the source volume has been copied to the snapshot
volume then the original data block is said to have been
snapped.

After the copy-on-write is accomplished, the pointers to the
respective data blocks must be updated (metadata must be
updated). Fig 1(b) now shows the source volume with the
updated Dj’ block and the snapshot volume with the original
Dj block. The snapshot volume data block pointers have to
point to the original data blocks to maintain access to the
point-in-time data. Therefore, the snapshot volume data block
pointer to the original Dj block now points to the snapshot
volume because that is where the original Dj block is
preserved now. If the user accesses the snapshot volume, the

user will be able to read the original Dj data block. If the user
accesses the source volume, the user will read the newly
updated Dj’ data block. Fig 1(b) illustrates the space
efficiency advantage of the snapshot solution. The space used
on the snapshot volume is used only if there are new first
writes to the source volume. Hence, subsequent writes to the
same data block will not cause a copy-on-write.

B. Redirect-on-Write (RoW)

In case of RoW, the new user writes to the source volume
are redirected to another volume, set aside for the snapshot
[2]. This redirection avoids the copy-on-write penalty since
the writes proceed without the need of a copy-on-write of the
original data to the snapshot volume. But in this case, the
original volume still contains the original point-in-time data,
while the snapshot volume contains the updated block, which
is the reversal of the copy-on-write scenario.

III. MODELING OF THE COPY-ON-WRITE SNAPSHOT

A. Markov Chain Model of the Probability of a Snap

The purpose of modeling the traditional copy-on-write
snapshot was to understand how the probability of a snap
changes as the snapshot takes place under a constant arrival
rate on-line transaction processing (OLTP) workload. The
probability of a snap is one of the state variables of the process
to be controlled (the snapshot process). Also, the change of
the probability of a snap as a function of time has implications
on the stability of the FuSnap controller as it will be explained
at the end of section IV. To understand how the probability of
a snap changes the equations that estimate the probability are
derived. The snapshot process can be modeled as a process
characterized by the binomial distribution. A Markov Chain
(MC) with a finite customer population [28] was the starting
point. In this section, the term snap will be used as a synonym
for copy-on-write. The snapshot process can be modeled by a
MC with a finite customer population under the four
considerations: 1) the number of data blocks to snap is finite,
so the more data blocks are snapped, the lower the probability
to snap more is; 2) the write workload applied to the source

Fig. 1. Snapshot a) right after creation and b) after copy-on-write

(a)

(b)

volume is random, like OLTP workloads; 3) the size (in KB)
of the user writes is the same for all writes to the source
volume; and 4) the writes do not cross the data blocks
boundaries, that is, a write will only modify the data within
one data block. These assumptions are in line with the
accesses to databases, like Oracle for example [29]. The
process can be understood intuitively by explaining how the
snapping occurs. At the beginning, right after a snapshot
volume has been created, the snapshot volume is empty, as
there are no snapped data blocks yet. After the creation of the
snapshot, write requests from a user come at a constant rate λ
into the source volume. Since no data blocks have been
snapped, the writes will cause a snap to occur. In more
mathematical terms, the probability is one that a write will
cause a snap right after the snapshot volume is created. As
more data blocks are snapped, the probability of a user write
causing a snap will decrease. The sum of the snapped data
blocks for a volume will be denoted by b. Recall that Bv is the
total number of blocks that make up the source volume. The
probability of a write causing a snap then is:

v

v
snap B

bB
P


 (1)

This formula corresponds to the intuitive expectation. If no

data blocks have been snapped, then b = 0 and the probability
of a user write causing a snap is 1. If all of the data blocks
have been snapped, then b = Bv, and the probability of a write
causing a snap is zero, which means no more snaps will occur.
The MC that models those probabilities is shown in Fig. 2.

To derive the equation for the transient analysis of the MC,

differential equations were obtained assuming equilibrium in
terms of the input and output flow from each state [28]. The
differential equation for the probability of being in the state P0
at time t is:

)(
)(

0
0 tP
dt

tdP
 with 1)0(0 P (2)

The solution of (2) is:
 tetP )(0 (3)

The differential equation for the probability of P1(t) is:

)(
1

)(
)(

10
1 tP

B

B
tP

dt

tdP

v

v








 
  (4)

The solution of (4) is:

)1(

1)1()(






v

v
v

B
B

t

B

t

v eeBtP


 (5)

The differential equation for the probability of P2(t) is:

)(
2

)(
1)(

21
2 tP

B

B
tP

B

B

dt

tdP

v

v

v

v







 








 
  (6)

The solution of (6) is:

)2(
2

2)1(
2

)1(
)(










v

v
v

B
B

t

B

t
vv ee

BB
tP


 (7)

By induction, the probability of being in state b is:

)(

)1(
)!(!

!
)(

bB
B

t

bB

t

v

v
b

v
v

v ee
bBb

B
tP












 (10)

The factorial term in equation (10) is a binomial coefficient,

so the equation now becomes:

)(

)1()(
bB

B

t

bB

t
v

b

v
v

v ee
b

B
tP

















 (11)

Equation (11) can be interpreted as the probability of having
b blocks snapped at time t. This equation shows that the
snapshot process for a constant write arrival rate λ is governed
by a binomial distribution.

B. Practical Snapshot probability equation

Equation (11) has the form of a binomial probability mass
function (p.m.f.):

)()(knk
n qp

k

n
kp 









 (12)

where the equivalent terms are:

 qpeqbkBn vB

t

v 


1,,,


The problem with (11) is that for practical uses, the number

of blocks Bv that make up a volume is a large number. For
example, a 64GB source volume will be made up of Bv =
64GB/128KB = 524,288 blocks. Obtaining the factorial of
such big numbers can render the use of (11) impractical. That
is why the authors propose the use of the equivalent terms p
and q of the binomial p.m.f:

vB

t

eq




 (13)

vB

t

ep




 1 (14)

It is interesting to consider the behavior of (13) and (14) at

t=0 and as t→∞. At t=0, or at the beginning of the snapshot
process, the probability of causing a snap is one, as it has been
established by (11). It can be observed that (13) has a value of
one at t=0 and (14) has a value of zero. As time goes by and
the user writes keep arriving at a λ rate into the source volume,
the value of (13) goes to zero. The snapshot probability
equation psnap(t, λ, Bv) is then:

(, ,) v

t

B
snap vp t B e






 (15)

The probability of not causing a snap would be described by

Fig. 2. Markov chain of copy-on-write Snapshot.

(14) and it could be now taken as the probability of not having
a snapshot:

(, ,) 1 v

t

B
snap vp t B e






  (16)

Equation (15) and (16) can be used to determine how the

disk array will recover the response time and throughput that it
had before the snapshot process started. These equations
explain why user requests may experience high response times
at the start of a snapshot when the disk array is subjected to a
constant arrival OLTP workload.

C. Model of the CoW process

The model of the copy-on-write process is based on the
response time delivered by disk drives under an OLTP
workload. The two most important measures of the OLTP
workload imposed on the disk array are the arrival rate in IOs
per seconds (IO/s) and the response time in milliseconds [ms].
Assuming the write cache memory is in write-through mode,
the response time that disk drives deliver under certain IO/s
arrival rate is the key feature that will determine the response
time of the user accesses (reads or writes). Fig. 3 shows the
response time of a drive under an increasing arrival rate for a
15,000 revolutions per minute (RPM) disk.

The response time of an access (read or write), tacc, from a

disk is a function of the arrival rate on the disk, λd:

()acc dt f  (17)

The response time introduced by the copy-on-write process,

Tcow, is caused by the delay of a read of the data block, Tr,
from the disk where the source data block is located plus the
delay of the write of that data block, Tw, to the disks where the
snapshot data block will be located. This can be expressed in
this equation:

() () ()cow d r d w dT T T    (18)

The capital “T” letters indicate the response time is for large

block transfers. The data blocks copied during the copy-on-
write process are large in size compared to the user writes.
For example, data blocks can be 128KB in size whereas user
writes can be 8KB in size.

A flow of user writes is received by a disk array. Some of
the user writes, according to the psnap probability, will cause a
snap and therefore those user writes will have to wait for the
copy-on-write before being carried out (copy-on-write

penalty). And some of the other writes, according to the 1-
psnap probability, will proceed directly to be carried out. The
arrival rate of the user writes, λw, along with the psnap
probability, determines the arrival rate all disks in the disk
array will receive, λD. Fig. 4 illustrates this process.

The copy-on-write process causes extra disk accesses on the

disk array. If a write to a data block causes a snap that triggers
a copy-on-write then a data block (for example, 128KB in
size), has to be read from a disk and it has to be written on
some other disks depending on the RAID level used by the
snapshot volume. For example, if RAID1 is used on the
snapshot volume, then a copy-on-write will generate one read
of a data block from a disk and two writes to different disks.
Therefore, three more accesses on disks in the disk array were
generated in the background. The accesses generated by the
copy-on-write that depend on the RAID level of the snapshot
volume are defined by the αRL factor. For RAID1 the αRL =2,
which is the number of writes needed for each data write.

The total extra arrival rate on the disk array generated by the
copy-on-writes, λcow, is:

* *(1)cow snap w RLp    (19)

The total arrival rate on the disk array, λD, including user

reads, is:

*D r RL w cow       (20)

For the sake of simplicity, it was assumed that the arrival

rate is balanced across all the disks in a disk array, Nd, and the
arrival rate on each disk is

/d D dN  (21)

The snapshot process occurs while users are accessing a disk

array. If a user write causes a snap to occur, the user write has
to wait for the snap to take place before proceeding with the
user write (the copy-on-write penalty). Therefore, besides the
normal response time for a user write, tw, the response time is
increased by the copy-on-write delay. In other words, the final
response time the user write experiences with a copy-on-write,
tcow, is the sum of the two as shown in the next equation:

() () ()cow d w d cow dt t T    (22)

The average time for the user writes is:

() * () (1)* ()w d snap cow d snap w dt p t p t     (23)

This can be more simply expressed by:

Fig. 4. User writes arrival rate and arrival rate caused by snaps

Fig. 3. Response time vs. Arrival Rate for 128KB

() () * ()w d w d snap cow dt t p T    (24)

D. Model of the proposed CoW-RoW process

This manuscript presents a snapshot process that reduces the
response time during the snapping of the source volume. The
presented snapshot process is a combination of the CoW and
RoW processes, facilitated by the fuzzy controller.

The snapshot process is modified by introducing a control
input parameter named snap throttle factor uth. This actuating
variable (control input), represents the percentage of copy-on-
write that will be allowed out of the all the snaps generated by
user writes. The other snaps will generate a redirect-on-write.
The modified CoW-RoW process is illustrated in Fig. 5

The modified CoW-RoW process now redirects a fraction of
the copy-on-writes to redirects-on-write. The reduction in the
number of copy-on-writes reduces the arrival on the disks
which in turn reduces their response time. The reduction in
the disks’ response time in turn reduces the response time
experienced by user accesses. The extra arrival rate on the
drives is now:

*[* *(1) (1)*]row cow w th snap RL th RLu p u        (25)

And the total arrival rate on the disk array, λD, including user

reads, is:

*D r RL w row cow        (26)

The user writes now will experience smaller response time

since the delay introduced by the redirect-on-writes, trow is
significantly lower than tcow. The average response time
experienced by user writes with the modified CoW-RoW
process is expressed in the following equation, where to make
the equation more readable the dependency on λd is assumed
for the delays tw, tcow and trow:

(1) [(1)]w snap w snap th cow th rowt p t p t t      (27)

One possible simplification can be made if for practical

purposes is assumed that the redirects-on-write are the same as
user writes, since the user write is redirected to the snapshot
volume instead of the source volume but with no other extra
step in the process. This further entails that trow ≈ tw, and (22)
can be simplified as:

() () * * ()w d w d snap th cow dt t p T     (28)

This equation clearly shows why the response time is better
with the CoW-RoW process if the snap throttle factor, uth, is
less than 1. This is one fundamental part of the process. The
determination of the input control uth and the control of the
snapshot process with the fuzzy control are explained in the
next section.

IV. SNAPSHOT FUZZY CONTROL

A. Purpose and Rationale of FuSnap

The FuSnap controller can be considered as dynamic and
optimal Takagi-Sugeno fuzzy-logic based controller. The
block diagram of the FuSnap snapshot fuzzy controller is
illustrated in Fig. 6. The purpose is to minimize the average
response time of user accesses tw, and tr during a snapshot
process by controlling the dynamics of the snapshot process.

Modeling hard disk drives has been an area of research for a

long time. While some authors proposed analytical models for
hard disk drives, like Shriver et. al. in [31] and Triantafillou et
al. in [32], or fuzzy logic approach for disk scheduling policy
by Abu et al. [33], other authors claimed that the data driven
modeling needs to be used because the disk drives cannot be
analytically modeled [30]. Regardless of the school of
thought, the modeling and simulation difficulties arise due to
the seek scheduling policies or the internal mechanical
complexities. Determining an analytical model of a disk array
becomes even more difficult when a customer uses a mixture
of different disk drives with different mechanical features or
disk drives from different manufacturers. It is for these
reasons that the authors propose the use of a fuzzy control for
the regulation of the snapshot process that takes into account
the disk drive characteristics.

B. High level modeling of FuSnap

The controlled system has two inputs: the arrival rate of
writes, λw, and the arrival rate of reads, λr. The total arrival
rate, λ, is the sum of the input parameters of the controlled
system (disk array):

r w    (29)

The outputs of the system to be controlled (disk array) are

the average response times experienced by the user accesses
(reads or writes), tr, and tw:

1 2() [] []i w ry t y y t t  (30)

The state variables required for the FuSnap controller are 1)

the probability of snapped blocks in the volume, psnap, which is
a value in the [0,1] range; and 2) the numbers of copy-on-

Fig. 6. Snapshot fuzzy controller.

Fig. 5. Modified CoW-RoW process

writes per time unit, in other words, the arrival rate of copy-
on-writes in the disk array, λcow.

1 2() [] []i snap row cowx t x x p    (31)

The control input variable is the snap throttle factor, uth

1() [] []i thu t u u  (32)

The FuSnap controller also requires a reference variable -

the reference response time wrt. The reference response time
represents the maximum acceptable response time during the
snapshot process. The maximum response time used in this
paper was 30ms. The 30ms value comes from the Oracle
performance tuning guide [28] as a response time value that
gives a good indication of an overly active I/O system.

In order to control the outputs, they have to be periodically
monitored every Tm seconds. The decision on how often to
monitor can be based on the maximum acceptable response
time and the performance of the disk array controller. The
sampling of the outputs is performed at intervals of time Tm.
Each sample is denoted by (ti), where i is the i-th sample of the
output that occurred at a time ti, as in:

iTt mi * where i = 0,1,2,… (33)

The equation for the first state variable, psnap, when the

source volume is under an OLTP workload with constant
arrival rate for user writes (15) for FuSnap controller becomes:

w i

v

t
snap Bw

i v

dp
e

dt B


 

  (34)

The equation for the second state variable, λrow-cow,

assuming also a constant arrival rate for user writes is:

() * * ()i row cow RL w th snapt u p    (35)

The equations for the outputs are based on the arrival rate

the disks are being imposed. Equation (28) can be used for the
first output of the controller, the user write response time:

() () * * ()w i w d snap th cow dt t t p T    (36)

For the other output, the average response time for reads, tr,

the equation (17) becomes:

() ()r i r dt t t  (37)

Equation (37) expresses the response time for user reads

based on the arrival rates on the disks.

C. Decision Logic

If a user write causes a snap, then FuSnap makes a decision
about the three possible choices to execute: 1) perform a copy-
on-write at the time when the user write is being served; 2)
defer the copy-on-write operation by executing a redirect-on-
write; 3) perform a copy-on-write of the target data block if a
redirect-on-write already took place for that data block. The
way the fuzzy controller throttles the snapshot process is by

controlling the percentage of copy-on-writes that are caused
by user writes (option 1), versus the percentage of user writes
with deferred copy-on-write (option 2). This percentage is the
output of the snapshot fuzzy controller and is named snap
throttle factor uth. For example, if uth = 0.4, this means that
only 40% of the user writes that cause a snap will also
generate a copy-on-write. The other 60% of the user writes
that are causing a snap will generate a redirect-on-write.

D. Estimation and fuzzification of the probability of a snap

The probability of a snap is used as part of the
determination of the snap throttle factor. The fsnap(ti), in
addition to being an indication of the percentage of blocks
snapped at a time ti, also denotes the probability of further
snaps. For example, if 90% of the blocks in a volume have
been snapped, the probability of user accesses causing further
snaps is only 10% (assuming a random user access over the
volume). The probability of a snap at time ti is:

)(1)(isnapisnap tftp  (38)

The probability of a snap psnap(ti), the error e(ti), and the

change in error Δe(ti), are the three variables used by the fuzzy
controller to compute the snap throttle factor, uth(ti). In order
to be used by FuSnap, these three variables need to be first
fuzzified as shown in [34]. The fuzzification of psnap is done
in very straightforward fashion. If the probability of snap is
below or equal to 0.5, it is mapped to the Low Probability
(LP) fuzzy descriptor. If the probability of a snap is greater
than 0.5, it is mapped to the the High Probability (HP) fuzzy
descriptor. The membership function of probability of a snap
is therefore defined by:









5.01

5.00
)(

snap

snap

snappsnap pif

pif
p (39)

The final fuzzification of the psnap value is denoted by

Fpsnap(μsnap), and is defined as:









1

0
)(

snap

snap

snappsnap ifHP

ifLP
F




 (40)

E. Control Error computation and fuzzification

The output y(ti) is compared with the reference response
time wrt to compute the control error, e:

rtii wtyte )()((41)

The change in the control error, Δe, is also computed:

)()()(1 iii tetete (42)

The final goal in the fuzzification of the control error e and

change in the control error Δe is to map them to one of three
fuzzy descriptors, Zero (ZE), Positive Error (PE), and
Negative Error (NE), respectively. These fuzzy descriptors
apply to both the control error e and change in control error
Δe. The purpose of these fuzzy descriptors is obvious – they
indicate when the control error is close to zero, or in case

where the error does exist, whether the control error is positive
or negative. This fuzzification is first performed via three
triangular membership functions, μZE, μNE and μPE, based on
the reference response time wrt. The membership functions
are described using a dummy variable error, ε, since these
membership functions are the same for both e and Δe:





















0
2

1

01

0
2

1

),(








if
w

if

if
w

w

rt

rt

rt
ZE
e

 (43)






















rt

rtrt
rt

rt

rt
PE
e

wif

wwinif
w

wif

w

4

1
0

),
4

1
(

3

1

3

4
1

),(







 (44)






















rt

rtrt
rt

rt

rt
NE
e

wif

wwinif
w

wif

w









1

),
4

1
(

3

1

3

4
4

1
0

),(
 (45)

The membership functions (43), (44) and (45) here shown
are for the control error e (if ε = e), and for the change in
control error Δe (if ε = Δe). The graphical representation of
the membership functions is shown in Fig. 7.

To finish the fuzzification, the control error e and the

change in control error Δe are mapped into one of the fuzzy
descriptors (NE, ZE, or PE). This is accomplished by
comparing the values obtained for the three membership
functions (43), (44), and (45). Depending on which of the
three has the maximum value the fuzzy value of the error Fe,
and the fuzzy value of the change in error FΔe, are mapped into
one of the fuzzy descriptors NE, ZE or PE:

),,max(PE
e

ZE
e

NE
eeF  (46)

),,max(PE

e
ZE
e

NE
eeF    (47)

For example, if the output y(t1) is 45ms, then using (41) the

error e is 15ms. The membership values, obtained by using
(43), (44) and (45), are μZE=0, μNE =0, and μPE=1. It is clear
that the maximum value corresponds to μPE. Using (40), the
fuzzy value of the error Fe will be mapped to Positive Error,
PE. This same procedure is used for the change in error to
map it into one of the fuzzy descriptors, NE, ZE or PE.

F. Rule Base to obtain uth

The rule base can now be built based on the following
heuristic criteria. First criterion is: if the user response time is
high, then the control error, e, is fuzzy positive error, PE, and
the controller needs to reduce the number of copy-on-writes
occurring. Therefore, the snap throttle factor uth is reduced.
Second criterion is: if the user response time is low, then the
controller can increase the number of copy-on-writes
occurring. Therefore, the snap throttle factor uth is increased.
The probability of more copy-on-writes and the change in
error are also taken into account.

The next step once the three fuzzified input variables e, ∆e,
and psnap, are estimated, is the evaluation of the fuzzy rules.
The output of the fuzzy rules is the change in snap throttle
factor Δuth(ti). This value will denote the change in the snap
throttle factor for the current iteration. The rule base is in
Table 1. The rules are of the form:

1() () ()

snap snap e e

th i th i th i

if p F and e F and e F

then u t u t u t





   

  
 (48)

where Δuth(ti) can be in the [-1,1] range. Based on the chosen
rule, an equation (48) is computed for the FuSnap controller.
The snap throttle factor uth value is in the [0.05,1] range. The
value 0.05 as the minimum for uth was based on empirical
observations of actual snapshot processes. This value allows
some copy-on-writes to proceed and make a little progress
with the snapshot. The initial values when a snapshot volume
is created are uth(0) =0.05 and e(0) = 0

.TABLE 1

RULE BASE FOR SNAPSHOT FUZZY CONTROLLER

Rule Input Variables

Rule
Output

psnap e Δe Δuth
R1 HP PE PE -0.2
R2 HP PE NE -0.1
R3 HP ZE PE -0.1
R4 HP ZE PE -0.1
R5 HP NE ZE +0.05
R6 HP NE NE +0.05
R7 LP PE PE -0.05
R8 LP PE ZE -0.05
R9 LP ZE PE -0.05
R10 LP NE PE +0.05
R11 LP NE NE +0.05

G. Stability of the Fuzzy Controller

The fuzzy system presented here is globally
asymptotically stable based on the fact that it meets the
condition for the state variables, which according to [34]
shows that state variables converge to a reference vector as
time goes to infinite. In the case of the FuSnap controller, it
is clear that the probability of a snap, psnap and therefore the
λrow-cow arrival rate (25) converges to zero as user writes
access more source volume data blocks as time goes by.
lim () 0
t

x t


 (49)

Fig. 7. Membership functions for e and ∆e.

V. EXPERIMENTAL RESULTS

A. Results on a small setup with 8 disks

The FuSnap controller was tested with a setup that consisted
of an HP 7640 Itanium workstation with 64GB of memory and
with HPUX 11.23 installed. An MC534C fibre channel disk
enclosure was filled with eight BF072255B2C disks. The
traditional copy-on-write and FuSnap were implemented in C
language and compiled with HP cc. The implementation was
executed as a parent process in the user space and not as a part
of the kernel. The parent process performed the following
functions: 1) spawned user requests at a constant rate using the
fork() Unix function; 2) kept track of the data blocks written,
snapped and or with a redirect-on-write. The data block table
was in shared memory so it could be updated by the spawned
user requests; 3) monitored the response time of the user
requests; 4) implemented the FuSnap control logic. Using this
setup a comparison was run with an 8KB workload, 50% reads
at 500 IO/s. The source volume was a RAID1 4GB in size
using data blocks of 128KB laid out in an evenly fashion over
all the 8 disks.

The results in Fig. 8 show the traditional copy-on-write (a)

implementation delivering initial response times for user
writes (black line) in the 60ms range with some tops out in the
80 to 90ms range. For user reads (gray line) the traditional
copy-on-write delivered a response time in the 15 ms range.
The FuSnap controller implementation shown at Fig. 8, part
(b), proved superior since it could keep the initial response
time for user writes (black line) in the low 40ms range. For
the user reads (gray line), the response time delivered by
FuSnap was in the 10ms or less range.

B. Results on a setup with 32 disks

The FuSnap controller was also tested with a setup that
consisted of an HP 7640 Itanium workstation with 64GB of
memory and with RH Linux 2.6.18 installed. Four M6412A
fiber channel disk enclosures were filled with twelve
BF146DA47C disks. The traditional copy-on-write and
FuSnap were implemented in C language and compiled with
gcc. The implementation details were the same as the used in
the previous setup with eight disks. Using this setup a
comparison was run with an 8KB workload, 50% reads at
1,000 IO/s. The source volume was a RAID1 16GB in size
using data blocks of 128KB laid out in an evenly fashion over
all the 32 disks.

The results in Fig. 9 show the traditional copy-on-write (a)
implementation delivering initial response times for the user
writes (black line) in the 50-60ms. For user reads (gray line),
the traditional copy-on-write delivered an initial response time
in the 15 ms range. The FuSnap controller implementation
shown at Fig. 9, part (b), proved superior since it could keep
the initial response time for user writes (black line) under the
40ms range. For user reads (gray line), the response time
delivered by FuSnap was in the 12ms or less range.

VI. CONCLUSIONS

The greatest benefit FuSnap delivers is to avoid the high
response time peak at the beginning of a snapshot process as
predicted by the equations (15) and (16) developed for the
traditional copy-on-write snapshot. These equations can
provide a guide for the snapshot behavior even for different
disks speeds and disk arrays if the snapshot process is the

Fig. 9. Comparison of Response Time at 10,00 IO/s for 32 disk setup

(a)

(b)

Fig. 8. Comparison of Response Time at 500 IO/s for small setup

(a)

(b)

traditional copy-on-write. The improvements in response time
FuSnap delivers show how computationally intelligent
techniques, namely fuzzy logic, 1) can be applied to the data
backup management for disk arrays; 2) can outperform
traditional techniques like copy-on-write; 3) can be used to
control the nonlinear response of disks. The FuSnap
controller proves that it can provide two benefits: 1) help in
ensuring quality-of-sevice (QoS) where a database needs
constant access and 2) make the backup of data a less
disruptive process for the users of a database.

REFERENCES
[1] H. Simitci, “Storage Network Performance Analysis”, Wiley Publishing

Inc., 2003.
[2] W. Xiao, Y. Liu, Q. Yang, J. Ren, and C Xie, “Implementation and

Performance Evaluation of Two Snapshot Methods on iSCSI Target
Storages,” In Proc. NASA/IEEE Conference on Mass Storage Systems
and Technologies, May, 2006.

[3] C. Brooks, P. MacFarlane, N. Pott, M. Trcka, E. Tomaz, “IBM Tivoli
Storage Management Concepts”, IBM Redbooks, June 2006.

[4] Hewlett-Packard; “HP StoreageWorks Business Copy EVA
QuickSpecs”, DA-11616, ver. 20, Feb. 26, 2008.

[5] EMC Corporation; “EMC CLARiiON SnapView Snapshots and Snap
Sessions Knowledgebook: A Detailed Review ”, Whitepaper, Apr. 2008.

[6] Network Appliance, Inc., “Technical Overview of NetApp SnapDrive”,
Technical Report TR- 3197, April 2007.

[7] C. Bertrand, “Examining Hitachi Copy-on-Write Snapshot Software
Capabilities for Hitachi Thunder 9500™ V Series Storage Systems”,
Hitachi Data Systems White Paper, Aug. 2004. �

[8] B. Dufrasne; A. Indryana; C. Schoessler; B. Youngs, “IBM System
Storage DS4000 Series and Storage Manager 10.30”, IBM Redbooks,
March 2009.

[9] A. Azagury; M. E. Factor; J. Satran; W. Micka, “Point-in-Time Copy:
Yesterday, Today and Tomorrow”, In Proc. NASA and IEEE Mass
Storage Systems (MSS), pp. 259-270, April 2002.

[10] Elnikety, S.; Pedone, F.; Zwaenepoel, W., “Database replication using
generalized snapshot isolation”, Proceedings of the 24th IEEE
Symposium on Reliable Distributed Systems, pp. 73-84, Oct. 2005.

[11] Shrira, L.; Xu, H., “SNAP: efficient snapshots for back-in-time
execution”, Proceedings of the 21st IEEE Conference on Digital Object
Identifier, pp. 434-445, Apr. 2005.

[12] Merchant, A.; Kun-Lung Wu; Yu, P.S.; Ming-Syan Chen, “Performance
Analysis of Dynamic Finite Versioning Schemes: Storage vs.
Obsolence”, IEEE Trans. on Knowledge and Data Engineering, 1996.

[13] A. Brinkmann; S. Effert; M. Heidebuer; M. Vodisek, “Realizing
Multilevel Snapshots in Dynamically Changing Virtualized Storage
Environments,” IEEE ICN/ICONS/MCL, 2006.

[14] Xie Guangjun; Lu Qi; Feng Wang; Gang Wang; XiaoGuang Liu.; Jing
Liu, “ESnapII – A Writable Dependent Snapshot System with Shared
Cache”, Ninth ACIS Int. Conf. on Software Eng., Artficial Intelligence,
Networking, and Parallel/Distributed Computin, Aug. 2008.

[15] Bhavana Shah, ”Disk Performance of Copy-On-Write Snapshot Logical
Volumes”, master degree thesis, The University Of British Columbia,
2006.

[16] Liu Zhenjun; Xu Lu; Feng Shuo; Yin Yang, “The Design and
Implementation of an Iterative Snapshot System”, Jisuanji Gongcheng
Yu Yingyong, vol. 42, no.14, pp. 11-15, May 2006.

[17] Xu Guangping; Wang Gang; Liu Jing, “Design of repetitious points
incremental snapshots based on same snapshot volume”, Computer
engineering and applications, January 2005.

[18] L. Zhong, W. Gang, L. Jing, “A Technology of Implementing Sequential
Points Snapshot in the Storage Subsystem”, Computer engineering and
applications, March 2004.

[19] A. Brinkmann, S. Effert, "Snapshots and Continous Data Replication in
Cluster Storage Environments", SNAPI ’07, 4th International Workshop
on Storage Network Architecture and Parellel I/Os, 2007.

[20] A.G. Perry, Guang Feng, Yan-Fei Liu, P.C. Sen, "A Design Method for
PI-like Fuzzy Logic Controllers for DC–DC Converter", IEEE Trans. on
Industrial Electronics, vol. 54, no. 5, pp. 2688-2696, Oct. 2007..

[21] R.-E. Precup, S. Preitl, J. K. Tar, M. L. Tomescu, M. Takacs, P.
Korondi, P. Baranyi, "Fuzzy Control System Performance Enhancement

by Iterative Learning Control", IEEE Trans. on Industrial Electronics,
vol. 55, no. 9, pp. 3461-3475, Sept 2008.

[22] A. Luo, C. Tang, Z. Shuai, J. Tang, X. Y. Xu, D. Chen, "Fuzzy-PI-Based
Direct-Output-Voltage Control Strategy for the STATCOM Used in
Utility Distribution Syst," IEEE Trans. on Industrial Electronics, vol. 56,
no. 7, pp. 2401-2411, July 2009.

[23] Xiang-Dong Sun; Kang-Hoon Koh; Byung-Gyu Yu; Matsui, M.,
“Fuzzy-Logic-Based V/f Control of an Induction Motor for a DC Grid
Power-Leveling System Using Flywheel Energy Storage Equipment,”
IEEE Trans. on Industrial Electronics, vol. 56, no. 8, pp. 3161-3168,
Aug. 2009.

[24] J.-P. Su, T.-E. Lee, K.-W. Yu, "A Combined Hard and Soft Variable-
Structure Control Scheme for a Class of Nonlinear Syst," IEEE Trans.
on Industrial Electronics, vol. 56, no. 9, pp. 3305-3313, Sept 2009.

[25] Juanjuan Wang, Chuang Fu, Yao Zhang, "SVC Control System Based on
Instantaneous Reactive Power Theory and Fuzzy PID," IEEE Trans. on
Industrial Electronics, vol. 55, no. 4, pp. 1658-1665, April 2008.

[26] L. Mostefai, M. Denai, S. Oh, and Y. Hori, "Optimal control design for
robust fuzzy friction compensation in a robot joint," IEEE Trans. Ind.
Electron., vol. 56, pp. 3832-3839, Oct. 2009.

[27] R.-E. Precup, S. Preitl, I. J. Rudas, M. L. Tomescu, and J. K. Tar,
"Design and experiments for a class of fuzzy controlled servo systems."
IEEE/ASME Trans. Mechatronics, vol. 13, pp. 22-35, Feb. 2008.

[28] Kleinrock, L., “Queueing Systems: Volume I: Theory”, John Wiley &
Sons, Inc., 1975.

[29] Chan, I., “Oracle Database Performance Tuning Guide 11g Release 1
(11.1)”, Part Number B28274-02, Oracle, July 2008.

[30] C. Ruemmler, J. Wilkes, “An Introduction to disk drive modeling”,
IEEE Computer 27(3):17-29, March 1994.

[31] E. Shriver, A. Merchant, J. Wilkes, “An analytic behavior model for disk
drives with readahead caches and request reordering”, ACM
SIGMETRICS Performance Evaluation Review, Vol. 26, Issue 1, pp.
182-191, June 1998.

[32] P. Triantafillou, S. Christodoulakis, C. Georgiadis, “A Comprehensive
Analytical Performance Model for Disk Devices under Random
Workloads”, IEEE Transactions on Knowledge and Data Engineering,
Vol. 14, No. 1, Jan/Feb. 2002.

[33] M. S. Abu Talip, A. H. Abdalla, A. Asif, “Fuzzy Logic Based Algorithm
for Disk Scheduling Policy”, IEEE International Conference of Soft
Computing and Pattern Recognition, Dec. 2009

[34] K. Michels, F. Klawonn, R. Kruse, A. Nürnberger, “Fuzzy Control:
Fundamentals, Stability and Design of Fuzzy Controllers”, Springer-
Verlag, 2006.

Guillermo Navarro (M’01): Guillermo Navarro,
IEEE Member, received his M.S. in Computer
Science from the University of Houston Clear Lake
in 1997. Currently, he is pursuing a PhD degree
from the University of Idaho. He has worked for
Hewlett Packard since 1986. He has been a
Software Engineer writing embedded software for
LaserJet printers and disk arrays. He is currently
working for the EVA Storage Lab in Boise, Idaho
as a Storage Performance Engineer. He has
published several papers in IEEE conferences about

disk array performability and data rebuild algorithms using fuzzy logic and
neural networks. He has coauthored four patents for disk array algorithms.

Milos Manic, PhD (S'95-M'05-SM'06): Dr. Milos
Manic, IEEE Senior Member, has been leading
Computer Science Program at Idaho Falls and is a
Director of Modern Heuristics Group. He received
his Ph.D. degree in Computer Science from
University of Idaho, Computer Science Dept. He
received his M.S. and Dipl.Ing. in Electrical
Engineering and Computer Science from the
University of Nis, Faculty of Electronic
Engineering, Serbia. He has over 20 years of
academic and industrial experience, including an

appointment at the ECE Dept. and Neuroscience program at University of
Idaho Moscow. As university collaborator or principal investigator he lead
number of research grants with the Idaho National Laboratory, NSF, EPSCoR,
Dept. of Air Force, and Hewlett-Packard, in the area of data mining and
computational intelligence applications in process control, network security
and infrastructure protection. Dr. Manic has published over hundred refereed
articles in international journals, books, and conferences.

