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Abstract -   This manuscript presents FuSnap, a fuzzy logic 

based controller that monitors and controls the snapshot process 
of a logical storage volume in a disk array.  As disks do not 
linearly respond to the arrival rate of user accesses, FuSnap 
makes use of fuzzy logic as the means to achieve better control of 
their response time.  The goal of the FuSnap controller is to 
reduce the response time caused by the copy-on-writes that occur 
during the snapping of a storage logical volume.  The FuSnap 
controller, based on the response time of user accesses, makes the 
decision on whether to proceed with a copy-on-write or a 
redirect-on-write when a source logical volume is being copied to 
a snapshot logical volume.  The benefits of FuSnap approach are 
twofold.  Firstly, significant reductions in response time of user 
requests are obtained with the FuSnap approach over the 
traditional Copy-on-Write snap approach. Secondly, these 
reductions in response time make the point-in-time copy of data a 
process less disruptive for database users.  FuSnap was verified 
with two setups using HPUX workstations, one setup with 8 and 
the other with 32 disks.  
 

Index Terms— Disk Arrays, Embedded Systems, Fuzzy 
Control, Fuzzy Logic.  

I. INTRODUCTION 

NAPSHOT of logical volumes is an area of research of high 
interest for storage companies that aim at improving the 

availability of the data while at the same time providing data 
replication [1], [6].  Logical volume snapshot is a feature that 
translates into easier backup management, faster recovery, and 
reduced exposure to data loss [1], [2].  The snapshot feature is 
typically provided by storage companies like IBM (Tivoli 
Storage Manager), HP (Business Copy), EMC (SnapView), 
NetApp (SnapDrive), and Hitachi (Copy-on-Write Snapshot) 
[3]-[8].  Furthermore, logical volume snapshots make data 
mining of the data stored in storage devices easier by enabling 
users to take “snapshots” of the data at certain points in time.   

By using the snapshot feature, users can create a point-in-
time copy of a logical volume or LU (Logical Unit).  From the 
user’s standpoint, the snapshot feature creates an instant copy 
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of the original logical volume.  This gives users the means to 
preserve a point-in-time copy (the snapshot) of the data in a 
source logical volume.  If the data in the source gets corrupted 
or lost, the user can go back to the snapshot and recover the 
data from that point in time.  The original volume with the 
data to be replicated will be referred to as the source volume, 
or just the source, for short.  The copy of the original volume 
will be referred to as the snapshot volume, or the snapshot, for 
short. 

Improvements in the management of snapshot replication 
have been proposed in [9]-[13]. Performance improvement in 
terms of data transfer have been shown in [14] by Guangjun.  
Shah proposed a Logical Volume Manager 2 (LVM2) scheme 
that is an optimization of LVM that improved the read 
performance of the snapshot volume by 40% in [15].  
Variations of the basic snapshot algorithm such incremental or 
iterative snapshots have been proposed before in [16]-[18].  
Brinkman et al. proposed a scheme for snapshot in cluster 
environments [19]. 

Fuzzy control has been used with Proportional and Integral 
(PI) control before.  Perry et al. in [20] proposed the design of 
a PI fuzzy logic controller for dc-dc conversion.  Precup et al. 
in [21] presented a merge of fuzzy and iterative learning 
control for fuzzy control systems focused on Takagi-Sugeno 
PI fuzzy controllers.  Luo et al. proposed in [22] a fuzzy-PI-
based control strategy for static synchronous compensator 
used in electric power distribution systems.  Sun et al. in [23] 
make use of fuzzy logic reasoning to optimize the gains of PI 
controller as part of the fuzzy logic based control for flywheel 
energy storage equipment.  Fuzzy control can also be applied 
to other type of controllers such as proportional and derivative 
(PD) and proportional, integral and derivative (PID).  In [24] 
Su et al. present the design of a two-input-single-output PD 
fuzzy controller for nonlinear systems.  Wang et al. in [25] 
propose the design of a control scheme for static var 
compensators using fuzzy PID for the close loop section.   
Mostefai et al. in [26] presents a fuzzy observer-based control 
strategy for the compensation of nonlinear friction in a robot 
joint structure.  Precup et al. in [27] propose a new fuzzy 
control solution employing 2 degrees of freedom PI fuzzy 
control for a class or servo systems.   

This manuscript presents a FuSnap, a fuzzy PI control 
algorithm that drastically improves the response time of the 
user requests (reads or writes) during the snapshot process.  
The organization of this paper is as follows: Section II 
presents the copy-on-write and redirect-on-write snapshot 
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techniques.  Section III presents a model for the snapshot and 
the modified process.  Section IV presents the fuzzy control 
algorithm. Section V presents the experimental results.  
Section VI presents the conclusions. 

 II. BACKGROUND OF POINT-IN-TIME COPY TECHNOLOGIES 

The FuSnap controller improves the response time during 
the snapshot process by providing an intelligent way of 
combining two snapshot technologies: 1) Copy-on-Write 
(CoW) and 2) Redirect-on-Write (RoW).  These two snapshot 
technologies will be described in two following subsections.  
The classification of snapshot techniques will be based mostly 
on the classification provided by Simitci in [1] and Xiao in 
[2]. 

A. Copy-on-Write (CoW) 

Source logical volumes are divided into DBv data blocks, 
where Bv is the total number of data blocks composing the 
source volume.  Right after the snapshot volume is created, the 
pointers to data blocks on each volume (source and snapshot), 
point to the source volume (these pointers to data blocks are in 
some papers also referred to as metadata [15]).  This is 
illustrated in Fig. 1(a).  If the user reads a block of data that 
has not been written to since the creation of the snapshot 
volume, the data will be read from the source volume.  On the 
other hand, if the user reads a data block that has been written 
to since the creation of the snapshot, the data will be read from 
the snapshot volume. For the purposes of clarity, the first user 
write to a data block after the snapshot volume has been 
created will be referred to as the first user write.  

If a first user write occurs to one of the data blocks in the 
source volume, for example Dj, then this block of data must be 
copied to the snapshot volume before that first user write 
occurs so that the original point-in-time data block Dj is 
preserved.  Once the first user write occurs, the Dj data block 
in the source volume is modified so it is now referred to as the 
updated Dj’ data block.  This snapshot technology is called 
copy-on-write because every first user write to the source 
volume causes the disk array to copy the original data block 
from the source to the snapshot volume before proceeding 
with the user write.  The copy of a data block to the snapshot 
volume before the first user write can occur adds an extra 
delay to that first user write, as it has to wait for the copy.  The 
extra delay is called the copy-on-write penalty.  When a data 
block from the source volume has been copied to the snapshot 
volume then the original data block is said to have been 
snapped.   

After the copy-on-write is accomplished, the pointers to the 
respective data blocks must be updated (metadata must be 
updated).  Fig 1(b) now shows the source volume with the 
updated Dj’ block and the snapshot volume with the original 
Dj block.  The snapshot volume data block pointers have to 
point to the original data blocks to maintain access to the 
point-in-time data.  Therefore, the snapshot volume data block 
pointer to the original Dj block now points to the snapshot 
volume because that is where the original Dj block is 
preserved now.  If the user accesses the snapshot volume, the 

user will be able to read the original Dj data block.  If the user 
accesses the source volume, the user will read the newly 
updated Dj’ data block.  Fig 1(b) illustrates the space 
efficiency advantage of the snapshot solution.  The space used 
on the snapshot volume is used only if there are new first 
writes to the source volume. Hence, subsequent writes to the 
same data block will not cause a copy-on-write. 

 

B. Redirect-on-Write (RoW) 

In case of RoW, the new user writes to the source volume 
are redirected to another volume, set aside for the snapshot 
[2].  This redirection avoids the copy-on-write penalty since 
the writes proceed without the need of a copy-on-write of the 
original data to the snapshot volume.  But in this case, the 
original volume still contains the original point-in-time data, 
while the snapshot volume contains the updated block, which 
is the reversal of the copy-on-write scenario.  

III. MODELING OF THE COPY-ON-WRITE SNAPSHOT 

A. Markov Chain Model of the Probability of a Snap 

The purpose of modeling the traditional copy-on-write 
snapshot was to understand how the probability of a snap 
changes as the snapshot takes place under a constant arrival 
rate on-line transaction processing (OLTP) workload.  The 
probability of a snap is one of the state variables of the process 
to be controlled (the snapshot process).  Also, the change of 
the probability of a snap as a function of time has implications 
on the stability of the FuSnap controller as it will be explained 
at the end of section IV.  To understand how the probability of 
a snap changes the equations that estimate the probability are 
derived.  The snapshot process can be modeled as a process 
characterized by the binomial distribution.  A Markov Chain 
(MC) with a finite customer population [28] was the starting 
point. In this section, the term snap will be used as a synonym 
for copy-on-write.  The snapshot process can be modeled by a 
MC with a finite customer population under the four 
considerations: 1) the number of data blocks to snap is finite, 
so the more data blocks are snapped, the lower the probability 
to snap more is; 2) the write workload applied to the source 

Fig. 1. Snapshot a) right after creation and b) after copy-on-write
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volume is random, like OLTP workloads; 3) the size (in KB) 
of the user writes is the same for all writes to the source 
volume; and 4) the writes do not cross the data blocks 
boundaries, that is, a write will only modify the data within 
one data block.  These assumptions are in line with the 
accesses to databases, like Oracle for example [29].  The 
process can be understood intuitively by explaining how the 
snapping occurs.  At the beginning, right after a snapshot 
volume has been created, the snapshot volume is empty, as 
there are no snapped data blocks yet.  After the creation of the 
snapshot, write requests from a user come at a constant rate λ 
into the source volume.  Since no data blocks have been 
snapped, the writes will cause a snap to occur.  In more 
mathematical terms, the probability is one that a write will 
cause a snap right after the snapshot volume is created.  As 
more data blocks are snapped, the probability of a user write 
causing a snap will decrease.  The sum of the snapped data 
blocks for a volume will be denoted by b.  Recall that Bv is the 
total number of blocks that make up the source volume.  The 
probability of a write causing a snap then is: 
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This formula corresponds to the intuitive expectation.  If no 

data blocks have been snapped, then b = 0 and the probability 
of a user write causing a snap is 1.  If all of the data blocks 
have been snapped, then b = Bv, and the probability of a write 
causing a snap is zero, which means no more snaps will occur.  
The MC that models those probabilities is shown in Fig. 2.   

 
To derive the equation for the transient analysis of the MC, 

differential equations were obtained assuming equilibrium in 
terms of the input and output flow from each state [28].  The 
differential equation for the probability of being in the state P0 
at time t is: 
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The solution of (2) is: 
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The differential equation for the probability of P1(t) is: 
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The solution of (4) is: 
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The differential equation for the probability of P2(t) is: 
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The solution of (6) is: 
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By induction, the probability of being in state b is: 
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The factorial term in equation (10) is a binomial coefficient, 

so the equation now becomes: 
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Equation (11) can be interpreted as the probability of having 
b blocks snapped at time t.  This equation shows that the 
snapshot process for a constant write arrival rate λ is governed 
by a binomial distribution.   

B. Practical Snapshot probability equation 

Equation (11) has the form of a binomial probability mass 
function (p.m.f.): 
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The problem with (11) is that for practical uses, the number 

of blocks Bv that make up a volume is a large number.  For 
example, a 64GB source volume will be made up of Bv = 
64GB/128KB = 524,288 blocks.  Obtaining the factorial of 
such big numbers can render the use of (11) impractical.  That 
is why the authors propose the use of the equivalent terms p 
and q of the binomial p.m.f: 
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It is interesting to consider the behavior of (13) and (14) at 

t=0 and as t→∞.  At t=0, or at the beginning of the snapshot 
process, the probability of causing a snap is one, as it has been 
established by (11).  It can be observed that (13) has a value of 
one at t=0 and (14) has a value of zero.  As time goes by and 
the user writes keep arriving at a λ rate into the source volume, 
the value of (13) goes to zero.  The snapshot probability 
equation psnap(t, λ, Bv) is then: 
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The probability of not causing a snap would be described by 

Fig. 2. Markov chain of copy-on-write Snapshot.



 

(14) and it could be now taken as the probability of not having 
a snapshot: 
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Equation (15) and (16) can be used to determine how the 

disk array will recover the response time and throughput that it 
had before the snapshot process started.  These equations 
explain why user requests may experience high response times 
at the start of a snapshot when the disk array is subjected to a 
constant arrival OLTP workload. 

C. Model of the CoW process  

The model of the copy-on-write process is based on the 
response time delivered by disk drives under an OLTP 
workload.  The two most important measures of the OLTP 
workload imposed on the disk array are the arrival rate in IOs 
per seconds (IO/s) and the response time in milliseconds [ms].   
Assuming the write cache memory is in write-through mode, 
the response time that disk drives deliver under certain IO/s 
arrival rate is the key feature that will determine the response 
time of the user accesses (reads or writes). Fig. 3 shows the 
response time of a drive under an increasing arrival rate for a 
15,000 revolutions per minute (RPM) disk. 

 
The response time of an access (read or write), tacc, from a 

disk is a function of the arrival rate on the disk, λd: 

( )acc dt f                                                        (17) 

 
The response time introduced by the copy-on-write process, 

Tcow, is caused by the delay of a read of the data block, Tr, 
from the disk where the source data block is located plus the 
delay of the write of that data block, Tw, to the disks where the 
snapshot data block will be located.  This can be expressed in 
this equation: 

( ) ( ) ( )cow d r d w dT T T                                        (18) 

 
The capital “T” letters indicate the response time is for large 

block transfers.  The data blocks copied during the copy-on-
write process are large in size compared to the user writes.  
For example, data blocks can be 128KB in size whereas user 
writes can be 8KB in size. 

A flow of user writes is received by a disk array. Some of 
the user writes, according to the psnap probability, will cause a 
snap and therefore those user writes will have to wait for the 
copy-on-write before being carried out (copy-on-write 

penalty).  And some of the other writes, according to the 1-
psnap probability, will proceed directly to be carried out.  The 
arrival rate of the user writes, λw, along with the psnap 
probability, determines the arrival rate all disks in the disk 
array will receive, λD. Fig. 4 illustrates this process. 

 
The copy-on-write process causes extra disk accesses on the 

disk array.  If a write to a data block causes a snap that triggers 
a copy-on-write then a data block (for example, 128KB in 
size), has to be read from a disk and it has to be written on 
some other disks depending on the RAID level used by the 
snapshot volume.  For example, if RAID1 is used on the 
snapshot volume, then a copy-on-write will generate one read 
of a data block from a disk and two writes to different disks.  
Therefore, three more accesses on disks in the disk array were 
generated in the background.  The accesses generated by the 
copy-on-write that depend on the RAID level of the snapshot 
volume are defined by the αRL factor. For RAID1 the αRL =2, 
which is the number of writes needed for each data write.   

The total extra arrival rate on the disk array generated by the 
copy-on-writes, λcow, is: 

* *(1 )cow snap w RLp                                        (19)  

 
The total arrival rate on the disk array, λD, including user 

reads, is: 

*D r RL w cow                                               (20)  

 
For the sake of simplicity, it was assumed that the arrival 

rate is balanced across all the disks in a disk array, Nd, and the 
arrival rate on each disk is  

/d D dN                                                         (21)  

 
The snapshot process occurs while users are accessing a disk 

array.  If a user write causes a snap to occur, the user write has 
to wait for the snap to take place before proceeding with the 
user write (the copy-on-write penalty).  Therefore, besides the 
normal response time for a user write, tw, the response time is 
increased by the copy-on-write delay. In other words, the final 
response time the user write experiences with a copy-on-write, 
tcow, is the sum of the two as shown in the next equation:  

( ) ( ) ( )cow d w d cow dt t T                                   (22) 

 
The average time for the user writes is: 
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This can be more simply expressed by: 

Fig. 4. User writes arrival rate and arrival rate caused by snaps

Fig. 3. Response time vs. Arrival Rate for 128KB 



 

( ) ( ) * ( )w d w d snap cow dt t p T                              (24) 

 

D. Model of the proposed CoW-RoW process  

This manuscript presents a snapshot process that reduces the 
response time during the snapping of the source volume. The 
presented snapshot process is a combination of the CoW and 
RoW processes, facilitated by the fuzzy controller.    

The snapshot process is modified by introducing a control 
input parameter named snap throttle factor uth.  This actuating 
variable (control input), represents the percentage of copy-on-
write that will be allowed out of the all the snaps generated by 
user writes.  The other snaps will generate a redirect-on-write.  
The modified CoW-RoW process is illustrated in Fig. 5 

The modified CoW-RoW process now redirects a fraction of 
the copy-on-writes to redirects-on-write. The reduction in the 
number of copy-on-writes reduces the arrival on the disks 
which in turn reduces their response time.  The reduction in 
the disks’ response time in turn reduces the response time 
experienced by user accesses.  The extra arrival rate on the 
drives is now:  

*[ * *(1 ) (1 )* ]row cow w th snap RL th RLu p u        (25)  

 
And the total arrival rate on the disk array, λD, including user 

reads, is: 

*D r RL w row cow                                        (26)  

 

 
The user writes now will experience smaller response time 

since the delay introduced by the redirect-on-writes, trow is 
significantly lower than tcow.  The average response time 
experienced by user writes with the modified CoW-RoW 
process is expressed in the following equation, where to make 
the equation more readable the dependency on λd is assumed 
for the delays tw, tcow and trow: 

(1 ) [ (1 ) ]w snap w snap th cow th rowt p t p t t              (27) 

 
One possible simplification can be made if for practical 

purposes is assumed that the redirects-on-write are the same as 
user writes, since the user write is redirected to the snapshot 
volume instead of the source volume but with no other extra 
step in the process.  This further entails that trow ≈ tw, and (22) 
can be simplified as:  

( ) ( ) * * ( )w d w d snap th cow dt t p T                        (28) 

 

This equation clearly shows why the response time is better 
with the CoW-RoW process if the snap throttle factor, uth, is 
less than 1.  This is one fundamental part of the process.  The 
determination of the input control uth and the control of the 
snapshot process with the fuzzy control are explained in the 
next section. 

IV. SNAPSHOT FUZZY CONTROL 

A. Purpose and Rationale of FuSnap  

The FuSnap controller can be considered as dynamic and 
optimal Takagi-Sugeno fuzzy-logic based controller.  The 
block diagram of the FuSnap snapshot fuzzy controller is 
illustrated in Fig. 6.  The purpose is to minimize the average 
response time of user accesses tw, and tr during a snapshot 
process by controlling the dynamics of the snapshot process.  

 
Modeling hard disk drives has been an area of research for a 

long time.  While some authors proposed analytical models for 
hard disk drives, like Shriver et. al. in [31] and Triantafillou et 
al. in [32], or fuzzy logic approach for disk scheduling policy 
by Abu et al. [33], other authors claimed that the data driven 
modeling needs to be used because the disk drives cannot be 
analytically modeled [30].  Regardless of the school of 
thought, the modeling and simulation difficulties arise due to 
the seek scheduling policies or the internal mechanical 
complexities.  Determining an analytical model of a disk array 
becomes even more difficult when a customer uses a mixture 
of different disk drives with different mechanical features or 
disk drives from different manufacturers.  It is for these 
reasons that the authors propose the use of a fuzzy control for 
the regulation of the snapshot process that takes into account 
the disk drive characteristics. 

B.  High level modeling of FuSnap 

The controlled system has two inputs: the arrival rate of 
writes, λw, and the arrival rate of reads, λr. The total arrival 
rate, λ, is the sum of the input parameters of the controlled 
system (disk array):   

r w                                                          (29) 

 
The outputs of the system to be controlled (disk array) are 

the average response times experienced by the user accesses 
(reads or writes), tr, and tw:  

1 2( ) [ ] [ ]i w ry t y y t t                                        (30) 

 
The state variables required for the FuSnap controller are 1)  

the probability of snapped blocks in the volume, psnap, which is 
a value in the [0,1] range; and 2) the numbers of copy-on-

Fig. 6. Snapshot  fuzzy controller.

Fig. 5. Modified CoW-RoW process 



 

writes per time unit, in other words, the arrival rate of copy-
on-writes in the disk array, λcow.  

1 2( ) [ ] [ ]i snap row cowx t x x p                           (31) 

 
The control input variable is the snap throttle factor, uth 

1( ) [ ] [ ]i thu t u u                                                    (32) 

 
The FuSnap controller also requires a reference variable - 

the reference response time wrt.  The reference response time 
represents the maximum acceptable response time during the 
snapshot process.  The maximum response time used in this 
paper was 30ms.  The 30ms value comes from the Oracle 
performance tuning guide [28] as a response time value that 
gives a good indication of an overly active I/O system. 

In order to control the outputs, they have to be periodically 
monitored every Tm seconds.  The decision on how often to 
monitor can be based on the maximum acceptable response 
time and the performance of the disk array controller.  The 
sampling of the outputs is performed at intervals of time Tm.  
Each sample is denoted by (ti), where i is the i-th sample of the 
output that occurred at a time ti, as in: 

iTt mi *      where   i = 0,1,2,…                                (33) 

 
The equation for the first state variable, psnap, when the 

source volume is under an OLTP workload with constant 
arrival rate for user writes (15) for FuSnap controller becomes:  
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The equation for the second state variable, λrow-cow, 

assuming also a constant arrival rate for user writes is:  

( ) * * ( )i row cow RL w th snapt u p                               (35) 

 
The equations for the outputs are based on the arrival rate 

the disks are being imposed.  Equation (28) can be used for the 
first output of the controller, the user write response time:  

( ) ( ) * * ( )w i w d snap th cow dt t t p T                       (36) 

 
For the other output, the average response time for reads, tr, 

the equation (17) becomes: 

( ) ( )r i r dt t t                                                       (37)  

 
Equation (37) expresses the response time for user reads 

based on the arrival rates on the disks.  

C. Decision Logic  

If a user write causes a snap, then FuSnap makes a decision 
about the three possible choices to execute: 1) perform a copy-
on-write at the time when the user write is being served; 2) 
defer the copy-on-write operation by executing a redirect-on-
write; 3) perform a copy-on-write of the target data block if a 
redirect-on-write already took place for that data block.  The 
way the fuzzy controller throttles the snapshot process is by 

controlling the percentage of copy-on-writes that are caused 
by user writes (option 1), versus the percentage of user writes 
with deferred copy-on-write (option 2).  This percentage is the 
output of the snapshot fuzzy controller and is named snap 
throttle factor uth.  For example, if uth = 0.4, this means that 
only 40% of the user writes that cause a snap will also 
generate a copy-on-write.  The other 60% of the user writes 
that are causing a snap will generate a redirect-on-write. 

D. Estimation and fuzzification of the probability of a snap  

The probability of a snap is used as part of the 
determination of the snap throttle factor.  The fsnap(ti), in 
addition to being an indication of the percentage of blocks 
snapped at a time ti, also denotes the probability of further 
snaps.  For example, if 90% of the blocks in a volume have 
been snapped, the probability of user accesses causing further 
snaps is only 10% (assuming a random user access over the 
volume).  The probability of a snap at time ti is: 

)(1)( isnapisnap tftp                                                      (38) 

 
The probability of a snap psnap(ti), the error e(ti), and the 

change in error Δe(ti), are the three variables used by the fuzzy 
controller to compute the snap throttle factor, uth(ti).  In order 
to be used by FuSnap, these three variables need to be first 
fuzzified as shown in [34].  The fuzzification of psnap is done 
in very straightforward fashion.  If the probability of snap is 
below or equal to 0.5, it is mapped to the Low Probability 
(LP) fuzzy descriptor.  If the probability of a snap is greater 
than 0.5, it is mapped to the the High Probability (HP) fuzzy 
descriptor.  The membership function of probability of a snap 
is therefore defined by: 
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The final fuzzification of the psnap value is denoted by 

Fpsnap(μsnap), and is defined as: 
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E. Control Error computation and fuzzification  

The output y(ti) is compared with the reference response 
time wrt to compute the control error, e:  

rtii wtyte  )()(                                                             (41) 

 
The change in the control error, Δe, is also computed: 

)()()( 1 iii tetete                                                        (42) 

 
The final goal in the fuzzification of the control error e and 

change in the control error Δe is to map them to one of three 
fuzzy descriptors, Zero (ZE), Positive Error (PE), and 
Negative Error (NE), respectively.  These fuzzy descriptors 
apply to both the control error e and change in control error 
Δe.  The purpose of these fuzzy descriptors is obvious – they 
indicate when the control error is close to zero, or in case 



 

where the error does exist, whether the control error is positive 
or negative.  This fuzzification is first performed via three 
triangular membership functions, μZE, μNE and μPE, based on 
the reference response time wrt.  The membership functions 
are described using a dummy variable error, ε, since these 
membership functions are the same for both e and Δe: 
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The membership functions (43), (44) and (45) here shown 
are for the control error e (if ε = e), and for the change in 
control error Δe (if ε = Δe).  The graphical representation of 
the membership functions is shown in Fig. 7.  

 
To finish the fuzzification, the control error e and the 

change in control error Δe are mapped into one of the fuzzy 
descriptors (NE, ZE, or PE). This is accomplished by 
comparing the values obtained for the three membership 
functions (43), (44), and (45).  Depending on which of the 
three has the maximum value the fuzzy value of the error Fe, 
and the fuzzy value of the change in error FΔe, are mapped into 
one of the fuzzy descriptors NE, ZE or PE: 
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For example, if the output y(t1) is 45ms, then using (41) the 

error e is 15ms.  The membership values, obtained by using 
(43), (44) and (45), are μZE=0, μNE =0, and μPE=1.  It is clear 
that the maximum value corresponds to μPE.  Using (40), the 
fuzzy value of the error Fe will be mapped to Positive Error, 
PE.  This same procedure is used for the change in error to 
map it into one of the fuzzy descriptors, NE, ZE or PE.  

F. Rule Base to obtain uth  

The rule base can now be built based on the following 
heuristic criteria. First criterion is: if the user response time is 
high, then the control error, e, is fuzzy positive error, PE, and 
the controller needs to reduce the number of copy-on-writes 
occurring. Therefore, the snap throttle factor uth is reduced.  
Second criterion is: if the user response time is low, then the 
controller can increase the number of copy-on-writes 
occurring. Therefore, the snap throttle factor uth is increased.  
The probability of more copy-on-writes and the change in 
error are also taken into account.  

The next step once the three fuzzified input variables e, ∆e, 
and psnap, are estimated, is the evaluation of the fuzzy rules. 
The output of the fuzzy rules is the change in snap throttle 
factor Δuth(ti). This value will denote the change in the snap 
throttle factor for the current iteration.  The rule base is in 
Table 1. The rules are of the form: 
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th i th i th i
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  
           (48) 

 
where Δuth(ti) can be in the [-1,1] range.  Based on the chosen 
rule, an equation (48) is computed for the FuSnap controller.  
The snap throttle factor uth value is in the [0.05,1] range.  The 
value 0.05 as the minimum for uth was based on empirical 
observations of actual snapshot processes. This value allows 
some copy-on-writes to proceed and make a little progress 
with the snapshot.  The initial values when a snapshot volume 
is created are uth(0) =0.05 and e(0) = 0 

 
.TABLE 1 

RULE BASE FOR SNAPSHOT FUZZY CONTROLLER

 
Rule Input Variables 

Rule 
Output 

psnap e Δe Δuth 
R1 HP PE PE -0.2 
R2 HP PE NE -0.1 
R3 HP ZE PE -0.1 
R4 HP ZE PE -0.1 
R5 HP NE ZE +0.05 
R6 HP NE NE +0.05 
R7 LP PE PE -0.05 
R8 LP PE ZE -0.05 
R9 LP ZE PE -0.05 
R10 LP NE PE +0.05 
R11 LP NE NE +0.05 

G. Stability of the Fuzzy Controller  

The fuzzy system presented here is globally 
asymptotically stable based on the fact that it meets the 
condition for the state variables, which according to [34] 
shows that state variables converge to a reference vector as 
time goes to infinite.  In the case of the FuSnap controller, it 
is clear that the probability of a snap, psnap and therefore the 
λrow-cow arrival rate (25) converges to zero as user writes 
access more source volume data blocks as time goes by.   
lim ( ) 0
t

x t


                                                                    (49) 

Fig. 7. Membership functions for e and ∆e. 



 

V.  EXPERIMENTAL RESULTS 

A. Results on a small setup with 8 disks 

The FuSnap controller was tested with a setup that consisted 
of an HP 7640 Itanium workstation with 64GB of memory and 
with HPUX 11.23 installed.  An MC534C fibre channel disk 
enclosure was filled with eight BF072255B2C disks. The 
traditional copy-on-write and FuSnap were implemented in C 
language and compiled with HP cc.  The implementation was 
executed as a parent process in the user space and not as a part 
of the kernel.  The parent process performed the following 
functions: 1) spawned user requests at a constant rate using the 
fork() Unix function; 2) kept track of the data blocks written, 
snapped and or with a redirect-on-write.  The data block table 
was in shared memory so it could be updated by the spawned 
user requests; 3) monitored the response time of the user 
requests; 4) implemented the FuSnap control logic.  Using this 
setup a comparison was run with an 8KB workload, 50% reads 
at 500 IO/s. The source volume was a RAID1 4GB in size 
using data blocks of 128KB laid out in an evenly fashion over 
all the 8 disks. 

 
The results in Fig. 8 show the traditional copy-on-write (a) 

implementation delivering initial response times for user 
writes (black line) in the 60ms range with some tops out in the 
80 to 90ms range.  For user reads (gray line) the traditional 
copy-on-write delivered a response time in the 15 ms range.  
The FuSnap controller implementation shown at  Fig. 8, part 
(b), proved superior since it could keep the initial response 
time for user writes (black line) in the low 40ms range.  For 
the user reads (gray line), the response time delivered by 
FuSnap was in the 10ms or less range. 

B. Results on a  setup with 32 disks 

The FuSnap controller was also tested with a setup that 
consisted of an HP 7640 Itanium workstation with 64GB of 
memory and with RH Linux 2.6.18 installed.  Four M6412A 
fiber channel disk enclosures were filled with twelve 
BF146DA47C disks.  The traditional copy-on-write and 
FuSnap were implemented in C language and compiled with 
gcc.  The implementation details were the same as the used in 
the previous setup with eight disks.  Using this setup a 
comparison was run with an 8KB workload, 50% reads at 
1,000 IO/s. The source volume was a RAID1 16GB in size 
using data blocks of 128KB laid out in an evenly fashion over 
all the 32 disks. 

The results in Fig. 9 show the traditional copy-on-write (a) 
implementation delivering initial response times for the user 
writes (black line) in the 50-60ms.  For user reads (gray line), 
the traditional copy-on-write delivered an initial response time 
in the 15 ms range.  The FuSnap controller implementation 
shown at Fig. 9, part (b), proved superior since it could keep 
the initial response time for user writes (black line) under the 
40ms range.  For user reads (gray line), the response time 
delivered by FuSnap was in the 12ms or less range. 

 

VI.  CONCLUSIONS 

The greatest benefit FuSnap delivers is to avoid the high 
response time peak at the beginning of a snapshot process as 
predicted by the equations (15) and (16) developed for the 
traditional copy-on-write snapshot. These equations can 
provide a guide for the snapshot behavior even for different 
disks speeds and disk arrays if the snapshot process is the 

Fig. 9. Comparison of Response Time at 10,00 IO/s for 32 disk setup  

(a)

(b)

Fig. 8. Comparison of Response Time at 500 IO/s for small setup 

(a) 

(b) 



 

traditional copy-on-write.  The improvements in response time 
FuSnap delivers show how computationally intelligent 
techniques, namely fuzzy logic, 1) can be applied to the data 
backup management for disk arrays; 2) can outperform 
traditional techniques like copy-on-write; 3) can be used to 
control the nonlinear response of disks.  The FuSnap 
controller proves that it can provide two benefits: 1) help in 
ensuring quality-of-sevice (QoS) where a database needs 
constant access and 2) make the backup of data a less 
disruptive process for the users of a database.  
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