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Abstract— In the past decade Type-2 Fuzzy Logic Systems (T2 

FLSs) gained increased research attention due to their potential 

to outperform Type-1 FLSs in applications with dynamic 

uncertainties. This advantage is typically attributed to the 

capability of T2 Fuzzy Sets (FSs) to better model the dynamic 

uncertainty and cope with its negative impacts. However, the 

accuracy, correctness and interpretation of such uncertainty 

modeling using the T2 FLSs have been rarely addressed or taken 

into account during the design of the respective fuzzy controller. 

The contribution of this paper is in analyzing the uncertainty 

modeling capabilities of the commonly used Interval T2 (IT2) FSs 

with uncertain parameters. In addition, a novel method for 

incorporating the experimentally measured input uncertainty 

into the design of the IT2 FLS is proposed. It is demonstrated 

that the novel IT2 FLS design method improves the accuracy of 

the input uncertainty model in the specific problem domain. As a 

consequence, the modeled uncertainty is then more accurately 

reflected in the output domain as the geometry of the type-

reduced centroid. 

Keywords- Interval Type-2 Fuzzy Logic Systems; Uncertainty 

Modeling; Sensor Characteristics; Centroid 

I. INTRODUCTION 

Type-1 Fuzzy Logic Systems (T1 FLSs) become popular in 

many engineering areas due to their ability to cope with the 

linguistic uncertainty originating in the imprecise and vague 

meaning of words. However, dynamic uncertainties such as 

uncertainties about the measurements activating the system or 

the uncertainty about the training data used to tune the 

respective FLS can lead to performance deterioration [1]. This 

performance deterioration can be attributed to the fact that T1 

FLSs use precise T1 fuzzy membership functions, parameters 

of which are fixed once the design process is finalized. 

Type-2 Fuzzy Logic Systems (T2 FLSs), originally 

proposed by Zadeh [2], have recently become the scope of 

work of many researchers [1], [3]-[5]. T2 FLSs have been 

applied in many engineering areas, demonstrating their ability 

to perform better than T1 FLSs when facing dynamic 

uncertainties [6]-[8]. The major difference lays in the model of 

individual fuzzy sets, which use membership degrees that are 

themselves fuzzy sets. This new uncertainty dimension 

provides additional degree of freedom for modeling and 

coping with dynamic input uncertainties.  

Despite recent advances in T2 FLSs, such as geometric, 

zSlices or the  -planes based representations [4], [5], [9], the 

applicability of general T2 FLS is still hindered by their high 

computational complexity and the lack of established design 

methodology. The most popular and widely used type of T2 

FLSs is the Interval Type-2 (IT2) FLS [1], [10]. The IT2 FLSs 

constitute a compromise between the uncertainty modeling 

capabilities of general T2 FLSs and the computational 

inexpensiveness of T1 FLSs. This paper focuses on IT2 FLSs. 

Many researchers argue in favor of the IT2 FLSs (and T2 

FLSs in general) because of their potential to better model 

dynamic uncertainty and minimize its negative effects [1], [6], 

[5], [11]. In order to support such claims, the performance of 

IT2 FLSs is then compared to their T1 counterparts in various 

applications, typically demonstrating improvements when 

noise and uncertainty are introduced into the inputs of the 

system. This improved performance can be attributed to the 

Footprint of Uncertainty (FOU) of IT2 Fuzzy Sets (FSs), 

which can be seen as a composition of multiple T1 fuzzy 

membership functions. 

However, a systematic methodology for designing the IT2 

membership functions and constructing the FOU has not been 

established yet. Approaches such as gradient descent or 

evolving the MF via genetic algorithms typically limit the 

number of design degrees of freedom of the FOU to a very 

small number of parameters (e.g. evolving only the mean and 

spread of the MFs) [12], [13]. Recently, novel approaches for 

directly constructing the zSlices based general T2 FSs directly 

based on the training data have been presented by Wagner and 

Hagras [14], [15]. 

One of the outcomes of the output processing of an IT2 FLS 

is the interval centroid. Many researchers associated the 

geometrical properties of the output centroid (e.g. its width) 

with the uncertainty associated with the system’s output [16]-

[18]. For example in [16] it is said that: “… the length of the 

type-reduced set can therefore be used to measure the extent 

of the output’s uncertainty”. Other researchers used the 

centroid width to create an uncertainty bounds on the system 

output in problem domains such as predicting micro milling 

cutting forces or stock market analysis [19], [20]. However, 

the accuracy and correctness of such output uncertainty 

interpretations have not been addressed yet. This paper 

focuses on analysis of this uncertainty model interpretation. 



In the presented paper, a more accurate modeling of input 

uncertainties in the FOUs of the IT2 input membership 

functions is shown to be a necessary condition allowing for 

correct interpretation of the output uncertainties. First, the 

notions of input and output uncertainty of an IT2 FLS are 

formalized. Then the uncertainty modeling capabilities of 

commonly used IT2 FSs (Gaussian fuzzy sets with uncertain 

mean and standard deviation) are analyzed. Next, a novel IT2 

FLS design methodology is proposed, which first calibrates 

the system input sensors and then incorporates this measured 

uncertainty into the FOUs of the respective IT2 FSs. It is 

demonstrated that the proposed methodology more accurately 

models the input uncertainty, which is then translated into the 

geometry of the output centroid. 

The rest of the paper is organized as follows. Section II 

provides background review on IT2 fuzzy sets and fuzzy logic 

systems. The uncertainty modeling capabilities of the ordinary 

IT2 FSs are demonstrated in Section III. The novel design 

methodology for IT2 FSs based on measured sensor 

uncertainty is demonstrated in Section IV. Experimental 

results are shown in Section V and the paper is concluded in 

Section VI. 

II. INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS 

This section reviews fundamentals about the IT2 FLSs. The 

IT2 FLSs are considered in this paper, because of their 

computational in-expensiveness and ease of implementation. 

An IT2 fuzzy set A
~

can be expressed as [1]: 
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Here, x and u are the primary and secondary variables, and 

Jx is the primary membership of x. In the case of IT2 FSs, all 

secondary grades of fuzzy set A
~

 are equal to 1. By 

instantiating the variable x into a specific value x’, the vertical 

slice of the IT2 fuzzy set can be obtained: 
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The domain of the primary memberships Jx defines the FOU 

of fuzzy set A
~
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Alternatively, the FOU of an IT2 fuzzy set A
~

 can be 

conveniently and completely described by its upper and lower 

membership functions: 
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This constitutes a substantial simplification when compared 

to the general T2 FLS. Here, only two T1 fuzzy membership 

functions (the upper and the lower boundary of the FOU) are 

necessary to fully describe the IT2 fuzzy set. This 

simplification is then transferred through a similar inference 

mechanism utilizing the modified T2 fuzzy join and meet 

operations [1]. The interval join and meet operations work 

exclusively with the FOU of the IT2 fuzzy sets, thus removing 

much of the computational burden of general T2 fuzzy sets. 

In order to obtain a crisp output value, the resulting IT2 

output fuzzy set B
~

 must be first type reduced and then 

defuzzified. The centroid of the IT2 fuzzy set B
~

 is then 

defined as: 
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The centroid 
B

C ~  is an interval T1 fuzzy set, which can be 

completely described by its left and right end points yl and yr. 

As derived by Karnik and Mendel, these boundary points can 

be expressed as [21]: 
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The L and R points are important switching points computed 

by the Karnik-Mendel (KM) iterative procedure [21]. Using 

the boundary values of the type-reduced centroid 
B

C ~
 
the final 

crisp defuzzified value y can be computed as the mean of the 

centroid interval:  
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It is important to realize that the result of the output 

processing stage of the IT2 FLS is not only the crisp output 

value y, but also the entire centroid 
B

C ~ . The geometrical 

properties of the centroid provide additional information that 

can be utilized as a measure of the output uncertainty [16], 

[17], [19], [20]. In other words, this combined output provides 

additional description of the system’s behavior, similar to the 

additional information provided by the standard deviation 

measure of the mean value in statistics. 

III. UNCERTAINTY OF IT2 FUZZY SETS 

The fuzzy logic system can be seen as a functional mapping 

of the input vector X onto a set of output variables Y. Without 

the loss of generality the Multiple Inputs Single Output 

(MISO) system with output variable y is considered here. The 

IT2 FLS is often attributed with the potential to model and 

minimize the effect of dynamic uncertainty. Several authors 

interpreted the geometry of the output centroid as a measure of 



uncertainty associated with the produced output value y [16], 

[18]-[20], [22]. In a similar manner, the amount of input 

uncertainties have been associated with the width of the FOU 

of the input IT2 FSs. Hence, it can be assumed that the IT2 

FLS also acts as a functional mapping between the system 

input and output uncertainty. The application of such 

functional mapping is the presence of a correct uncertainty 

measure in the output of the IT2 FLS, which constitutes 

additional and very valuable information. 

However, to the best of authors’ knowledge the questions of 

accuracy and interpretability of this functional uncertainty 

mapping have not been addressed yet. In this section, the 

notions of input and output uncertainties are formalized and 

the uncertainty modeling capabilities of typically used IT2 FSs 

models are investigated. 

A. Input and Output Uncertainties of IT2 FLS 

Consider an input IT2 fuzzy set A
~

, defined by its FOU in 

terms of the upper and lower membership functions )(~ x
A

  

and )(~ x
A

  as in (4). The input uncertainty )(~ xu
A

 associated 

with the fuzzification of a crisp input value x in the fuzzy set 

A
~

 can be expressed as the width of the firing interval: 
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The joint input uncertainty )(xU I 
 associated with the 

fuzzification of an input vector x


 by the IT2 FLS can be 

expressed as the cumulative input uncertainty of all firing 

intervals over all input dimensions: 
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Here, P is the dimensionality of the input vector x


 and Mp 

is the number of input fuzzy sets in particular dimension p. 

As previously demonstrated by other authors, the output 

uncertainty )(xU O 
 (also called the uncertainty interval [18]) 

is associated with the width of the interval centroid, calculated 

as the type-reduced output of the IT2 FS: 
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The values of yl and yr denote the left and right boundaries 

of the interval centroid and can be obtained by the iterative 

Karnik-Mendel algorithm for computing the switch points, as 

defined in (6) and (7).  Alternatively, the approximate output 

uncertainty can be calculated using the Wu-Mendel’s 

uncertainty bounds method [16].  

B. Uncertainty Modeling of Common IT2 FS 

In a majority of available literature two types of IT2 FSs are 

considered: fuzzy sets with uncertain mean and fuzzy sets with 

uncertain standard deviation (alternatively spread for 

triangular MF). Here, the Guassian primary membership 

functions are considered. Fig. 1(a) and Fig. 1(b) depict the 

distribution of the input uncertainty )(~ xu
A

 (dotted line) for all 

values of input variable x for the IT2 FS with uncertain mean 

and uncertain standard deviation, respectively. Quite 

 
 (a) (b) 

 

Fig. 1 Distribution of the input uncertainty (dotted line) for IT2 Gaussian fuzzy sets (solid line) with uncertain mean (a) and uncertain standard deviation (b).  

  
 (a) (b) 

 

Fig. 2 Distribution of the joint input uncertainty (dotted line) for input IT2 FS (solid line) with uncertain mean (a) and uncertain standard deviation (b). 



interestingly, the distribution of the input uncertainty )(~ xu
A

 

along the input domain follows a specific pattern defined by 

the geometry of the IT2 FS. 

As Fig. 1 clearly demonstrates, the modeling of the input 

uncertainty distribution in majority of designed IT2 FLSs is 

defined by the used architecture of the IT2 FSs. Hence, it does 

not reflect the uncertainty distribution contained in the input 

data along the specific input dimension (e.g. the different 

amplitudes of noise associated with different values of sensor 

readings). 

In addition, consider a simple IT2 FLS with two inputs x1 

and x2, each fuzzified by three IT2 Gaussian fuzzy sets with 

uncertain mean and uncertain standard deviation as shown in 

Fig. 2. This figure also depicts the joint input uncertainty 

distribution in both input domains (dotted line). It is clearly 

visible that the model assumes maximum joint input 

uncertainty around values 5 and 15 in both input dimensions. 

The joint input uncertainty surface of this system can be 

constructed by plotting the amplitude of the joint input 

uncertainty U
I
(x1, x2) for all combinations of input values x1 

and x2 as depicted in Fig.3. It can be observed that the 

distribution of the joint input uncertainty is dependent on the 

input values. However, this dependency has not been derived 

from the input data and their statistical properties. Rather it is 

biased by the typical geometry of the used IT2 fuzzy 

membership functions.  

Finally, assume that the IT2 FLS is described by a set of 9 

fuzzy rules, defined in Table I, which use three output IT2 

fuzzy sets, depicted in Fig. 4. Fig. 5(a) and Fig. 5(b) depict the 

output control surface and the associated output uncertainty 

U
O
(x1, x2), which is calculated as the width of the interval 

  
Fig. 3 Distribution of the joint input uncertainty.  

 

 
Fig. 4 The implemented IT2 output fuzzy sets. 

   
 (a) (b) 

 

Fig. 5 The output control surface (a) and the distribution of the output uncertainty (b) for the considered IT2 FLS. 

 

TABLE I 

FUZZY RULE TABLE 
 

&  x2   

  Small Medium Large 

x1 Small Straight Right Right 

 Medium Left Straight Right 

 Large Left Left Straight 

 
 

Fig. 3 Fuzzy aggreability of Type-1 fuzzy voter [3].  



centroid of the IT2 FLS as in (11). 

Two important observations can be made. Firstly, the 

uncertainty associated with the output decision is highly non-

linear and variable in the problem domain. Secondly, there is a 

strong correlation between the joint input uncertainty 

distribution and the output uncertainty distribution (compare 

Fig. 3 and Fig. 5(b)). This second observation leads to the 

following conclusion. In order for the output uncertainty 

)(xU O 
to be correctly interpretable in the problem domain, the 

IT2 FLS must accurately model the distribution of the 

uncertainty in the system inputs. In other words, if the model 

of the input uncertainty does not accurately reflect the actual 

uncertainty distribution in the input domains then the 

interpretation of the geometry of the output centroid as a 

measure of output uncertainty does not reflect the input 

uncertainties correctly. 

IV. FOU CONSTRUCTION BASED ON MEASURED INPUT 

UNCERTAINTY 

In order to obtain a more accurate model of output 

uncertainty )(xU O 
, the input uncertainty distribution must be 

first accurately modeled by the FOUs of the input fuzzy sets. 

This section proposes a design method for incorporating the 

experimentally measured information about the input 

uncertainty into the design of the IT2 FLS. 

A. Sensor Calibration 

In many control applications the inputs of an FLS constitute 

physical devices. As an example, consider the sonar range 

finders mounted on a mobile robot. In such case, the input 

uncertainty distribution of each sensor can be approximated by 

calibrating the device’s response against known ground truth 

values. Many sources of uncertainties are commonly present at 

the same time. For instance, the sonar measurements are 

subject to uncertainties due to the beam width, signal 

attenuation, variable reflectivity of surrounding materials or 

manufacturing defects in the sonic emitter or receiver. For the 

ease of explanation, a mobile robot with two sonar range 

finders is considered in the following text. 

First, the available range of input values is discretized into 

M samples. The sonar sensors are placed at the calibrated 

distance from the reflective surface (e.g. wall) and a set of 

input measurements are obtained for each of them. The 

standard deviation of the signal values at particular sample is 

computed and stored as the amount of uncertainty associated 

with that particular calibration input value. The set of M 

measured values defines the sampled input uncertainty of each 

sensor, as shown in Fig. 6(a). The continuous input uncertainty 

distribution fu(x) can be obtained by applying the linear 

interpolation between the sampled values. The interpolated 

uncertainty distribution for both sonar sensors is depicted in 

Fig. 6(b). 

B. FOU Construction 

The measured input uncertainty distribution is used during 

   
 (a) (b) 

Fig. 6 The measured sensor uncertainties (a) and the interpolated continuous input uncertainty distribution (b). 

  
 (a) (b) 

Fig. 8 The FOUs of the input fuzzy sets (solid line) with the embedded measured input uncertainty (dotted line) for the left (a) and right (b) sonar sensors. 

 
  

Fig. 7 The input principle membership functions. 



the design of the FOU of the input IT2 fuzzy sets. First, the 

principle T1 membership functions for all input FSs are 

defined. In this work, the Gaussian principle membership 

functions are considered. The major criteria for selecting the 

parameters mean (m
i
) and the standard deviation ( i ) of 

principal membership function )(* xiA
  is the sufficient overlap 

between neighboring fuzzy sets and a continuous coverage of 

the entire input domain. In this example, three equidistantly 

spaced Gaussian principal membership functions with equal 

standard deviations are considered as depicted in Fig. 7. The 

design of these fuzzy sets together with the construction of the 

fuzzy rule base is performed by an application expert.  

Next, the FOU of the input IT2 FSs is constructed by fusing 

the interpolated uncertainty distribution fu(x) with the principal 

membership functions. Firstly, a mapping between the sensor 

input domain and the uncertainty domain of the IT2 FS must 

be defined. This is achieved by scaling the amplitude of the 

uncertainty distribution by the maximum required input 

uncertainty )(~ xu
A

. The lower and the upper membership 

functions )(~ x
A

  and )(~ x
A

  of the input IT2 FS A
~

 are then 

obtained as follows: 
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In order to achieve admissible design of the input IT2 FSs, 

the maximum and the minimum values of both upper and 

lower membership functions are bounded in the interval [0, 1]. 

The sphere of influence in the primary domain of each fuzzy 

set is also bounded in the interval [m
i
 – 2 i , m

i
 + 2 i ]. The 

amplitudes of both lower and upper membership functions are 

smoothly forced to zero outside this interval. 

The resulting FOU of the input IT2 FS together with plotted 

distributions of the joint input uncertainties )(xU I 
for each 

sonar sensor are depicted in Fig. 8(a) and Fig. 8(b). Here, the 

left and right sonar inputs are denoted as inputs x1 and x2. It 

can be seen that the model of the input uncertainty distribution 

now reflects the real uncertainty distribution in the calibrated 

input sensors (compare to Fig. 6(b)). 

A similar approach to construction of IT2 FSs was recently 

proposed in [23] for modeling linguistic label perception. 

V. EXPERIMENTAL RESULTS 

This section demonstrates the uncertainty modeling of the 

IT2 FLS designed by means of the proposed method for 

incorporating the measured input uncertainty. The considered 

system uses input fuzzy sets as depicted in Fig. 8 and the 

output fuzzy sets and the rule base as shown in Fig. 4 and 

Table I, respectively. 

Fig.9 shows the joint input uncertainty distribution U
I
(x1, x2) 

for the designed system. Comparing Fig. 3 and Fig. 9 it can be 

seen the proposed design method achieves more accurate 

modeling of the input uncertainty distributions based on the 

measured sensor characteristics. This uncertainty distribution 

resembles the measured sensory uncertainties embedded into 

the FOU design. 

Next, Fig. 10(a) and Fig. 10(b) depict the output control 

surface and the output uncertainty distribution for the designed 

IT2 FLS. When compared to Fig. 5, it can be seen that while 

  
Fig. 9 Distribution of the joint input uncertainty.  

   
 (a) (b) 

 

Fig. 10 The output control surface (a) and the distribution of the output uncertainty for the proposed design method (b). 



the control performance of the controller does not change 

significantly, the distribution of the calculated output 

uncertainty is substantially different. Hence, the more accurate 

input uncertainty modeling by the proposed FOU design 

method results in more accurate output uncertainty model. 

This output uncertainty model can then be correctly 

interpreted as the uncertainty associated with the system 

output. 

Nevertheless, the interpretation of the actual output 

uncertainty amplitude is still an open question. Rather, its 

relative distribution within the input space can provide useful 

information (e.g. identification of sub-regions with associated 

increased uncertainty). However, the authors believe that this 

additional information about the relative output uncertainty 

distribution can be very important and beneficial in many 

applications. For instance, in mobile robotics application when 

the robot is aware of the uncertainty associated with its inputs, 

which then propagates to the output decision accordingly. This 

awareness can be transferred into an additional decision 

making process. For instance such “uncertainty-aware” robot 

can slow down or average several input samples to reduce the 

negative impacts of the increased input uncertainty. Actual 

implementation and testing of the proposed design 

methodology with real robotic hardware is a scope of future 

work. 

VI. CONCLUSION 

This paper analyzed the input and output uncertainty 

modeling capabilities of commonly used IT2 FSs. The 

concepts of input, joint input and output uncertainty have been 

formalized. It was shown that the commonly used IT2 FSs, 

such as Gaussian fuzzy sets with uncertain mean or uncertain 

standard deviation, do not correctly capture and model the 

input uncertainty distribution. Rather the uncertainty model is 

biased by the chosen geometry of the IT2 FS. 

A novel approach for input uncertainty driven design of IT2 

FLSs based on calibrated input sensors’ characteristics was 

presented. It was shown that this approach results in an 

increased accuracy of the input uncertainty model, which is 

then translated via the fuzzy inference process into the output 

uncertainty. The proposed method allows for a meaningful 

interpretation of the geometry of the interval output centroid 

as a measure of uncertainty associated with system output.  
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