
Autonomous Rule Creation for Intrusion Detection

Todd Vollmer
Idaho National Laboratory

Idaho Falls, ID, USA
denis.vollmer@inl.gov

Jim Alves-Foss, Milos Manic
University of Idaho

Dept. Computer Science
Moscow, ID, USA

jimaf@uidaho.edu, misko@ieee.org

Abstract—Many computational intelligence techniques for
anomaly based network intrusion detection can be found in
literature. Translating a newly discovered intrusion
recognition criteria into a distributable rule can be a human
intensive effort. This paper explores a multi-modal genetic
algorithm solution for autonomous rule creation. This
algorithm focuses on the process of creating rules once an
intrusion has been identified, rather than the evolution of rules
to provide a solution for intrusion detection. The algorithm
was demonstrated on anomalous ICMP network packets
(input) and Snort rules (output of the algorithm). Output rules
were sorted according to a fitness value and any duplicates
were removed. The experimental results on ten test cases
demonstrated a 100 percent rule alert rate. Out of 33,804 test
packets 3 produced false positives. Each test case produced a
minimum of three rule variations that could be used as
candidates for a production system.

Keywords-Intrusion detection; Computational intelligence;
Genetic algorithms

I. INTRODUCTION

In the voluminous amounts of research on anomaly based
intrusion detection systems, little consideration has been
given to a posteriori communication mechanisms [1].
Anomaly based systems typically produce two types of
output (anomalous or not, perhaps with a companion
confidence score). Other systems provide a label associating
the data with a known attack type i.e. Denial of Service [2].
If the ability to identify a novel intrusion is valuable in one
network it seems reasonable that knowledge gleaned from
those efforts would be useful in another. Given the numerous
different implementations of anomaly detection and the
resulting unique knowledge representations used to find
anomalies, there does not appear to be an automated solution
to translate the newly discovered detection criteria into a
more widely accessible format. Indeed this knowledge
transfer is typically performed by a human expert manually
examining the traffic and creating a rule. The rule can
subsequently be used as input to any system capable of
deciphering the syntax.

There are two fundamental approaches for Network
Intrusion Detection Systems (IDS): behavior and rule based.
Behavior based systems typically maintain a model of
normal system behavior and raise exceptions when
parameters fall outside the norm. Computational intelligence
algorithms such as neural networks and clustering have been

shown to be effective solutions at identifying anomalous
behaviors [3], [4]. Rule based systems use widely
distributable predefined signatures to detect known network
issues.

The cost of developing and maintaining rule sets is an
important issue for the rule based systems. Human experts
are required to create, test and distribute the rules. Given a
network trace containing anomalous packets, an expert must
investigate the numerous attributes that uniquely identify the
attack. This involves laboriously examining the packets for
information and creating a candidate rule. Correct rule
creation is then a manual process of trial and error where
each trial run is examined for a proper alert on a test file of
captured network data. Finally, if the expert chooses to do
so, the rule is submitted to a rule repository where it may be
accepted into a public distribution system.

This paper explores a solution to autonomously create
IDS rule sets utilizing evolutionary computation techniques.
This is accomplished by implementing a Genetic Algorithm
(GA) to autonomously create rules from identified network
packets that are indicative of system misuse. These packets,
used as input, originate from network traffic identified by a
behavior based IDS. The resulting rules from processing the
packets may not always be optimal for direct distribution but
should provide a basis for reducing subsequent expert
analysis effort. The system described here can be considered
as a one way communication mechanism bridging the two
types of intrusion detection systems.

The GA chosen for implementation provides multiple
near optimal unique rules that are made available for further
evaluation by a human expert. It would be a straightforward
process to simply provide a single rule that contains all
possible attributes of a given network packet. However this
could lead to over-fitting of the rule to a single attack
instance. In general, the more specific a rule is the more
likely it is to eliminate false positives. However, if a rule is
too specific it may become brittle in the sense that any minor
variation in the attack may be missed. In addition, the more
detailed a rule becomes, the more computational effort is
required to process it.

The problem we are solving is similar in approach but
different in context from past work in network intrusion
detection. Previous work as in [5] was primarily concerned
with developing a multiple rule set able to separate known
behavior from unknown. Our effort is to produce a set of
near optimal IDS rules for a single specific anomalous

instance previously detected by a behavior based system.
This is accomplished via use of a GA that has several unique
characteristics differing from previous research efforts,
namely the representation of the population as syntactically
correct Snort rules (as opposed to binary or researcher
created syntax) and a three part fitness function. This fitness
function is designed to optimize the resulting rule sets for the
Snort rule engine based on published best practices and
characteristics of historical rule repositories.

As a consequence of the population representation a
unique distance method was required. The cardinality of the
rule genotype attributes is variable. Gene features may be
removed or added as Snort rules are not limited to a fixed
number of fields. There are optional fields and most
production rules contain a variety of them. Because of this,
mutation and crossover required special consideration as
well. The presented GA solution accommodates these
features.

The input data is different than prior work as well. In this
case a single instance of labeled data is presented to the
system and the rule set is evolved to detect it. The question is
can this be done without producing a rule that provides a
positive response to network traffic that is not an anomaly
(false positive).

II. BACKGROUND

Genetic Algorithms are an effective heuristic search
technique inspired by concepts of evolutionary biology.
They became popular with the published work of John
Holland in the 1970’s. For an evolutionary algorithm to be
categorized as a GA it needs a population representation of
possible solutions, variation operators, selection and
replacement mechanisms. When optimizing multi-modal
functions a conventional GA’s population tends to converge
to one of the optimal, or near optimal points.

A specific implementation of a GA called Restricted
Tournament Selection (RTS) provides a solution for
maintaining several optimal solutions in the population [6].
This modification is possible because a GA utilizes a
population of many (hundreds, thousands or more) possible
solutions. This is effective in situations when the fitness
function is not capable of representing the fitness with a high
fidelity. An evaluation function is used to determine the
‘fitness’ of individuals in a population. This fitness is a
measure indicating how well the individual solves a given
problem.

The RTS algorithms ability to maintain several fit
solutions will be leveraged to produce unique rules that alert
on a given anomalous packet. This assumes that the solution
surface for generating rules is not uni-modal. There are
several syntax models available for the rule format. Because
of its widespread use the Snort rule format was implemented.

A. Snort

Snort is an open source IDS created by Martin Roesch
[7]. It is capable of performing protocol analysis, content
searching/matching and utilizing predefined signatures.
Several signature rule sets are available for use including
those officially approved by the Sourcefire Vulnerability

Research Team (VRT) and those contributed by other
communities. Three sources for acquiring rules were used in
this project. The first two sets are VRT certified rules and
community rules available online at http://www.snort.org.
The third set was obtained from emerging threats and is
available online at http://www.emergingthreats.net. All of
these sets combined to define 16,181 rules including 146
ICMP specific rules.

Snort supports a simple rule language that matches
against network packets, generating alerts or log messages.
Rules are broken into two logical areas: rule headers and rule
options [8]. Rule headers contain required protocol fields
that every rule must have and rule options contain a list of
optional information used to refine a match. The rule field
format and an example rule are as follows:

<action><protocol><sourceIP><sourcePort><direction>
<destIP> <destPort> (<rule options>)

alert tcp any any -> 192.168.1.0 21 (content:”USER”)

The rule action tells Snort what to do when a match

occurs. A common action, as shown in the example, is to log
information to an alert file. The protocol field specifies one
of four possible values: TCP, UDP, ICMP and IP. Each
value has options specific to the protocol available for use in
the option section. The source IP address field can contain
the keyword “any”, a single IP address or a CIDR (Classless
Inter-Domain Routing) block. CIDR blocks allow for
specifying ranges of IP addresses. Port numbers may be
specified as a single static port, a range or use the keyword
“any”.

There are two direction operators. One specifies that the
source and destination portions of a rule must match the
appropriate items from a packet. The bidirectional operator
indicates that the source and destination sections can match
either portion of a packet. This allows for tracking two way
conversations as seen between a typical client and server
application.

Rule options provide further refinement of matching
parameters and tie the rule to a rule identification system.
There are four major categories of rule options: general,
payload, non-payload and post-detection. General options
provide information about the rule such as reference
information, rule identification and specific log messages.
Payload options examine data contained in the packet data
such as content matching expressions. Non-payload options
provide matching specifications against packet header data
outside of ports and IP addresses. Options include fragment
offsets, time-to-live values and specific IP options.

B. Snort Rule Processing

This section briefly describes how Snort internally
processes rules and a required modification to that process.
The rule can be seen as a Boolean truth statement. In order
for Snort to identify a match, a logical and of all positive
field matches is utilized. Upon discovery of a false condition
in the and evaluation, further processing of that rule is
halted.

Snort builds a tree data structure used to compare rule
values against packet features. Each mandatory field in a rule
is stored in rule tree node (RTN). An OTN (optional tree
node) is associated with an RTN and used to store optional
rule fields. If multiple rules have the same RTN fields they
are only represented by a single node. This optimization
feature allows for removal of multiple rules from
consideration once a negative match occurs.

The optimization aspect of this rule tree structure
implementation is detrimental to our proposed GA fitness
algorithm discussed in section 3. If the Snort engine
processes a rule section that proves false, that rule is no
longer considered for a possible match. This is a logical
performance enhancement that speeds the execution of the
rule engine. However this short circuit of rule evaluation
prevents using a modified Snort source as a basis for rule
fitness evaluation.

An attempt was made to encourage the GA to craft good
rules to reduce human expert analysis effort spent on
examining the rules produced. Good being a subjective term
we have defined it in respect to three measurements. First the
rule has to be able to recognize the packet as being an
anomaly. Second it should conform to a grammar checker
called dumbpig produced by Ward [9]. This tool parses a
rule, reports on badly formatted entries, incorrect usage, and
alerts to possible performance issues. Finally the rule should
be similar in the number and type of fields used in existing
rules. The assumption being that these rules have been vetted
by the community of experts and are therefore worthy of
emulation.

III. EXPERIMENTAL APPROACH

This section describes the implementation details of the
final solution. The input data processing and its
representation are presented. This data is fed to a GA
implemented with RTS. A fitness function implemented in
three parts is described. The resulting rules produced by the
GA are then sorted by fitness and the top three rules are
presented as possible solutions.

A. Input Processing

It is assumed that the anomalous network traffic will
already have been identified in advance. Systems such as
those described by Linda et al [3] and Taylor with Alves-
Foss [4] are capable of isolating this kind of traffic. The
network traffic data is expected to be contained in a PCAP
formatted file. PCAP data files have become industry
standard and are the output of an application programming
interface library called libpcap. Utilizing the Perl CPAN
module (Net::Pcap) based on this library, the information is
read into the program memory space. Having network data
stored in files, as opposed to real time capture on a network
interface, enables offline processing. However the PCAP
library is capable of performing both functions.

After the packets are read into memory each one is
parsed and stored in a data structure. For ICMP packets, this
structure includes the following: source IP address,
destination IP address, ICMP id, type, code, sequence

number and packet size. These are all fields used in the GA
population representation described in the next section.

B. Genetic Algorithm Description

A pseudo-code implementation of a GA is presented in
Fig. 1; numbered lines are described more fully later.

One of the first tasks in building a GA is to decide upon a
representation of the solution population (line 1) and create
a number of individuals in that population. Each individual
is stored as a representation of a variable length list of Snort
rule fields. A Perl associative array maintains these mixed
type values. The field key, type and acceptable range values
are shown in Table 1. Field key values are taken directly
from the Snort rule syntax definitions. The ranges may
include values that are not allowed according to
specifications but are technically allowable within the data
type or are specific to Snort rule processing. For instance,
the src and dst fields can contain a variable name that Snort
will replace with a configurable value at runtime.

Each individual in this population can be represented
using a variable length vector)x,,(x n0 iv

 of mixed

data type values x. The total population is the set of
vectors TT vvvP

,...,, 10 . For the experiment described

here the population size T was fixed at 200. This value was
chosen as a reasonable tradeoff between time efficiency and
solution convergence. The first generation of individuals
was populated by randomly generating values in the domain
range of the given fields with a random number of options.

The selection of a field’s inclusion in a rule was not
uniformly random in all cases. An analysis of the fields
present in the 146 ICMP specific Snort rules was performed.
Statistics were compiled on the type and frequency of rule
option values present. An assumption was made that these
rules, having been vetted and accepted into the official
repositories by experts, exhibit desirable characteristics
worthy of emulation.

Whenever a decision needs to be made about a field’s
inclusion a random number r is generated in the range 0 to
N where N is the number of rules. Given a frequency count
fc of a given field f from the set of rules N such that fc <
cardinality (N), the field f is included in a rule if the
generated r is less than fc. In other words, a field is
randomly selected for inclusion proportional to the relative

Figure 1. Genetic Algorithm

1 Create an initial population
2 LOOP while below execution count

3 select individuals as parents
4 create children from parent
(crossover/mutation)
5 select and replace individuals with children
6 update fitness values

End LOOP

TABLE 1: RULE POPULATION FIELDS

Field Type Range
proto string ‘icmp’
src string or CIDR ‘$SNET’ or 0.0.0.0/0
sport string or integer ‘any’
dst string or CIDR ‘$DNET’ or 0.0.0.0/0
dport integer ‘any’
itype integer 0-255
icode integer 0-255
icmp_id integer 0-65535
icmp_seq integer 0-65535
dsize integer 0-65535
content string Any text

frequency of its presence in the original 146 ICMP rules.
For example, the dsize field occurred 13 times in the set of
146 rules. Therefore close to a 9% chance exists that this
field will be picked for inclusion.

After an initial population is created, a series of variations
and replacement selections must take place on some of the
population individuals. This process repeats until some
acceptable solution or predefined iteration limit is reached.
For this project a fixed number of 1000 iterations were
selected. After looping (line 2) the defined number of
iterations, processing terminated and the fittest individuals
maintained by the RTS selection algorithm were isolated as
the final best rule set. The details of variation and selection
that occur in this loop are presented next.

A steady state population model was implemented. This
means that for a given iteration in the loop, only a maximum
of two individuals in the original population are selected for
replacement. This is in contrast to a generational model
where the entire population is replaced by the offspring. In
this case, two individuals were selected as parents and two
offspring were created from them. Subsequently, two more
individuals were then selected for replacement by the new
offspring creating a new generation.

The two candidate parent individuals were randomly
selected independent of any fitness or distance measure (line
3). Crossover between the two parents to create two new
offspring utilized uniform crossover. Creation of these two
offspring is a two step process consisting of rule header
creation and rule option creation.

Rule header creation consists of randomly choosing a
field from either parent and copying that value into the
child. For the given ICMP problem, there is not much
variability in the header portion and header creation is not
that important relative to the option fields.

Each option field of the new offspring rule is a copy of a
field selected from a given parent. For each offspring a
primary parent of the original two candidates is selected.
Each option field of that primary parent is then considered
for inclusion in the new child. A random number from a
uniform distribution over 0.0-1.0 is generated. If the number
is greater than 0.5 than the primary parents value is utilized;
otherwise consideration is given to retrieving the
information from the second parent. At this point, if the
second parent contains the option field, it is copied into the

child. However, if the field does not exist in the second
parent, then the default action is to revert to the value from
the primary parent. The net result of this is a child that
contains the same number of options as the primary parent
but with potentially different values from the secondary
parent. Variation in child option count is left as a possibility
in the mutation operator.

After crossover, mutation occurs on both children prior to
replacement selection (line 4). As was the case in crossover,
rule header mutation and rule option mutation behave
differently.

There is a 25% independent chance of mutating the rule
header of a single child. Once selected for mutation the
header src or dst IP field is randomly chosen for change.
This change consists of randomly choosing between the
three available options: any, Snort IP variable ($DNET or
$SNET) and the test packet IP address (source or destination
as appropriate).

 Option mutation is considered separately from header
mutation and it has a 25% chance of occurring as well on
each option in the child. The reason for this separation of
mutation is a result of programming convenience and need
not occur in this manner. The integer domain values such as
icode, itype, icmp_id and icmp_seq are processed the same
according to their domain ranges. A random value within a
window bracketing the original value is chosen. If this
operation results in a value outside of the acceptable domain
range defined in Table 1, the value is set equal to the closest
boundary value. Content keyword mutation occurs by
randomly selecting a range of the test packets data load and
transforming any non printable characters into hex
representation. Finally, with a 10% chance, it is possible
that any of the options are simply removed from the rule. A
future enhancement for consideration would be to add a
nonexistent parent option field to the rule.

Once mutation is performed the two resulting offspring
are evaluated to replace candidates in the population. This is
a critical step for the maintenance of a multi-modal solution
set. Uni-modal GA solutions using tournament selection
randomly pick two individuals for replacement. These
values are replaced if the new children have better fitness
values. RTS instead picks from a window size w, an
individual that is closest to the new child (line 5). The size
of the population contained in w is defined by empirical
testing and each member is drawn from the original
population using a uniformly random selection process. For
this project w is set at twenty-five. Determination of the best
value for w was not examined exhaustively and there could
be a better value. Closeness is determined by a distance
function. After determination of the closest individual to the
candidate child a competition is held based on fitness
between the child and selected individual. The one with the
best fitness is selected for inclusion into the solution
population.

C. Three Part Fitness Function

In order to rank the individuals’ fitness an evaluation
function called the fitness function was defined. The fitness
function is a critical component of a GA as it is a primary
source for determining an individual’s selection for survival
and evolution. As was described at the end of the
background section, three criteria were identified to judge a
‘good’ rule. The criteria are described as complete rule
match, partial rule match and grammar check. Each criterion
is implemented as a function that returns a numeric value.
This sum of all three values constitutes the fitness value with
a larger value indicating a higher fitness (line 6). Details of
each criterion function are presented next.

First a rule should be able to recognize the packet as being
an anomaly. This is tested by running Snort with a candidate
rule on a test packet and evaluating the result. A system call
to the Snort command line was created that sends the output
to a comma separated file. This output file is then read for
existence of an alert related to the rule. If this exists a value
of 10.0 is returned, otherwise the value 0.0 is returned. This
relatively large value was chosen to promote the importance
of rules that cause an actual alert.

Second the rule is checked for a bad format, incorrect
structure and possible performance issues. The Perl based
dumbpig grammar checker was incorporated into the project
code base to perform this check [9]. A function call with the
rule data results in a floating point value between 0.0 and
1.0. The fewer issues the function finds the greater the return
value.

The final evaluation is executed even when a rule does not
completely match an evaluation packet. As was described in
the background section, Snort rule evaluation short circuits
processing a given rule definition whenever it finds a non
match. In response to this behavior, a Snort rule evaluation
process was recreated without this aspect. Instead, the
processing was modified to track matches on all possible rule
fields. For each field a Boolean value is maintained with 1
indicating match and 0 not. After a complete pass evaluating
all fields in a rule, the final value is computed according to:

N

i
ixmatchxF

1

)()((1)

where N is the number of fields to compare and match is the
function that returns the Boolean result of the comparison.

The final fitness evaluation of a candidate rule is then
computed as a sum of all three criteria. This fitness value is
stored with a reference to the rule and only updated as
needed. As this is the final computation step, execution
resumes at the beginning of the loop and continues as
appropriate.

D. Output Processing

The output of the GA described in the previous section is
a set of rules along with their respective fitness values. These
rules are sorted according to the fitness values with any
duplicate rules removed. The resulting top three (highest

fitness value) rules are then proposed as possible rule
definitions to be distributed. This assumes that the top rules
induce Snort to alert on the related packet. It was found in
our testing that this occurred in all ten tests cases, with an
average 28% of the final rules producing a match

E. Complexity Analysis

Rule generation in the manner described was considered
to be an offline process so initially minimal consideration
was given to runtime performance. However the complexity
of the RTS GA is N x w where w is the size of the selection
window [1]. The complexity analysis of our implementation
is complicated by the three part fitness test. Specifically the
call to the Snort executable is an unknown quantity. The
runtime performance of Snort varies greatly depending upon
the nature of the rule set and volume of network traffic. In
this project, the observed process run time of just the Snort
binary was less than 1 second in all test cases on a desktop
DELL with an Intel E5430 CPU and 4 GB’s of RAM. The
average run time of the test cases was 57 seconds. This
reflects the heavy usage of string manipulation procedures.
In addition, the project was implemented in PERL with a
focus on program correctness and process visibility instead
of runtime performance.

IV. TEST DATA AND RESULTS

This section describes the results of running the system
on two test data sets. A subset of the resulting rules that
compiled the best fitness (largest) values are presented in
addition to information on fitness and algorithm progression.

A. ICMP Test Data

ICMP rules and characteristics were the primary focus of a
test data set created to show a proof of concept. Three packet
creation tools: Nemesis, packETH and ISIC were utilized to
provide two sets of test network data. The first two tools
provided customized individual packets designed to trigger
specific rules. The third tool, ISIC, was used to create a large
set of packets composed of random values to test for false
positives. The use of these tools and the resulting test data
sets are described in this section.

Nemesis and packETH are network packet crafting and
injection tools [10],[11]. Details of an individual ICMP
packet can be specified making them well suited for creating
and reproducing test scenarios. They are similar in
functionality but packETH features a graphical user interface
while Nemesis is a command line tool. An example Nemesis
Linux command line used to create a packet is shown below.

> nemesis -i 7 -s 0 -d 11 -d lo

This command will create an ICMP packet with an itype of
7, a sequence number of 0 and an icmp_id value in the
header of 11. Subsequently, the packet will be placed on the
lo or loopback interface of the machine. With a packet
capture tool attached to this interface, the data can then be
captured into a static file and reused for later testing by
replaying the file.

The individual test packets created using the tools in the
manner just described were captured and stored as a PCAP
data file. A total of ten different test packets were created to
trigger ten different Snort rules. Each rule was chosen for its
rule keyword variety and membership in a rule class. The
packet specifics and class types are presented in Table 2 in
Snort rule format.

Snort was exercised with the ten hand crafted test packets
against 146 ICMP rules from the three sources mentioned in
the background section. These test packets were crafted to
match all conditions of ten specific rules that were
categorized into a variety of rule classes. Each individual
packet was run against the original set of rules to ensure that
a one to one relationship of packet to rule existed. In other
words a single packet matched with a single rule. However
this was not entirely possible as some of the rule definitions
are broad enough to alert on only a few attributes. For
instance test packet 8 triggered an alert on a rule that only
specified itype 8 and icode 0. This is a generic ping rule and
is technically correct. This type of issue aside Snort
positively identified 100% of the test packets with no false
positives or false negatives.

A second large test set of random valued ICMP packets
was created to evaluate the system for false positives. ISIC is
a generic utility used to test the stability of an IP stack [12].
It is capable of creating a large number of test packets
containing random values. The random values are correct in
that they fall within a field’s acceptable data range.
However, the value may not be currently in use or match a
prerequisite implied by a setting in another field. These
packets are then typically sent to a target while observing for
any anomalous results. For this project 23 megabytes of data
containing 33,794 ICMP packets were created.

In the same manner as was described in the hand crafted
packet test creation, the random test set was run against
Snort and the original rules. This resulted in a total of 31,929
alerts. Eighty-eight percent (28,293) of the alerts were
triggered by a single rule designed to find undefined codes.

TABLE 2: ICMP PACKET DETAILS.

 Packet Details Class Type

0 icmp_id:667;itype:0;content:"ficken" attempted-dos

1 same as #1 except random IP’s and IP
identification field.

attempted-dos

2 dsize:0;itype:8;icode:0 attempted-recon

3 icode:0;itype:5 bad-unknown

4 icode:2;itype:3; misc-activity

5 icode:2;itype:3; content:"|28 00 00 50 00
00 00 00 F9 57 1F 30 00 00 00 00 00 00
00 00 00 00 00 00|”

attempted-user

6 icode:0;itype:8;dsize:20;
content:"abcde12345fghij6789";

trojan-activity

7 itype:8;icode:0;dsize:32;content:"abcdefgh
ijklmnopqr|0000|";depth:22;

trojan-activity

8 icmp_id:123;icmp_seq:0;itype:0;
content:"shell bound to port";

attempted-dos

9 icode:0; itype:40; misc-activity

The remaining 3,636 alerts were produced by 51 unique
rules. Of this set, 6 alerts were generated from 4 rules that
were used to craft matches in the first test set. These were
carefully noted for the evaluation phase as genuine alerts.
They should be ignored when testing for false positives as
indeed they are not.

After generating the two data sets, the original ten rule
definitions used for the hand crafted packets were saved.
These rules then became one basis for the final evaluation of
the evolved rules correctness. It was not expected that the
created rules exactly match the originals but they should be
similar in content and behavior.

B. Test Results

In order to show the progression of the algorithms search
for a set of optimal rules, Table 3 provides average fitness
information, largest final rule fitness and the number of times
a child was used to replace a member of the population. The
columns are labeled with a test packet identifier of P0-P9. It
can be seen in all test cases that the average final fitness
values are higher than the initial average fitness. The fitness
value of the final best solution (rule) in each case is
approximately two or three times that of the final average.
The child creation step did produce an individual, on
average, every five iterations that improved fitness as
indicated by the replacement count.

Fig. 2 shows the top three fittest individuals for test case
P0. For clarity the original rule definition used to create the
test packet is included as the last line and is labeled as src.
For formatting reasons the action, protocol, sid, classtype
and rev number have been removed. These values are
metadata information and do not contribute to Snorts
recognition engine execution. As can be seen there is a
variety in the rule header composure. The specific IP
addresses were retrieved from the test packet headers.
Retaining these in a production rule may not add value but
this depends on knowledge not used as input into this
system. A rule option commonality can be observed in the
inclusion of similar content values and itype fields. The first
rule contains an icode field that does not appear in the
original rule. As this field was not identified in the original

TABLE 3: FITNESS AND RUN DATA

 Initial Avg
Fitness

Final Avg
Fitness

Best
Fitness Replace

P0 5.05 7.95 31 145

P1 5.23 10.49 31 207

P2 2.5 8.92 22 185

P3 2.63 9.06 22 191

P4 2.6 10.35 22 224

P5 4.6 10.24 30.6 209

P6 5.14 11.5 30.6 258

P7 5.22 11.86 30.72 270

P8 4.97 9.12 26.47 180
P9 2.46 9.54 22 218

rule a default value was supplied when creating the packet.
This value was manually verified as being correct for the test
packet. Because of space considerations the other top three
rules generated from each of the remaining nine cases are not
shown.

A simple test of rule correctness involved running the ten
test anomaly packets against the corresponding set of top
three generated rules. All of the packets were recognized and
generated the appropriate Snort alerts for a 100% positive
identification rate for each of the top three rules for the 10
tests. This was expected based on the composition of the
fitness evaluation function. It should be noted that all three
of the rules contain valid identifying fields. A post
processing step could involve any combination of the
defined fields to create a valid rule.

A possibly more interesting test concerns the occurrence
of false positives. It has been observed that a simple rule
definition could contain just one field that matches a large
number of packets. This would certainly produce a large
positive identification rate. A set of random ICMP test
packets was created to test for this scenario. In addition to
the random packets, the ten hand crafted packets were used
since they were readily available. For a given rule generated
by our algorithm, only one of the crafted packets should
generate an alert.

As can be seen in Fig. 3 the false positive rate was very
low. The vertical axis indicates the number of false positives
for a given test rule set. A total of four false positives were
generated from the set of 30 generated rules over the more

Figure 3. False Positive Chart

than 33,000 test packets. Three false positives came from
the hand crafted packets. None of the false positives were
generated from the single top fittest rule for each test case.

V. RELATED WORK

This section reviews the work from four different papers
that relate to autonomous rule creation. The first two discuss
the use of GA’s and their applicability to network intrusion
detection. The third paper is relevant in that Snort rules are
created for a specific malware signature. The final paper
reviews the capability of a multi-modal GA to find and
maintain multiple optimal solutions.

Goyal and Kumar [13] were concerned with
identification of malicious computer network connections.
The scope of their experiment focused on generating rules
for six attack types belonging to two different classes: Denial
of Service and Probes. The labeled KDD 99 Cup data set
was used as training and testing input data for a simple
genetic algorithm. Eight fields from the data set were used in
the encoding of the population: protocol, type of service, flag
(error or normal connection), duration of bytes sent, duration
of the connection, percentage of connections to different
hosts, number of operations on access control files and
number of outbound commands in an ftp control session.
The rules generated produced from the trained GA were able
to correctly identify the test data with ninety-two percent
accuracy.

GAs and decision trees have also been used to produce
rules classifying network connections [14]. The source and
destination IP address, port numbers and network protocol
type from a database were used as input to evolve a solution
in a crowding form of GA. The initial random population
was created with chromosomes representing these input
values. A training set of connections was marked by a human
expert as normal or anomalous. Subsequently, the GA was
executed utilizing a fitness function that compared the
evolved rule to this training set. Partial or complete matches
for an anomaly were rewarded and normal connection
matches were penalized. Consequently the resulting rule set
was biased towards anomaly recognition rules. No empirical
testing of these rules sets was reported.

Wang, Jha and Ganapathy describe a tool called NetSpy
that automatically generates network signatures for specific
instances of spyware [15]. The spyware signature generation
section most closely resembles the work presented in this
paper. Network traffic is identified as belonging to a
particular piece of malware. A modified version of the
Longest Common Subsequence algorithm is used to produce
regular expressions. The expressions are then added to a
Snort rule as a payload detection option. The most significant
difference in their approach to the one presented in this paper
is the rule generation algorithm.

Sing and Deb compared the performance of eight multi-
modal optimization algorithms based on evolutionary
algorithms [16]. Multi-modal problems involve finding more
than one optimal solution for a given task. Modifications to
simple GAs such as crowding, RTS, clearing, fitness sharing
and species conserving were presented. These methods using
real encoded populations were tested against three

235.130.217.126/32 any -> any any
 (itype:0; content:"ficken|0A|"; icode:0;)
$SNET any -> 140.53.42.24/32 any
 (itype:0; content:"cken";)
$SNET any -> any any
 (content:"fick"; dsize:7;)
(src) $HOME_NET any -> $EXTERNAL_NET any
 (icmp_id:667; itype:0; content:"ficken";)

Figure 2. Packet 0 Generated Rules

mathematical functions. The computational complexity
ranged from O(N) to O(N2). Among the approaches
examined RTS, deterministic crowding, original clearing and
a proposed modified clearing method found more optima.

VI. CONCLUSION

The primary goal of devising a solution to decrease
human effort in creating Snort rules based on anomalous
network traffic was accomplished. All of the ten hand crafted
test packets resulted in a set of rules that caused Snort to
alert. Not all of the rules were unique, but in each case there
were at least three unique rules and as many as eight. Testing
showed that these rules were specific to the packets and
produced only four false positives from 33,804 test packets.
These successful results indicate that the generated rules can
be used by analysts as the basis for production rules.

A key enabling technology was the use of a multi-modal
GA. A critical condition in the performance of a GA’s search
capability is the ability of the fitness function to accurately
indicate progress in exploration of the solution set. For this
project a three part fitness function was developed. It proved
to be sufficient in aiding generation of rules that caused
alerts on test cases. Further refinement of this function and
the addition of more rule options may increase the capability
of the system to define robust rules. In addition defining the
capability to include session information instead of single
packet rules could be explored. Finally expanding the
domain of the test packets to UDP and TCP would provide a
broader coverage of the anomalous network possibilities.

REFERENCES
[1] P. Gogoi, B Borah and D.K. Bhattacharyya, “Anomaly Detection

Analysis of Intrusion Data using Supervised & Unsupervised
Approach”, Jour. Of Convergence Information Technology, Vol 5,
No. 1, Feb. 2010

[2] T. Vollmer, M. Manic, “Computationally Efficient Neural Network
Intrusion Security Awareness”, In Proc. of the 2nd IEEE Symposium
on Resilience Control Systems, Idaho Falls, Idaho, Aug. 11-13, 2009.

[3] O. Linda, T. Vollmer and M. Manic, “Neural Network Based
Intrusion Detection For Critical Infrastructures”, In Proc. of
IJCNN09, June 2009.

[4] C. Taylor and J. Alves-Foss, “An empirical analysis of NATE:
Network Analysis of Anomalous Traffic Events”, In Proc. of the
2002 workshop on New security paradigms, 2002, pp 18-26.

[5] F. Gonzalez, D. Dasgupta,“An Immunogenetic Approach to Intrusion
Detection”, Genetic and Evolutionary Computation Conference
(GECCO), New York, New York: July, 2002.

[6] G.R. Harik, “Finding multimodal solutions using restricted
tournament selection”, In Proc. of the 6th International Conf. on
Genetic Algorithms, San Francisco, CA, USA, pp. 24-31, 1995.

[7] M. Roesch. “Snort – lightweight intrusion detection for networks”, In
Proc. of USENIX LISA ’99, Nov. 1999.

[8] M. Roesch, “Writing Snort Rules: How To write Snort rules and keep
your sanity”, http://www.snort.org.

[9] L. Ward, dumbpig, online: http://leonward.wordpress.com/dumbpig.

[10] J. Nathan, Nemesis, http://nemesis.sourceforge.net.

[11] M. Jemec, packETH – Ethernet packet generator,
http://packeth.sourceforge.net/.

[12] S. Xiao, ISIC – IP Stack Integrity Checker,
http://isic.sourceforge.net/.

[13] A. Goyal and C. Kumar, “GA-NIDS: A Genetic Algorithm based
Network Intrusion Detection System”, not published, Electrical
Engineering and Computer Science, Northwestern University,
Evanston, IL, 2007.

[14] C. Sinclair, L. Pierce and S. Matzner, “An Application of Machine
Learning to Network Intrusion Detection”, In Proc. of the 15th
Annual Computer Security Applications Conference, 1999.

[15] H. Wang, S. Jha and V. Ganapathy, “NetSpy: Automatic Generation
of Spyware Signatures for NIDS”,in Proc. Of 22nd Ann. Comp.
Security Applications Conf., 2006

[16] G. Singh and K. Deb, “Comparison of Multi-Modal Optimization
Algorithms Based on Evolutionary Algorithms”, In Proc. Of
GECCO’06, July 2006.

