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a  b  s  t  r  a  c  t

Artificial  Neural  Networks  (ANN)  have  been  used  in the past  to  predict  the  performance  of  printed  circuit
heat  exchangers  (PCHE)  with  satisfactory  accuracy.  Typically  published  literature  has  focused  on  opti-
mizing  ANN  using  a training  dataset  to train  the  network  and  a testing  dataset  to  evaluate  it. Although
this  may  produce  outputs  that agree  with  experimental  results,  there  is a risk  of over-training  or  over-
learning  the  network  rather  than  generalizing  it,  which  should  be  the  ultimate  goal.  An  over-trained
network  is  able  to  produce  good  results  with  the  training  dataset  but fails when  new  datasets  with  subtle
changes  are  introduced.  In this  paper  we  present  EBaLM-OTR  (error  back propagation  and  Levenberg-
Marquardt  algorithms  for  over  training  resilience)  technique,  which  is  based  on a previously  discussed
method  of  selecting  neural  network  architecture  that  uses  a separate  validation  set  to  evaluate  different
network  architectures  based  on  mean  square  error  (MSE),  and  standard  deviation  of  MSE.  The method
uses k-fold  cross  validation.  Therefore  in order  to  select  the  optimal  architecture  for  the problem,  the
dataset is  divided  into  three  parts  which  are  used  to train,  validate  and test  each  network  architecture.
Then  each  architecture  is  evaluated  according  to their  generalization  capability  and  capability  to con-

form to  original  data.  The  method  proved  to be a  comprehensive  tool  in  identifying  the  weaknesses  and
advantages  of different  network  architectures.  The  method  also  highlighted  the  fact  that  the  architecture
with  the  lowest  training  error  is  not  always  the  most  generalized  and  therefore  not  the  optimal.  Using
the  method  the  testing  error achieved  was  in  the  order  of  magnitude  of  within  10−5–10−3. It was  also
show  that  the  absolute  error  achieved  by EBaLM-OTR  was  an  order  of  magnitude  better  than  the lowest
error achieved  by  EBaLM-THP.
. Introduction

Compact heat exchangers such as printed circuit heat exchang-
rs (PCHE) are widely considered to be the next step in heat
xchanger technology in nuclear power plants. The US Department
f Energy is focusing on Very High Temperature Reactors (VHTR)
nd Gas-Cooled Fast Reactors (GFR), both of which benefit greatly
rom advances in heat exchanger technology (Gezelius et al., 2004;
im et al., 2008).

These next generation reactors will be used in Next Generation
uclear Plant (NGNP) (Sabharwall et al., 2009), which will most

ikely produce electricity and process heat for various different

ndustries (Sabharwall et al., 2010). To utilize the generated heat
fficiently a thermal device is needed to transfer the thermal energy
Sabharwall, 2009).

∗ Corresponding author. Tel.: +1 208 533 8158.
E-mail address: wija2589@vandals.uidaho.edu (D. Wijayasekara).

029-5493/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.nucengdes.2011.04.045
© 2011 Elsevier B.V. All rights reserved.

High allowable pressure and temperature limits along with the
compactness make PCHE a better choice for heat exchanger appli-
cations than other compact heat exchangers. The manufacturing
process of PCHE ensures no gaskets or braze material is used, thus
reducing the risk and fluid incompatibility substantially. The con-
struction also allows greater number of flow configurations, which
increases the versatility of PCHE. The compact size of PCHE also
makes it more cost effective. Compared to standard heat exchang-
ers designed for the same thermal duty and pressure drop PCHE is
4–6 times smaller (Sabharwall, 2009).

Artificial neural networks (ANNs) have been used in the past
to accurately predict thermohydraulic models (Gongnan et al.,
2009; Su et al., 2002; Tan et al., 2009; Yang and McClain, 1999).
They have also been used to predict heat exchanger performance
with minimal error (Diaz et al., 2001; Ermis, 2008; Mandavgane

and Pandharipande, 2006; Patra et al., 2010; Ridluan et al., 2009).
Recently, Ridluan et al., 2009 introduced EBaLM-THP algorithm that
combines two  well known algorithms (Error Back Propagation for
robustness and Levenberg-Marquardt for speed) to model the per-

dx.doi.org/10.1016/j.nucengdes.2011.04.045
http://www.sciencedirect.com/science/journal/00295493
http://www.elsevier.com/locate/nucengdes
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ormance of PCHE. In his work Ridluan et al. demonstrated superior
erformance of ANNs relative to comparable approaches, when it
omes to predictive modeling of PCHE.

Ridluan’s work however is not addressing the important issue
f over-training of neural networks. Over-training or over-fitting is

 common phenomenon in ANN and can lead to some misleading
esults (Binos, 2003; Wright and Manic, 2010). A network is over-
rained when it conforms exactly to the training data rather than
eneralizing it. This produces an optimal network with very low
pproximation errors, but only for the training dataset. Testing an
ver-trained network on a similar dataset will also produce very
ow error, but when data with subtle differences are introduced to
uch a network, the errors start to dramatically increase (Wright
nd Manic, 2010).

The chance of over-training of a network increases with the
umber of neurons and number of training runs. A single neuron
hich has one input and one output is capable of modeling a sin-

le behavior of the input which can be represented by y = mx + c.
ith increasing number of neurons and connections the complex-

ty of the behavior increases. Therefore with a higher number of
eurons, there is a higher risk of the network learning exactly the
raining data and not generalizing. Similarly as the learning process
rogresses the network tries to reduce the approximation error,
nd given enough training epochs, the network will conform to the
raining outputs exactly thus resulting in an over-trained network.

Previous work in ANN architecture selection proposes numer-
us methods for architecture selection (Hopp and Prechelt, 1998;
azrou, 2009; Wright and Manic, 2010), but these methods are

ither inadequate or too complex for performance prediction of
CHE since the available dataset is small. Wright and Manic (2010)
ocus on architecture selection for a data clustering problem, thus
or a modeling problem the parameters used by Wright and Manic
2010) cannot be used. The process used by Hopp and Prechelt, 1998

odifies the network topology during training, which is extremely
omplicated and requires high processing power. Mazrou, 2009
ocuses on determining the learning algorithm and transfer func-
ions of the networks based on convergence time and mean square
rror.

The EBaLM-OTR (error back propagation and Levenberg-
arquardt algorithms for over training resilience) technique

resented in this paper uses a variation of the method proposed
y Wright and Manic (2010) to select the optimum architecture
or this problem. The presented method uses mean square errors
MSE) of training, validating and testing errors to evaluate architec-
ures according to their generalization capabilities as well as their
bility to conform to experimental data. This facilitates the selec-
ion of the networks that are not over-trained or under-trained.
he methodology also focuses on the stability of the outputs by
valuating standard deviations of MSE.

This paper also focuses on the fact that the performance of a
etwork highly depends on the weight initialization and the ade-
uate selection of training dataset. If the initial weights of a neuron
appen to be chosen in such a way that network produces output
alues far from the desired ones, then the network takes longer time
o reach the optimal value (or it might not reach the optimal value
t all). Regarding the training data, if the selected dataset does not
eflect the total behavior of all the possible values of the problem
pace then the ANN cannot learn the total behavior of that problem.

Therefore when selecting the optimal ANN architecture we must
onsider different initialization weight sets and different training
atasets in order to find the neural network architecture, optimal
elative to these factors but also network resilient to over-training.

he proposed method of selecting the optimal neural network
rchitecture can be used for a problem that has a small set of initial
ata and can overcome errors of weight initialization and selecting

nitial dataset.
g and Design 241 (2011) 2549– 2557

In order to determine the optimal architecture, the architec-
tures with varying numbers of neurons in the hidden layers have
been investigated. These were trained using k-fold cross validation
(Setiono, 2001) and tested with a separate dataset in order to evalu-
ate them. In k-fold cross validation, the dataset is divided into k sets
of same size. Then k-1 sets are used for training and the remaining
set is used for validation. This is iterated k times using a differ-
ent fold for validation in each iteration (Setiono, 2001; Wright and
Manic, 2010).

In order to guarantee the stability of the performance of net-
works, each architecture was trained multiple times and mean MSE
and standard deviation of MSE  of each architecture was  used as a
selection criterion. Different vectors were used to rank architec-
tures according to their conforming capabilities and generalization
capabilities. The standard deviation was  used as a stability measure
when evaluating architectures.

The rest of the paper is organized as follows: Section 2 provides a
brief description on artificial neural networks and the EBaLM-THP
algorithm, Section 3 describes PCHE and summarizes the dataset
used, Section 4 describes the EBaLM-OTR architecture selection
algorithm, Section 5 discusses the results of the analysis and Section
6 provides the conclusion.

2. Artificial neural network algorithms

This section provides a description of artificial neural networks
and the EBaLM-THP algorithm.

2.1. Artificial neural networks

Artificial neural networks are computational intelligence archi-
tectures based on biological neural networks and have the
capability of “learning” the behavior of input data.

The basic unit of an ANN is a neuron. An artificial neuron acts in
the same way as a biological neuron; each has a set of inputs and
produces an output based on the inputs.

A biological neuron produces an output by comparing the sum
of each input to a threshold value. Based on that comparison it pro-
duces an output. In addition, it is able to differently weigh each
input according to the priority of the input. The inputs and out-
puts of a biological neuron are called synapses and these synapses
may  act as inputs to other neurons or as outputs such as muscles.
Thus it creates an interconnected network of neurons which com-
bined produce an output based on a number of weights, sums and
comparisons.

An artificial neuron aims at achieving the same by using different
input vectors, weights, a threshold value and output vectors. For
each input xq there is a weight wq assigned. The neuron calculates
the weighted sum z as:

net =
n∑

q=1

wqxq (1)

The output of the neuron is governed by the activation function,
which acts as a threshold. The output is given by:

o = fs

(
n∑

q=1

wqxq

)
(2)

where fs(x) is the sigmoid activation function:

fs(x) = 1
(3)
1 + e�sx

A neural network consists of multiple interconnected artificial
neurons, arranged in several layers. Fig. 1 shows the typical
arrangement of neurons in an artificial neural network. In Fig. 1
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Fig. 1. Artificial neural network architecture.

ach circle depicts an artificial neuron. The neurons are arranged
n layers, there are one input and one output layer and multiple
idden layers. The neurons in the input layer have the activation

unction fs(x) = x.
The output of neuron i in layer l + 1 is calculated as:

l+1
i

=
Sl∑

j=1

wl+1
ij

ol
j + bl+1

i
(4)

here Sl denotes the number of neurons in layer l, wl+1
ij

is the weight

f the connection from neuron j in layer l, bl+1
j

is the bias of neuron

 and ol
j
is the output of neuron j in layer l.

The output of neuron i in layer l + 1 is given by:
l+1
i

= f l+1
s (xl+1

i
) (5)

or a given layer L we can calculate the error if the desired output
s known using:

 =
P∑

p=1

M∑
m=1

(dpm − oL
pm)

2
(6)

here P is the number of patterns, M is the number of outputs and
pm is the desired output pattern p and output m.

.2. EBaLM-THP algorithm

The EBaLM-THP algorithm presented by Ridluan et al.,
009 is a combination of Error Back Propagation (EBP) and
evenberg–Marquardt (LM) algorithms, and hence benefits from
he advantages both these algorithms provide.

The EBP algorithm was first described by Rumelhart and
cClelland, 1986 and later elaborated by Werbos, 1994. The main

dvantage of using EBP is the ability to have multi layer ANN and
ropagate the errors calculated at the output neurons to the previ-
us layers. The propagated error is then used to calculate the change
n weight wq which is �wq using the following equation:
wq = ˛

M∑
m=1

P∑
p=1

[(dpm − opm)F ′{ap}f ′
s (netp)xp] (7)
Fig. 2. Transfer function for a single neuron.

where F′ {ap} is the first derivative of the transfer function between
neurons as depicted in Fig. 2.  ̨ is called the learning constant which
governs the speed of learning and is set to a number between 0 and
1. f ′

s (netp) is the first derivative of the activation function fs(x).
The weight vector for the next iteration is calculated using the

weight change, �wq as follows:

wnew = wq + �wq (8)

where wnew is the new weight vector for the next iteration.
The steepest descent method for updating weights, changes

weights in such a way that the weight change of a neuron max-
imizes the change in total error. That is the derivative of the total
error with respect to the weight, which is called the gradient vector
given by Eq. (9),  must be maximized.

g =

⎡
⎢⎢⎣

∂E⁄∂w1
∂E⁄∂w2
∂E⁄∂w3

...
∂E⁄∂wN

⎤
⎥⎥⎦ (9)

where g is the gradient vector, and E is the total error calculated
using Eq. (6).  The new weight vector is calculated in the steepest
descent method as:

wnew = wq − ˛g (10)

Thus this method increases the rate of learning for a neural net-
work drastically. The Newton method further increases the rate of
learning by including the Hessian matrix in the calculation of the
new weight vector:

wnew = wq − A−1
q g (11)

where Aq is the Hessian matrix for the weight vector q which is
defined as:

A =

⎡
⎢⎣

∂2E⁄∂w2
1

∂2E⁄∂w2∂w1........∂2E⁄∂wN ∂w1
∂2E⁄∂w1∂w2

∂2E⁄∂w2
2
........∂2E⁄∂wN ∂w1

...
∂2E⁄∂w1∂wN

∂2E⁄∂w2∂wN........∂2E⁄∂w2
N

⎤
⎥⎦ (12)

Although the convergence speed of the Newton method is high
the calculation of second order derivative is computationally
expensive. Thus the Levenberg-Marquardt (LM) algorithm was
introduced by Levenberg (1944) and Marquardt (1963) which
retains the faster convergence of the Newton method but reduces
the computation time drastically. The LM algorithm uses the Jaco-
bian matrix to derive the gradient and Hessian matrix as follows:

A ≈ 2JTJ (13)

g = 2JTe (14)

where J is the Jacobian matrix, JT is the transpose of the Jacobian
and e is the error vector. Thus in the LM algorithm the new weight
vector wnew is calculated as follows:

w = w − (JTJ + �I)
−1

JTe (15)
new q q q q

where I is the identity matrix and � is a constant between 0 and 1.
The EBaLM-THP algorithm combines EBP and LM algorithms to

simulate thermohydraulic models. Thus EBaLM-THP combines the
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Table  1
Summary of PCHE experimental data by Ishizuka et al., 2006.

Inlet Pressure (MPa) Inlet Temperature (◦C) Mass Flow Rate (kg/hr) Pressure Drop (kPa) Heat Transfer (kW)
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uses one fold for testing, one fold for validating and the rest of the
folds for training. Thus the dataset Y is divided into three portions
containing Ptr number of training data patterns (Ytr), Pte number

Cold sided  inlet  press ure 

Hot sided inlet press ure 

Cold sided inlet temper ature 

Hot sided in let temperature 

Cold sided pressure drop 

Hot sided pressure drop 

Heat transfer  

Artificial 
neural 

network 

Inpu t variable s 
Output variable s 
Hot side 2.2–3.5 150–280 

Cold  Side 6.5–10.7 60–120 

bility to propagate errors through layers of an ANN and the high
peed convergence and low computation requirements of the LM
lgorithm.

. PCHE

Printed Circuit Heat Exchanger (PCHE) was first introduced in
985 by Heatric company for refrigeration applications and is a
ompact heat exchanger type with good heat transfer performance
Ridluan, 2009; Sabharwall et al., 2007). PCHE consist of channels
f small hydraulic diameter and has high durability under pres-
ure (Kim et al., 2008). The compact size and high performance
ake it an ideal choice in modern heat exchanger applications

uch as petro chemical power plants and fuel cells (Ridluan et al.,
009).

Technological advances in recent years have enabled the com-
any to extend the application of PCHE. More recently PCHE has
een considered the key heat exchanger in the indirect Brayton
ycle featured in many advanced nuclear systems, including the
GNP-VHTR and GFR (Ridluan et al., 2009).

The PCHE core is made up of plates with chemically etched flow
aths that are semi-circular grooves called flow channels, ranging
rom 0.5 to 5.0 mm in depth. Because of the small size of the flow
hannels, the heat transfer area per volume of the heat exchanger
s high (Ridluan, 2009). These plates are then stacked and diffusion
onded into a single element. Diffusion bonding allows the plates to
chieve near parent metal strength (Meter, 2006). The PCHE chan-
els could have a zigzag pattern which has been shown to enhance
eat transfer coefficients considerably (Kim et al., 2009; Ridluan,
009).

The effectiveness of PCHE can be 98% or higher. Possible working
emperatures for these heat exchangers range from cryogenic to
00 ◦C. Pressure differences vary from 20 MPa  to 40 MPa  (Ridluan,
009).

One of the main problems in modeling PCHE using conven-
ional methods is the size of flow channels: fluid flow and heat
ransfer characteristics inside small channels are different from
onventionally sized channels. Another problem is if the PCHE has

 zigzag pattern: validated correlations for prediction of heat trans-
er performance of wavy channels are not available. Because of
hese effects numerical prediction of a PCHE is difficult (Ridluan,
009).

An experimental dataset for a PCHE using Supercritical CO2
SCO2) was reported by Ishizuka et al., 2006 which was also used by
idluan et al., 2009. Excerpt data from this work is given in Table 1.
he duty of the PCHE reported by Ishizuka was 3 kW;  PCHE con-
isted of 12 hot and 11 cold semi-circular, zigzagged flow channel
lates, made of SS316L austentic Chromium-Nickel stainless steel
ith superior corrosion resistance. The zigzag was defined by 115◦

nd 100◦ for hot and cold plates, respectively. The cross-sectional
reas of hot and cold channel are 0.0002 and 0.000092 m2, respec-
ively (Ridluan, 2009).

The data contains five control variables and three ouput vari-
bles. The control varibles (system inputs) are: mass flow rate, inlet

ot sided pressure, inlet cold sided pressure, inlet hot sided temper-
ture and inlet cold sided temperature. The output varibles are hot
ided pressure drop, cold sided pressure drop and the heat transfer
Fig. 3).
–90 5.99–26.66 1.624–4.324
–90 20.09–93.07

4.  EBaLM-OTR–ann architecture selection for pche
modeling

As mentioned above, artificial neural networks (ANNs) have
been used for thermal hydraulic applications and have demon-
strated good results (Diaz et al., 2001; Mandavgane and
Pandharipande, 2006; Ridluan et al., 2009).

ANNs have also been used to model and predict the performance
of various heat exchangers with high accuracy (Pacheco-Vega et al.,
2001; Peng and Ling et al., 2009; Xie et al., 2007).

Ridluan et al. (2009) used ANN to predict the performance of
PCHE, and demonstrated superiority of ANNs as universal approx-
imators relative to comparable techniques.

In this paper we build upon EBaLM-THP (Ridluan et al., 2009)
and present EBaLM-OTR approach to alleviate the problem of
Over-training. EBaLM approach is based on the Error Back Prop-
agation (EBP) and Levenberg-Marquardt (LM) algorithms for their
abilities to conform to training data faster, more accurately than
others (Mazrou, 2009; Ridluan et al., 2009). LM algorithm also pro-
duces lower training MSE  compared to other learning algorithms
in Mazrou, 2009.

The EBaLM-OTR algorithm also uses Error Back Propagation
(EBP) and Levenberg-Marquardt (LM) algorithms for neural net-
work training. However EBaLM-OTR method sub-divides the data
set into training, testing and validation sets and produces two mea-
sures that are used to compare different architectures. Using these
measures EBaLM-OTR extracts the architecture that is most over-
training resilient.

4.1. EBaLM-OTR Algorithm

The proposed method uses k-fold cross validation, which divides
the dataset into k number of similar sized segments or folds and
uses one fold for validating and one fold for training. However in
order to generate a more generalized result the proposed method
Mass flo w rate 

Fig. 3. Input and output variables of the ANN.



D. Wijayasekara et al. / Nuclear Engineering and Design 241 (2011) 2549– 2557 2553

1. initialize the network with a set of random 
weights
2. reorder the data points randomly 
3. divide the dataset into k folds 
4. FOR all k 
5.    WHILE training error <  10-5 OR 500 iterations
6.    train the network using  Ytr
7.    END WHILE  
8.    test the network using  Yte
9.    validate the network using  Yva
10.  calculate training MSE  
11.  calculate testing MSE  
12.  calculate validating MSE  
13. END FOR 

o
p

P

Y

T
d
o

y

w

d
w

M
w

M

M

M

w
t
d
t

t
w
a
n
p
a
w
c

Start 

Select an output.  
Select an architecture.

i = 0 

Initiali ze the network. 
Reorder data. 

Divide the dataset into k folds. 
p = 0

iterations = 0 

Train the network using Ptr

trainin g error 
< 10-5 ? 

iterations 
< 500 ? 

Vali date and test the network. 
Calculate training,  testing and validating MSE. 

p < k ? 

Calculate  mean traini ng,  testing and valida ting M SE 

i < Q ? 

Calculate mean tra ining,  testin g and validating MSE for n runs. 
Calculate standard deviation of tra ining,  testing and vali dating MSE for n runs. 

Has all  the architectures 
been selected

Has all the outputs 
been tested

Iterations  = iterations + 1 

p = p + 1 

i = i + 1 

Selec t next arch itec tur e 

Selec t next output 

YES 

YES 

YES 

YES 

YES 

YES 

NO 

NO 

NO 

NO 

NO 

NO
Fig. 4. Pseudo code of evaluation of one network architecture.

f testing data patterns (Yte) and Pva number of validating data
atterns (Yva), where:

 = Ptr + Pte + Pva (16)

 = {Ytr ∪ Yte ∪ Yva} (17)

he dataset Y contains P number of data patterns yi and yi is an n + m
imensional vector containing n number of inputs and m number
f desired outputs, i.e.

i = {x1, x2, ..., xn, d1, d2, ..., dm} (18)

here xi are inputs and di are desired outputs.
As mentioned, for the modeling of PCHE, the number of input

imensions was 5 and number of output dimensions was 1, thus n
as 5 and m was 1.

After training was completed the MSE  of the training set (MSEtr),
SE of the testing set (MSEte) and MSE  of the validation set (MSEva)
ere calculated using the following equations:

SEtr =
Ptr∑

p=1

(dp − op)2 (19)

SEte =
Pte∑
p=1

(dp − op)2 (20)

SEva =
Pva∑
p=1

(dp − op)2 (21)

here dp is the desired output for each input pattern and op is
he actual output produced by the neural network. Thus MSE  is a
imensionless value calculated to compare neural network archi-
ecture performance.

Fig. 4 shows the pseudo code for evaluation of one ANN archi-
ecture. At step1 the network is initialized using a random set of
eights. Then at step 2 and 3 the dataset is reordered randomly

nd divided into training, testing and validating sets. At step 6 the
etwork is trained using the training dataset (Ytr). The training is

erformed until the network achieves a predefined error or reaches

 certain number of iterations (step 5). The number of iterations
as set to 500 and the goal error was set to 10−5, these stopping

riteria for training were calculated by training randomly selected
End 

Fig. 5. Flowchart of evaluation of network architecture.

networks and calculating MSE  and the number of iterations it took
for the networks to achieve that error.

After the training is completed the network is tested using Yte

and then validated using Yva (steps 8 and 9). Finally the MSE  values
are calculated using Eqs. (19)–(21) (steps 10–11). Steps 5 through
12 are repeated for all the folds of the dataset.

For each architecture steps 1 through 13 are repeated Q times
and mean and standard deviation of training, testing and validation
MSE were calculated. This process was repeated for all the archi-
tectures tested. Fig. 5 shows the complete algorithm in a flow chart
format.

After repeating the above process Q times the mean MSE  (mMSE)
and standard deviation of MSE  (sdMSE) were calculated for each

architecture using Eqs. (22) and (23), respectively.

mMSE  =
∑Q

i=1MSEi

Q
(22)
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dMSE  =

√√√√ 1
Q

Q∑
i=1

(MSEi − mMSE)2 (23)

he goal of the analysis was to evaluate all the network archi-
ectures and select the architecture that can model the data with
ighest accuracy and is most generalized. In order to find the archi-
ecture that conforms to the data most, the sum of mean MSE  of
he training set and mean MSE  of the validating set was used. This
hows the architecture with the lowest errors for both training and
alidating, i.e. the architectures that predict the experimental data
ith lowest errors. The mean MSE  of the testing set is used to fur-

her evaluate the conforming capability of the network. The most
eneralized architecture would have close training and validating
ean MSE. Therefore to evaluate the generalization capabilities

f the architecture, the difference between mean MSE  values for
raining and validating were compared. Therefore the primary eval-
ation vectors were conforming capability (Conf) and generalizing
apability (Gen), calculated as follows:

onf = mMSEtr + mMSEva (24)

en = mMSEva − mMSEtr (25)

he mean MSE  was used to evaluate architectures based on
onforming capability and generalizing capability. The standard
eviation of MSE  was used to evaluate the architecture’s stabil-

ty in producing results, and the architectures with high standard
eviations were eliminated.

.2. EBaLM-OTR Algorithm applied to PCHE modeling

For this PCHE analysis we chose the dataset referenced in Section
. This dataset has three output dimensions and five input dimen-
ions. Due to different scales and nature of the measurements and
alues of each output dimension, neural networks were designed
o that each network produced one output. Thus each network has
ve input neurons and one output neuron. Therefore each output
as considered separately and three different architectures were

elected, one for each output.

Architectures were labeled as p:q:r:s or p:q:s depending on the

umber of hidden layers, where q and r are the number of neurons
n the hidden layers and p and s are the number of neurons in the
nput and output layers respectively (Fig. 1). For example an archi-
itectures for cold sided pressure drop.

tecture labeled 5:3:4:1 has two hidden layers containing 3 and 4
neurons in each. The input layer contains 5 neurons and the output
layer contains 1 neuron. Similarly 5:4:1 is an architecture with one
hidden layer containing 4 neurons and its input layer contains 5
neurons output layer 1 neuron.

In order to find the optimal architecture that can model each
output vector, 100 different neural network architectures were
tested for each output dimension. The number of neurons in the
hidden layers varied from 1 to 19. The number of neurons in the
first hidden layer ranged from 1 to 10 and the number of neurons
in the second hidden layer ranged from 0 to 9. The tested archi-
tectures ranged from 5:1:1 to 5:9:9:1. This range was selected for
testing because pre-testing using fewer neurons produced large
errors and architectures having more neurons in more layers would
be too computationally intensive for practical use.

Each architecture was  tested 10 times. The dataset was  divided
into five folds which were used for 5-fold cross validation and one
fold was  used for testing. Five training runs per simulation were
done using different folds for training testing and validating.

4.3. Improvements of EBaLM-OTR over EBaLM-THP

The improvements of EBaLM-OTR for architecture selection
compared to EBaLM-THP can be elaborated as follows. First since
the EBaLM-OTR algorithm uses a validation set to validate the train-
ing, it is immune to over-training and thus able to extract the
optimal architecture that minimizes over-training and maximizes
generalizability. Therefore compared to EBaLM-THP, architectures
derived from EBaLM-OTR are more robust and less prone to
errors in real world applications and when dealing with noisy
data.

Secondly since the algorithm trains and tests each architecture
multiple times and uses the standard deviation of the MSE  as a
selection criterion, the architecture chosen by the EBaLM-OTR algo-
rithm is more consistent in producing low error outputs, compared
to EBaLM-THP.

Thirdly the dependency of the LM algorithm on the initial weight
set (Wilamowski, 2003) is alleviated by running the algorithm mul-

tiple times using different randomly initialized weights each time.

Such improvements allow the EBaLM-OTR algorithm to be used
to derive optimal ANN architecture for any problem that requires
a robust and consistent prediction algorithm.
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. Results and discussion

Each architecture was trained and tested 10 times using dif-
erent data patterns for training and testing, after the runs were
ompleted mean and standard deviation of training, validation and
esting MSE  were stored for each architecture. The primary selec-
ion criteria of architectures were the sum and difference of training
nd validation mean MSE.

After the optimal architecture for each output was obtained, the
elected architectures were tested using the experimental dataset
resented Ishizuka et al., 2006. The absolute errors and the mean
bsolute errors produced by the EBaLM-OTR algorithm and EBaLM-
HP algorithm presented by Ridluan et al., 2009 were compared. It
as shown that the architectures selected using EBaLM-OTR pro-
uced lower errors than EBaLM-THP.

.1. Architecture selection

Fig. 6 shows 15 architectures that conform to the experimental
ata with least error for the cold sided pressure drop. The archi-
ectures are sorted in the ascending order of mMSEva + mMSEtr.
imilarly Fig. 7 shows 15 architectures that are most generalized
or the prediction of cold sided pressure drop i.e. architectures that
ave lowest mMSEva–mMSEtr. Architectures in Fig. 7 are in the
scending order of mMSEva–mMSEtr value. In order to select the

ptimal architecture for cold sided pressure drop the architecture
ith the lowest mean MSE  in both Fig. 6 and Fig. 7 must be selected.

Table 2 lists the architectures that are most generalized and
ighly conform to the experimental data for cold sided pressure

able 2
election criteria for the optimal architecture for the cold sided pressure drop.

Architecture Validation + training Validation

5:3:1:1 0.733 × 10−3 3.31 × 10
5:6:1:1 0.6317 × 10−3 5.903 × 1
5:2:1:1 1.142 × 10−3 2.287 × 1
5:3:1  0.9715 × 10−3 5.014 × 1
5:3:3:1  0.9338 × 10−3 7.78 × 10
5:2:2:1 1.246 × 10−3 3.501 × 1
5:4:1 1.201 × 10−3 7.662 × 1
5:4:2:1 1.153 × 10−3 8.775 × 1
5:2:3:1 1.261 × 10−3 6.257 × 1
5:2:1  1.1219 × 10−3 2.838 × 1
chitectures for cold sided pressure drop.

drop i.e. it list architectures that are present in both Fig. 6 and Fig. 7.
Along with the sum and difference of training and validation mean
MSE  the table lists the rank of architectures. The rank is the sum of
the positions of architectures in each figure. For example architec-
ture 5:3:1:1 appears in Fig. 6 in the second position, and in Fig. 7 in
the seventh position, thus architecture 5:3:1:1 has a rank of 2 + 7
(Table 2). The positions of the architectures in each graph give a
selection vector that can be used as a measurement of performance.
The table also list the training mean MSE  and standard deviations
MSE  which indicating the stability of the architecture.

The architecture to be selected is the one with the lowest mean
MSE  (for ex. in Fig. 6, that architecture is 5:6:1:1). However the
same architecture (5:6:1:1) in Fig. 7 appears in the 10th position
meaning its generalizing capability is low. The second architecture
in Fig. 6 (5:3:1:1) proves higher generalization capability compared
to 5:6:1:1. In fact the architecture with highest generalization capa-
bility that appears in both figures is architecture 5:2:1:1 which is
in 7th position in Fig. 5 and 5th position in Fig. 7.

Similarly if one selects the architecture in the lowest position
in Fig. 7 which is 5:1:5:1, we  can see that although 5:1:5:1 has a
high generalization capability, the training, testing and validating
errors are high, which would put it in a higher position in Fig. 6. In
this case the mMSEtr and mMSEva are so high that they are off the
chart in Fig. 6.

Therefore in order to select the optimal architecture positions in

Fig. 6 and Fig. 7 must be taken into account. In order to quantify the
lowest positions in both Fig. 6 and Fig. 7, the sum of the positions of
architectures in each figure is chosen as the first selection criterion.
Table 2 lists architectures according to this criterion. From Table 2

 − training Rank Training mean MSE

−4 9 0.0012 ± 0.0072
0−4 11 0.0013 ± 0.0067
0−4 12 0.00069 ± 0.0039
0−4 13 0.00071 ± 0.0039
−4 17 0.0012 ± 0.0042
0−4 20 0.00084 ± 0.0071
0−4 23 0.0013 ± 0.0227
0−4 23 0.0017 ± 0.0074
0−4 25 0.01 ± 0.0089
0−4 27 0.00072 ± 0.0044
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Table  3
Performance of the selected architectures.

Architecture Cold sided pressure drop Hot sided pressure drop Heat transfer

mMSEtr mMSEva mMSEte mMSEtr mMSEva mMSEte mMSEtr mMSEva mMSEte

5:2:1:1 0.4564 × 10−3 0.6851 × 10−3 0.6920 × 10−3 0.1324 × 10−3 0.2022 × 10−3 0.2054 × 10−3 0.4473 × 10−4 0.7160 × 10−4 0.6992 × 10−4

5:1:5:1 0.0014 0.0014 0.0016 0.1251 × 10−3 0.1935 × 10−3 0.1917 × 10−3 0.3321 × 10−4 0.7575 × 10−4 0.7441 × 10−4

5:7:9:1 9.667 × 10−7 0.001 0.0011 9.6 × 10−7 8.36 × 10−4 0.001 0.0085 × 10−4 0.2395 × 10−4 0.3245 × 10−4

Table 4
Mean absolute error of EBaLM-OTR compared to EBaLM-THP.

Variable EBaLM-THP Architecture1 EBaLM-THP Architecture2 EBaLM-OTR
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Cold sided pressure drop (kPa) 4.5372 

Hot  sided pressure drop (kPa) 1.1999 

Heat exchange (kW) 1.0703 × 10−1

op three architectures for cold sided pressure drop were selected
s 5:3:1:1, 5:6:1:1 and 5:2:1:1.

The second selection criterion was the testing error. Out of the
hree selected architectures 5:3:1:1 and 5:6:1:1 show high testing

SE  while 5:2:1:1 produces significantly lower testing MSE, there-
ore architecture 5:2:1:1 was selected as the optimal architecture
o model cold sided pressure drop.

Finally the standard deviations of the architectures were com-
ared to other tested architectures. The standard deviation of MSE

s a measure of the stability of architectures.
The standard deviation of all three mean MSE  for the cold sided

ressure drop ranged from 9.7 × 10−4 to 4.3 × 10−2 for all the archi-
ectures tested. The standard deviations for the top 3 architectures
ere less than 6.7 × 10−3, therefore the standard deviations of the
SE  are low for all three selected architectures meaning that they
ere stable in producing results.

Using the same method architectures that are optimal for mod-
ling of hot sided pressure drop and heat transfer were extracted.
he architectures selected were 5:1:5:1 and 5:7:9:1 for the hot
ided pressure drop and heat transfer respectively.

Table 3 lists the three selected architectures for each output, and
he performance of each of the architectures relative to each of the
utputs.

.2. Comparison with EBaLM-THP

After the selection of architectures the absolute errors of the
elected architectures were compared with the best performing
rchitectures presented in Ridluan et al., 2009. Ridluan et al., 2009
resented two architectures that produced the best results for PCHE
odeling, which were 5:7:5:3 (EBaLM-THP Architecture1) and

:9:7:3 (EBaLM-THP Architecture2). Table 4 shows the mean abso-
ute error achieved by each algorithm for each output dimension,
t can be clearly seen that the EBaLM-OTR architectures produce
ower absolute errors for all three outputs.

. Conclusions

This manuscript presents EBaLM-OTR technique for the analysis
nd selection of the most optimal ANN architecture for PCHE mod-
ling that alleviates the problem of over training. It successfully
dentified over-trained networks as well as networks that cannot
onform to the data satisfactorily. The technique also demonstrated
he ability to overcome problems such as small training set and the

ffect of initial weights on the network training.

Using the EBaLM-OTR technique it was possible to identify the
rchitectures that are most generalized and conform to each output
ariable in most optimal way. The selected architectures were able
6.1291 1.2515
1.0795 3.2232 × 10−1

7.8027 × 10−2 9.9899 × 10−3

to predict each output with an error within 10−5–10−3 order of
magnitude.

The selected architectures also reflected the complexity of each
output. Hot and cold sided pressure drop were successfully mod-
eled using architectures with low number of neurons but in order
to model the heat transfer the number of neurons in the architec-
ture needed to be higher i.e. heat transfer was more complex and
had more variation than hot and cold sided pressure drops.

The results also show that it is impossible to predict the opti-
mal  architecture for the given problem prior to modeling such as
presented by EBaLM-OTR. For some problems architectures with
higher number of neurons produce better results. But for some
problems not only architectures with lower number of neurons
suffice but they are able to produce better results than architecture
with higher number of neurons.
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