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Abstract— Resiliency and cyber security of modern critical 

infrastructures is becoming increasingly important with the 

growing number of threats in the cyber environment.  This paper 

proposes an extension to a previously developed fuzzy logic based 

anomaly detection network security cyber sensor via 

incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy 

logic provides a framework for system modeling in linguistic 

form capable of coping with imprecise and vague meaning of 

words. T2 FL is an extension of Type-1 FL which proved to be 

successful in modeling and minimizing the effects of various 

kinds of dynamic uncertainties. In this paper, T2 FL provides a 

basis for robust anomaly detection and cyber security state 

awareness. In addition, the proposed algorithm was specifically 

developed to comply with the constrained computational 

requirements of low-cost embedded network security cyber 

sensors. The performance of the system was evaluated on a set of 

network data recorded from an experimental cyber security test-

bed. 

Keywords-— Anomaly Detection; Cyber Sensor; Embedded 

Systems; Type-2 Fuzzy Logic; Online Clustering;  

I. INTRODUCTION 

The need for resilient control systems is increasing with the 

elevated levels of cyber security threats in the modern world. 

The resilient control system was defined in [1] as follows: “… 

one that maintains state awareness and an accepted level of 

operational normalcy in response to disturbances, including 

threats of an unexpected and malicious nature” [1]. This paper 

reports on work that is part of an ongoing research effort to 

demonstrate that computational intelligence techniques, such 

as fuzzy logic [2]-[4], artificial neural networks [5], [6], 

support vector machines [7], genetic algorithms [8], or 

unsupervised clustering algorithms [9]-[10] can significantly 

contribute to increased resilience and state awareness of 

modern control systems. The attractiveness of computational 

intelligence comes from the ability to learn from multi-

dimensional non-linear data [11]. 

Modern critical infrastructure control systems are typically 

composed of interconnected computer based stations. The 

systems exchange crucial information via the computer 

network. Improving the resiliency and state awareness of these 

critical components, which can be found in systems such as 

SCADA or nuclear power plants, is inevitably conditioned by 

increased cyber security [12], [13]. A compromised critical 

infrastructure system might have security, public safety, 

industrial or economical consequences [14]. Therefore, 

security monitoring systems specifically developed for critical 

infrastructures is an obvious need [1]. These systems include 

network traffic anomaly detection. 

This paper proposes an extension to a previously developed 

learning algorithm for a fuzzy logic based network traffic 

anomaly detection system via incorporating Type-2 Fuzzy 

Logic (T2 FL) [4]. Type-1 Fuzzy Logic Systems (T1 FLSs) 

are popular in many engineering areas due to their ability to 

cope with linguistic uncertainty originating in the imprecise 

and vague meaning of words. However, dynamic uncertainties 

such as uncertainties about the measurements activating the 

system or uncertainty about the training data used to tune the 

FLS can lead to performance deterioration [15].  

Recent advances in T2 FL theory and its emerging practical 

applications have shown that T2 FL offers robust system 

control together with the capability to cope with various 

sources of uncertainties and disturbances [16]-[19]. In this 

paper, T2 FL provides the basis for robust anomaly detection 

and cyber security state awareness. The previously proposed 

anomaly detection algorithm was specifically developed for 

the constrained resources of embedded network security cyber 

sensors [4], [20]. This learning algorithm builds a fuzzy rule 

base, which describes the previously seen normal network 

communication behavioral patterns. This fuzzy rule base is 

constructed directly from the stream of incoming packets 

using an online version of the nearest neighbor clustering 

algorithm. Subsequently, the set of extracted clusters is 

transformed into a set of fuzzy rules.  

This paper extends the previous work, by extending the 

membership functions of each fuzzy rule into T2 Fuzzy Sets 

(FSs) and then utilizing the T2 fuzzy inference process to 

compute the final classification. The major contribution of the 

presented work is increased state awareness of the 

implemented network security cyber sensor via uncertainty 

modeling using the T2 FLS. 

The rest of this paper is structured as follows. Section II 

provides a brief overview of T2 fuzzy logic. The cyber 

security test-bed utilized in this work is described in Section 

III. Section IV and V explain the network behavior modeling 

and the proposed T2 fuzzy rule extraction method, 

respectively. The results of experimental evaluation of the 

system are presented in Section VI, and Section VII concludes 

the paper. 



II. TYPE-2 FUZZY LOGIC SYSTEMS 

This Section provides a brief background overview of T2 

Fuzzy Logic Systems (FLSs). Type-1 Fuzzy Logic Systems 

(T1 FLSs) have been successfully applied in many engineering 

areas due to their ability to cope with linguistic uncertainty 

originating in the imprecise and vague meaning of words. 

However, dynamic uncertainties such as uncertainties about 

the measurements or the uncertainty about the training data 

used to tune the FLS might lead to performance deterioration 

[15]. This performance deterioration can be attributed to the 

fact that T1 FLSs use precise T1 fuzzy membership functions, 

parameters of which are fixed once the design process is 

finalized. Type-2 Fuzzy Logic Systems (T2 FLSs), originally 

proposed by Zadeh [21], alleviate this issue by using T2 FSs 

with membership degree that are themselves fuzzy sets. 

The Mamdani type of T2 FLS considered in this paper 

maintains a fuzzy rule base populated with fuzzy linguistic 

rules in an implicative form. Consider rule Rk that is described 

as follows [16]: 

 

Rule Rk: IF x1 is 
kA1

~
AND … AND xn is 

k

nA
~

 

               THEN yk is kB
~

  (1) 

 

Here, symbols 
k

iA
~

and kB
~

denote the i
th

 input T2 FS and the 

output T2 FS of the k
th

 rule, respectively, where n is the 

dimensionality of the input vector x


 and yk is the associated 

output variable. A general T2 FS A
~

 can be described by its 

membership function ),(~ ux
A

 , where Xx and xJu  [15]: 
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In Eqn. (2), variable x and u are the primary and the 

secondary variables and Jx denotes the interval support of the 

secondary membership function. The operator   denotes the 

union over all possible values of x and u, and ]1,0[),(~ ux
A

 . 

By restricting all secondary membership grades of T2 FS A
~

 to 

1, an Interval T2 (IT2) FS is created: 
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The IT2 FLS is used in this work because of its 

computational inexpensiveness and ease of implementation 

[22]. In addition, the number of design parameters of IT2 

FLSs is substantially smaller when compared to the full-blown 

general T2 FLSs. By instantiating the variable x into a specific 

value x’, the vertical slice of the IT2 FS can be obtained as: 
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The domain of the primary memberships Jx defines the 

Footprint-Of-Uncertainty (FOU) of FS A
~

: 
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The FOU of an IT2 FS (schematically depicted in Fig. 3) 

can be completely described by its upper and lower 

membership functions: 
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This constitutes a substantial simplification when compared 

to the general T2 fuzzy sets. Here, only two T1 fuzzy 

membership functions (the upper and the lower fuzzy set) are 

used to describe the IT2 FS A
~

. This simplification is then 

transferred through the inference mechanism of the IT2 FLS, 

taking advantage of the modified interval T2 fuzzy join and 

meet operations [22]. The interval join and meet operations 

work exclusively with the FOU of the IT2 fuzzy sets, thus 

removing much of the computational burden associated with 

processing of general T2 fuzzy sets.  

In order to obtain a crisp output value, the resulting IT2 

output fuzzy set B
~

 is first type-reduced and then defuzzified. 

The interval centroid can be described by its boundary points 

yl and yr. The final crisp defuzzified value y can be computed 

as the mean of the centroid interval: 
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III. EXPERIMENTAL CYBER SECURITY TEST-BED 

This Section describes the hardware platform used for the 

implemented cyber sensor and the experimental network data 

acquisition test-bed. 

A. Embedded Network Security Cyber Sensor 

The Tofino embedded network security device, depicted in 

Fig. 1, is manufactured by Byres Security Inc. [23]. Originally, 

the device was developed for pre-emptive threat detection, 

termination and reporting, specifically tailored for the needs of 

SCADA and industrial control systems. Its major advantages 

are primarily its low-cost and ease of deployment in real world 

systems. In the presented work, the Tofino cyber sensor was 

used as an embedded development platform for 

implementation of the proposed anomaly based detection 

learning algorithm.  

 The Tofino platform consists of an Arcom Vulcan single 

board computer. The main processor is an Intel IXP425 

XScale processor running at 533MHz with 64MB of DRAM 

and 32MB of flash memory. Two Ethernet ports are provided 

along with two USB ports. The operating system is based on 

the OpenWRT distribution of Linux. 

The focus of the implementation is at a very low level with 

an envisioned deployment just before some critical equipment, 



such as a Programmable Logic Controller (PLC). With the 

increasingly common usage of network based control systems 

and the current deployment of smart grid systems hundreds, 

thousands and possibly millions of cyber sensor devices will 

be deployed. This makes the cost of an implemented hardware 

solution a relevant concern. The selected Tofino hardware 

platform constitutes such a low-cost solution. 

B. Control System Experimental Test-Bed 

The experimental hardware test-bed system that was used for 

network data acquisition represents several aspects of an 

operational control system, such as operational control 

structure, control system network and hardware control of 

actual physical processes. A schematic view of the test-bed is 

depicted in Fig. 2. RSView32, a Rockwell Software HMI 

product, provides an integrated component based interface for 

monitoring of the system behavior. A Moxa EDS-505A 

Ethernet switch provides network connectivity for the 

controller. All network traffic to and from the controller is 

transported via this switch. A Linux laptop with the tcpdump 

software application was attached to the system allowing for 

network traffic capturing and monitoring. Finally, a second 

Linux based laptop representing the intruder-compromised 

machine was attached to a third port. 

The control system itself consists of an Allen-Bradley 

MicroLogix 1100 PLC [24]. Attached to the PLC are 6 lighted 

buttons, 7 lights, 2 potentio-meters, 2 temperature sensors and 

a small electric fan constituting both digital and analog 

input/output points. All of the items are capable of being 

controlled individually from the PLC or directly by pressing a 

button.  

IV. ONLINE BEHAVIOR MODELING FOR ANOMALY IDS 

This Section presents the learning algorithm for the fuzzy 

logic based anomaly detection using an embedded network 

security cyber sensor. 

A. Feature Extraction from Packet Stream 

In a previous work of the authors, an Artificial Neural 

Network (ANN) based intrusion detection system was 

developed [6]. The ANN was trained on a sub-set of available 

network traffic features extracted by a window-based 

technique applied directly to the stream of packets. This 

feature extraction technique is also utilized in the presented 

work. The inherent time series nature of the packet stream data 

is described by a vector capturing the statistical behavior of 

the network traffic. This windowing technique extracts the 

statistical features from a limited set of consecutive packets.  

As described in [6], a window of specified length is shifted 

over the stream of network packets. At each position of the 

window a feature vector is computed. As next arriving packet 

is pushed into the window, the last packet is removed from the 

end. The effects of different window sizes on the classification 

performance of the algorithm were studied in the previous 

work of the authors [4]. 

Table I summarizes the list of extracted statistical features 

from the packet window. This set of features was empirically 

selected based on analysis of the recorded network traffic and 

the motivation to most accurately capture the time series 

nature of the packet stream. For further details and evaluation 

of the feature extraction refer to [6]. 

B. Rule Extraction via Online Clustering 

The proposed rule extraction algorithm takes into account 

the constrained computational resources of the available 

embedded network security cyber sensor. Other learning 

approaches, such as IDS-NNM algorithm [6], pursue an 

offline learning approach once all training data have been 

acquired. However, such a learning process is typically 

TABLE I 
SELECTED WINDOW-BASED FEATURES 

Num. of IP addresses Num. packets with 0 win. size 

Avg. interval between packets Num. packets with 0 data length 

Num. of protocols Average window size 

Num. of flag codes Average data length 

 

 

 

 
 

Fig. 1 Photo of the TOFINO network security cyber sensor plugged-in into 

the test system. 

  

 

 
Fig. 2 Schematic diagram of the network test bed with the security cyber sensor. 



computationally unfeasible for embedded devices, given the 

usual network traffic density of these devices [20]. 

In the previous work of the authors, a new low-cost online 

rule extraction technique was proposed [4]. Each rule is 

extracted using an online version of the adapted Nearest 

Neighbor Clustering (NNC) algorithm. The algorithm 

maintains additional information about the spread of data 

points associated with each cluster throughout the clustering 

process. Each cluster Pi of encountered normal network 

behavior is described by its center of gravity ic


, weight wi and 

a matrix of boundary parameters Mi. Hence: 
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Here, i is the index of the particular cluster, 
j

ic is the 

attribute value in the j
th

 dimension, 
U

jic , and 
L

jic , are the upper 

and lower bounds of the encountered values of the j
th

 attribute 

for data points assigned to cluster Pi and n denotes the 

dimensionality of the input. The algorithm maintains a set of 

clusters  . Initially, the algorithm starts with a single cluster 

P1 positioned at the first supplied training data point 1x


. This 

initial data point becomes available once the shifting window 

is first filled with incoming network packets. 

Upon acquiring a new data point ix


 from the shifting 

window buffer, the set of clusters   is updated according to 

the NNC algorithm. First, the Euclidean distance to all 

available clusters with respect to the new input feature vector 

ix


 is calculated. The nearest cluster Pa is identified. If the 

computed nearest distance is greater than the established 

maximum cluster radius parameter, a new cluster is created. 

Otherwise the nearest cluster Pa is updated according to: 
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Hence, the modified NNC algorithm also keeps track of the 

lower and upper bounds of the encountered input values in 

each dimension for every cluster, as opposed to the original 

NNC algorithm that only stored the cluster positions. 

It is important to note here, that the cluster positions are 

dynamically changing as new input vectors are processed by 

the algorithm. Storing the min-max bounds of the input values 

might not provide accurate information about the real spread 

of input patterns for a particular cluster. This can be seen as 

new source of uncertainty, which is a tradeoff for the low 

memory requirements and the favored online learning 

capability. The proposed IT2 fuzzy rule extraction copes with 

this source of uncertainty by introducing IT2 fuzzy 

membership functions. 

V. IT2 FUZZY RULE EXTRACTION AND INFERENCING FOR 

ANOMALY DETECTION 

Once the rule extraction phase of the learning process is 

finalized (e.g. user decision, time limit, limit on the number of 

packets, etc.), the learning algorithm maintains a final set of 

clusters   that describes the normal network communication 

behavioral patterns observed in the provided training data. In 

the next phase of the algorithm, each cluster is converted into 

an IT2 fuzzy logic rule. Each fuzzy rule then describes the 

similarity of observed network behavior with the normal 

network traffic. 

An n-dimensional cluster Pi is transformed into its associated 

IT2 fuzzy rule Ri as follows. Rule Ri is composed of n 

antecedent IT2 FSs njA j

i ...1,
~

 . Each fuzzy set
j

iA
~

, located 

in the j
th

 dimension of the input space, is modeled using a non-

symmetrical Gaussian fuzzy membership function with 

distinct left and right spreads. In the previous work [4], there 

were three parameters of the T1 fuzzy membership function, 

namely mean jim ,  and the left and the right spreads 
U

ji, , 
L

ji, . 

These parameters have been previously extracted using the 

crisp fuzziness parameter  . In the new IT2 FLS based 

anomaly detection algorithm, the interval fuzziness parameter 

is provided as ],[  . The wider the interval of the introduced 

fuzziness parameter, the more uncertainty will be modeled in 

the constructed IT2 FSs. The optimal values of the fuzziness 

parameter are application dependent and must be appropriately 

tuned. The interval fuzziness parameter allows for 

construction of IT2 fuzzy membership functions based on the 

computed cluster Pi in the following manner: 
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The above mentioned parameters are used to construct the 

non-symmetric IT2 Gaussian fuzzy membership functions 

with uncertain spread as depicted in Fig. 3.  

Using the minimum t-norm, the interval firing strength of 

fuzzy rule Ri is then computed as: 
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Fig. 3 Illustration of the non-symmetric IT2 input Gaussian fuzzy set 
j

iA
~

. 
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In this specific application, the output of the fuzzy rule is a 

singleton fuzzy set assigning the input pattern to the normal 

behavior class. Hence, in this special case the fired interval 

output of a particular fuzzy rule is actually its own interval 

firing strength )](),([ xx
i

i
RR


 . The final interval output 

centroid is obtained by applying to maximum t-conorm to the 

interval output of all available rules: 
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Here, C denotes the number of extracted fuzzy rules. The 

crisp value of the output y can be computed by defuzzifying 

the output interval centroid )](),([ xyxy


as: 
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 The output value y together with the output interval centroid 

)](),([ xyxy


provides the basis for making decisions about the 

membership of input pattern x


to the class of normal behavior. 

The following hard-partitioning scheme was proposed for the 

implemented IT2 FLS based anomaly detection algorithm: 

 

If )(xy


> threshold  Then Anomaly behavior. 

Else If )(xy


< threshold  Then Normal behavior. 

Else If )(xy


< threshold< )(xy


Then Uncertain behavior. 

 

The detection of uncertain behavior signals that the anomaly 

detection system is dealing with uncertain input data and that 

the output decision would be subject to increased uncertainty. 

The final crisp Anomaly/Normal decision can then be made 

using the classical hard-partitioning scheme based on the crisp 

defuzzified value y or by performing additional in-depth 

analysis of the network traffic. As such, the cyber security 

state awareness of the protected infrastructure is increased, 

which is a necessary factor for promoting its resiliency.  

VI. EXPERIMENTAL RESULTS 

This section first describes the acquired experimental 

datasets. Next, the improved uncertainty handling is 

demonstrated. Finally, the classification performance is 

evaluated on the previously acquired testing datasets. 

A. Experimental Datasets  

The Nmap [25] and Nessus [26] software utilities were used 

to create anomalous network traffic behavior in an attempt to 

emulate the probes of a cyber attacker. Nmap is a network 

scanning tool commonly used to identify hosts, scan ports, 

operating systems and to determine applications that are 

listening on open ports. Nessus is a network scanning tool that 

provides auditing capabilities, vulnerability assessments and 

profiling information. The simulated intrusion attempts 

include: ARP pings, SYN stealth scans, port scanning, open 

port identification and others. Cyber attacks ranged from long 

attacks composed of many packets to very short intrusion 

sequences.  

Two datasets of experimental data have been recorded. 

Because it is assumed that only normal network data are 

available during the training phase, the first recorded training 

set is composed of 6 datasets with only normal network 

behavior. Overall, 60,661 packets of normal network traffic 

were acquired including specialized normal behavior such as 

system initialization and system component reconnection. The 

normality of the recorded data was ensured by maintaining an 

isolated closed network and thus preventing any presence of 

intrusive attempts. This dataset was used only during the 

training phase of the algorithms. The second set is a testing set 

composed of 10 datasets, which include simulated abnormal 

behavior along with normal behavior. Overall 583,637 packets 

have been recorded. This datasets was not used during the 

training phase. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Uncertainty handling with the IT2 FL based anomaly detection system 
for near-similar intrusion attempts (a), unusual normal behavior (b), and their 

combined case (c). 

 



B. Improved Uncertainty Handling 

The improved uncertainty handling of the proposed IT2 FLS 

based anomaly detection algorithm is demonstrated in this 

Section. As shown in the previous work of the authors [4], [6], 

common intrusion attempts can be differentiated from the 

normal behavior using neural networks or T1 FLS. However, 

in specific cases, such as slightly deviating intrusion attempts 

or very unusual normal behavior, high amounts of uncertainty 

might be associated with the output decision. In these cases, 

the IT2 FLS offers increased state awareness as the 

uncertainty in the problem domain is modeled by the IT2 FSs 

and propagated to the final interval classification through the 

inference mechanism. 

As an illustration, three uncertain cases are depicted in Fig. 

4. In Fig. 4(a) a classification of slightly deviating intrusion 

attempts is depicted. It can be seen that for the selected 

sensitivity threshold the absence of the interval decision might 

lead to misleading conclusions. On the other hand, the 

proposed IT2 FLS based algorithm is capable of determining 

the increased uncertainty of the anomaly identification and 

thus increase the cyber security state awareness. Fig. 4(b) 

shows a scenario where unusual normal behavior is 

experienced due to disconnecting several components of the 

experimental test bed. Again, the presence of the uncertainty 

indicator provided by the IT2 FLS can lead to more informed 

decision making. Finally, a combined case is depicted in Fig. 

4(c) where the intrusion attempts were simulated during 

unusual normal behavior leading to increased uncertainty of 

the anomaly indicator. 

C. Classification Performance 

The IT2 FLS based anomaly detection algorithms was 

applied to the 10 testing datasets with 583,637 packets in total. 

The algorithm was trained on the 6 training datasets composed 

of 60,661 normal behavior packets. Using the maximum 

cluster radius of 0.01 132 fuzzy rules were extracted. 

Three performance measures are considered in this work: 

classification rate, false negative rate and false positive rate. 

The classification rate is the ration of all correctly classified 

instances. False positive rate is the rate of false alarms when 

there was no intrusion attempt. False negative rate is the rate 

of missing alarms when an intrusion occurred. The 

classification performance is summarized in Table II. Here, 

the classification rate and the false positive rates are reported 

for each dataset and the average values are calculated. The 

TABLE II 

CLASSIFICATION PERFORMANCE OF THE FUZZY LOGIC BASED ANOMALY DETECTION ALGORITHM ON DIFFERENT DATASETS 

 

Datasets Number of Packets 
Classification 

Rate 
False Positives 

Data 1 16,860 99.226 % 0.857% 

Data 2 11,794 99.276 % 0.840 % 

Data 3 21,904 99.327 % 0.727 % 

Data 4 18,225 99.321 % 0.809 % 

Data 5 34,586 99.385 % 1.372 % 

Data 6 113,705 98.277 % 1.772 % 

Data 7 113,557 98.339 % 1.804 % 

Data 8 65,018 98.438 % 1.606 % 

Data 9 69,959 98.521 % 1.519 % 

Data 10 118,029 98.259 % 1.791 % 

Sum / Average 583,637 98.837 % 1.310 % 

 

 

 
(a) 

 
(b) 

Fig. 5 Anomaly detection performance of the proposed algorithm on segments of packets from datasets 2 (a), and 3 (b). Thin line represents system decision, 
thick line denotes the known anomalous behavior. 

 



proposed IT2 FLS based anomaly detection system achieved 

0% false negative rate in all testing scenarios. This is 

considered important as false negatives would mean that 

intrusion attempts were able to break into the system 

undetected. It can be observed that the algorithm maintained 

1.3% average false positive rate, which can be considered a 

low false positive rate in the area of anomaly detection.  

Fig. 5 visually demonstrates the classification of two 

datasets. The thin line denotes the prediction of the anomaly 

detection system and the thick line above the system response 

marks the known occurrence of the anomalous behavior as 

denoted in Fig 5(a). It can be seen that the proposed anomaly 

detection system responded well to both long and short 

intrusion attempts. An example of false positive case is also 

highlighted in Fig. 5(a). 

Comparative analysis between the T1 and the IT2 FLS 

based approaches and determining specific scenarios when the 

IT2 FLS based approach provides improved classification 

performance is currently subject of an ongoing research effort. 

Up to this date, the major contribution of the presented work is 

the increased state awareness of the cyber sensor via 

uncertainty modeling using the IT2 FLS. 

VII. CONCLUSION 

This paper presented a novel IT2 FLS based anomaly 

detection algorithm for embedded network security cyber 

sensors. The anomaly detection algorithm was specifically 

designed to allow for both fast learning and fast classification 

on the constrained computational resources of the embedded 

device. The algorithm extracts IT2 fuzzy rules using an 

adapted version of the online nearest neighbor clustering 

algorithm directly to the stream of packets. 

The proposed algorithm was tested on an experimental test-

bed mimicking the environment of a critical infrastructure 

control system with emulated probes of a cyber attacker. The 

final performance evaluation was performed on a set of 10 test 

datasets with 583,637 packets with a wide range of anomalous 

network behavior. The experimental analysis yielded 98.837% 

correct classification rate with 0.0% false negative rate and 

1.31% false positive rates. It was demonstrated the IT2 FLS is 

capable of improved cyber security state awareness due to 

improved uncertainty handling. 
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