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Abstract— Resilient control systems in critical infrastructures 

require increased cyber-security and state-awareness. One of the 

necessary conditions for achieving the desired high level of 

resiliency is timely reporting and understanding of the status and 

behavioral trends of the control system. This paper describes the 

design and development of a fuzzy-neural data fusion system for 

increased state-awareness of resilient control systems. The 

proposed system consists of a dedicated data fusion engine for 

each component of the control system. Each data fusion engine 

implements three-layered alarm system consisting of: 1) 

conventional threshold-based alarms, 2) anomalous behavior 

detector using self-organizing maps, and 3) prediction error 

based alarms using neural network based signal forecasting. The 

proposed system was integrated with a model of the Idaho 

National Laboratory Hytest facility, which is a testing facility for 

hybrid energy systems. Experimental results demonstrate that 

the implemented data fusion system provides timely plant 

performance monitoring and cyber-state reporting. 

 
Index Terms— Artificial Neural Network, Self-Organizing 

Map, Fuzzy Logic System, Data-Fusion, Control System, 

Resiliency, Hytest. 

I. INTRODUCTION 

ESILIENT control systems demand implementation of 

robust cyber-security environment together with ensuring 

increased state-awareness. This goal can be achieved via 

complex system monitoring, real-time system behavior 

analysis and timely reporting of the system state to the 

responsible human operators [1]. 

 This paper describes the development and implementation 

of fuzzy-neural based data fusion system. The main purpose of 

the data fusion system is to provide real-time monitoring and 

analysis of complex critical control systems. The data fusion 

system evaluates the state of the plant by calculating anomaly 

indicators associated with different components of the system. 

These anomaly indicators are then delivered to the operator 

via an HMI.  

 The proposed data fusion architecture uses computational 

intelligence algorithms such as artificial neural networks and 

fuzzy logic for system modeling, signal forecasting and 

intelligent control. Several other approaches for plant 

monitoring can be found in literature. Fuzzy logic has been 

previously used for monitoring sensory data and alarm 

processing in nuclear power plants in [2]-[6]. Neural networks 

have been applied to nuclear reactor monitoring in [7], [8]. 

The concept of control charts was applied towards designing a 

pre-alarm system in nuclear power plant control rooms in [9]. 

In [10], the fusion of support vector machines and adaptive 

neuro-fuzzy inference system was used for fault detection and 

diagnosis in industrial steam turbines. The cyber-security of 

critical infrastructure control systems was also analyzed using 

fuzzy logic and artificial neural networks in [11], [12]. 

However, majority of the previously published work was 

applied to rather small system and the cyber-security element 

was rarely considered. The presented work develops a data 

fusion engine tailored to the specifics of complex resilient 

control systems such as the Idaho National Laboratory (INL) 

Hytest facility for testing hybrid energy systems [13], [14]. 

The developed data fusion system uses two different 

artificial neural networks architectures to model the normal 

behavior of the plant and its control system. Firstly, a Self-

Organizing Map (SOM) is used to cluster the available normal 

behavior data. During the testing phase, individual neurons of 

the SOM are transformed into fuzzy rules. These fuzzy rules 

calculate the degree of similarity of the observed behavior 

with the previously known normal behavior patterns. 

Secondly, feed-forward neural network is used to forecast the 

future measurements for each sensor based on the previously 

observed history. The predicted measurements are then 

matched to the true observation and the prediction error is 

fused into a robust anomaly indicator using a fuzzy logic 

controller. The proposed data fusion system was integrated 

with a Matlab Simulink model of the INL Hytest facility. 

 The rest of the paper is organized as follows. Section II 

provides fundamental overview of the two considered neural 

network architectures, the feed-forward neural network and 

the self-organizing maps. Sections III presents the developed 

neural-network based data-fusion system. Section IV describes 

the experimental Hytest system and shows the test results. The 

paper is concluded in Section V. 
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II. ARTIFICIAL NEURAL NETWORKS  

The implemented data fusion system utilizes two diverse 

paradigms of artificial neural-networks – the supervised feed-

forward Neural Networks (NN) and the unsupervised Self-

Organizing Maps (SOM). This section provides some of the 

fundamentals of both neural network architectures. 

A. Feed-Forward Neural Networks 

A feed-forward NN is composed of multiple interconnected 

layers, each consisting of several neurons. The training of the 

NN proceeds in a supervised manner. The gradient descent 

approach is used to optimize system parameters based on the 

error of the network’s output. Here, a specific combination of 

the Error Back-Propagation and the Levenberg-Marquardt – 

EBP-LM algorithm was used [15]-[17].  

First an input vector }...,,{ 1 mxxx 


is provided to the input 

layer of NN. The net input value of neuron i in layer k+1 is 

then calculated as the weighted sum of the input connections: 
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Here Sk denotes the number of neurons in layer k , ),(1 jiwk
 

is the weight of the connection from neuron j in layer k, 

)(1 ibk
 is the bias of neuron i and )( jak  is the output from 

neuron j in layer k. 

The output of neuron i  in layer 1k  is: 
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Here 1kf  is the activation function of neuron i. Typically, a 

sigmoidal or linear activation function is used. 

For a neural network with L layers, the task of the EBP-LM 

algorithm is to minimize the total error:  
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which can be reduced to: 
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Here P and M are the number of patterns and the number of 

outputs respectively, and dpm denotes the desired output. 

The weight update rule for the EBP-LM algorithm is derived 

from the Newton’s method using the Hessian and the gradient 

of system parameters. For the error function E, which is a sum 

of squares, the Hessian and the gradient can be computed as 

the Jacobian of the partial derivative of error with respect to 

the weights. The Jacobian matrix is computed by a modified 

EBP algorithm [17]. 

B. Self-Organizing Maps 

The Self-Organizing Map (SOM) algorithm was developed 

in 1981 [18]. SOM uses unsupervised winner-takes-all 

competitive learning method together with cooperative 

adaptation to adjust its parameters to the topology of the input 

dataset. The SOM consists of a topological grid of neurons 

typically arranged in 1D or 2D lattice [19]. The fixed grid 

defines the spatial neighborhood of each neuron.  

Each neuron maintains a synaptic weight vector 

}...,,{ 1 mwww 


, where m is the dimensionality of the input 

space. The input dataset consists of input patterns that can be 

denoted as }...,,{ 1 mxxx 


. The structure of a 2D SOM is 

depicted in Fig. 1(a). All neurons are first randomly initialized 

and then iteratively adapted based on the training set of input 

data. The training process can be described in several steps as 

follows [19]:  

Step 1 - Initialization: Randomly initialize all synaptic 

weight vectors in the input domain. 

Step 2 - Selection: Select a random input pattern x


. 

Step 3 – Competitive Learning: Find the Best Matching Unit 

(BMU) for the current input pattern x


. The BMU is found by 

minimizing the Euclidean distance between the input pattern 

x


 and the synaptic weight vectors w


: 
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Here, )(xBMU


is the BMU for input pattern x


, operator

 denotes the Euclidian distance, and N is the number of 

neurons in the SOM. 

Step 4 – Cooperative Updating: Update the synaptic 

weight vectors of all neurons in SOM using the cooperative 

update rule: 
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Here, n denotes the iteration, )(n is the learning rate and 

)()(, nh xBMUj
 is the value of the neighborhood function for the 

neuron j centered at )(xBMU


. 

Step 5 – Convergence Test: Until a specified convergence 

criterion is met go to Step 2 (e.g. based on the average weight 

update). 

The learning process is controlled by the dynamic learning 

rate and neighborhood function. The neighborhood function is 

typically implemented as a Gaussian function centered at the 

 
 (a) (b) 

Fig. 1 Self-Organizing Map displayed in the output space (a) and in the input 

space adapted to 2D distribution of input points (b). 



 

selected wining neuron. In order to enforce a convergent 

behavior the size of neighborhood is reduced by decreasing 

the standard deviation of the Gaussian function. The learning 

rate   controls the rate of adaptation of individual neurons. 

Its value is also typically exponentially decayed with the 

elapsed training time. An illustrative example of a 2D SOM in 

the input space adapted to a 2D distribution of data is shown 

in Fig. 1(b) 

III.  NEURAL-NETWORK BASED DATA-FUSION SYSTEM  

This Section describes the proposed architecture of the 

fuzzy-neural data fusion system for improved resiliency of 

critical infrastructures.  First, an architecture overview is 

presented. Next, individual blocks of the data fusion system 

are described in more detail. 

A. Architecture Overview 

The proposed data fusion system architecture is depicted in 

Fig.2. The system consists of three main blocks: Human 

Machine Interface (HMI), on-line processing, and the 

knowledge base. The knowledge base block is constructed off-

line based on the acquired training data. The information 

stored in the knowledge base is used to drive the on-line 

anomaly detection. The on-line processing block monitors and 

analyzes the incoming data stream of sensory measurements. 

The incoming measurements are passed through a sequential 

three-layered anomaly detection system, which evaluates the 

potential presence of an anomaly. Finally, the generated 

alarms are forwarded to the HMI and presented to the 

operator. 

The first layer of the on-line processing block consists of 

conventional min-max bounds on the measurements for 

normal operating conditions. When the incoming 

measurements reach outside the normal behavior interval, an 

alarm is immediately reported. The second layer consists of 

SOM, which was trained to model the previously observed 

normal behavior patterns. The on-line processing engine 

interprets each neuron of the SOM as a fuzzy rule, which is 

then applied to the incoming signal. The set of SOM based 

fuzzy rules determines the similarity of the current plant 

behavior with the previously observed patterns. The third layer 

consists of feed-forward NN behavior forecaster, which 

processes the previous history of plant behavior and predicts 

the near future patterns. These predicted patterns are then 

compared to the future real plant behavior and significant 

deviations are reported as prediction error. The prediction 

error from multiple sensors is fused into a robust anomaly 

indicator by a fuzzy logic controller. 

B. SOM based Anomaly Detection 

The conventional min-max bounds restrict the admissible 

system behavior into a multi-dimensional hyper-cube. 

Unfortunately, as long as the anomalous plant behavior stays 

within this min-max hyper-cube, the intrusion/anomaly will 

remain undetected. In order to alleviate this issue, the 

previously observed normal behavior is modeled using Self-

Organizing Map. This SOM trained on the approved normal 

behavior constitutes a normal behavior model stored in the 

knowledge base of the data-fusion system. 

 The implemented SOM is 2D lattice of C neurons. The 

input vector tX is constructed from the previous and the 

current sensory measurements as follows: 
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The SOM structure is trained on the approved normal 

behavior data until a convergence criterion is met. The trained 

SOM maps the topology of the normal data within the min-

max bounds hyper-cube.  

During the on-line processing stage, each neuron of the 

SOM is transformed into a fuzzy rule. Each fuzzy rule 

describes the similarity of particular input vector with a 

specific region of the min-max bound hyper-cube. The fuzzy 

rules use Gaussian membership functions, which can be 

described using two parameters mean mj and spread j . 

Parameter mj is set equivalent to the weight vector of neuron j. 

The spread parameter j  is set according to the average 

distance to the immediate topological neighbors of neuron j in 

the 2D SOM lattice. 

The strength of firing of specific rule Rj can be computed 

using the minimum operator as follows: 
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Here, index i denotes the i
th

 component of the input space. In 

this application, the output of each fuzzy rule is a singleton 

fuzzy set expressing the belonging of input pattern Xt to the 

 
 

Fig. 2 The fuzzy-neural data fusion system. 

  

 
Fig. 3 The Fuzzy-Neural System Architecture. 

  



 

normal behavior class. Hence, the output of a particular fuzzy 

rule is its own firing strength )( tR X
j

 . The output of all rules 

is aggregated using the maximum operator: 
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The resulting fuzzy logic system then calculates the 

similarity of the input vector with the expected normal 

behavior training data. 

C. Neural Network based Signal Forecasting 

The dynamics of the sensory measurements are determined 

by the underlying physical (chemical) processes. For a 

complex system it is very difficult to model this dynamic 

behavior using conventional mathematical modeling. 

However, the dynamic temporal behavioral patterns can be 

modeled using machine learning techniques such as the feed-

forward Neural Network. In the third layer of the proposed 

data fusion system, the NN based signal forecasting block is 

used to forecast the near future behavior of the plant based on 

the intermediate previous historical data. 

Fig. 3 depicts the implemented NN based signal forecasting 

block and the subsequent prediction error generation. The 

input vector to the feed-forward NN is constructed from the 

previous 3 sensory measurements as follows: 
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A separate NN was trained for each forecasted attributed of 

the modeled system. The future k values of the specific 

attribute are assigned as the desired forecasted output ty


. The 

trained set of NNs predicts the future k values of all monitored 

sensory measurements based on the available information. 

Once the future k samples of the actual plant behavior have 

been observed, they can be retrospectively matched against the 

original prediction and an error vector can be calculated. The 

i
th

 attribute the prediction error i

te for a plant signal forecasted 

at time t can be calculated as follows: 
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Hence, the NN based signal forecasting block generates a 

prediction error vector for all attributes of particular plant 

module. This error vector is transformed into a scalar robust 

anomaly indicator by a fuzzy logic controller as described in 

the following section. 

D. Fuzzy Logic based Alarm Generation 

One of the main goals of the implemented data-fusion 

system is to generate a small set of robust and easy-to-

understand alarms. The alarms are then presented to the 

operator through the HMI. For a specific plant module, the 

NN based signal forecasting block generates a vector of 

prediction errors for the set of available sensors. A Fuzzy 

Logic Controller (FLC) was implemented to fuse the 

prediction error into a robust scalar anomaly indicator [20]. 

The implemented FLC has two inputs. The first input is the 

maximum error emax from the calculated prediction based error 

vector. The second input is the absolute value of the current 

gradient of the sensory input with the highest prediction error 

gmax. After normalization, both inputs are fuzzified using two 

trapezoidal fuzzy sets Small and High as depicted in Fig. 4(a) 

and Fig. 4(b). The output of the anomaly indicator is modeled 

using three triangular fuzzy sets Small, Medium and High as 

depicted in Fig. 4(c), which express the anomaly level of the 

plant’s behavior. 

Table I show the used fuzzy rules and the respective output 

surface is depicted in Fig. 5. The used fuzzy rules suppress the 

amplitude of the produced anomaly indicator when a 

significant system transient is observed. The rationale behind 

this rule base is that it is reasonable to expect prediction error 

 
(a) (b) (c) 

Fig. 4 Input fuzzy sets (a), (b) and output fuzzy sets (c) for the prediction error based anomaly indicator FLC. 
  

 
Fig.5 Fuzzy logic control surface of the anomaly indicator. 

  
TABLE I 

FUZZY RULE TABLE 

emax/gmax Small
 

High
 

Small
 

Small Small 

High
 

High Medium 

 



 

if the plant is in a dynamic transient behavior. However, a 

behavior prediction error generated during a steady behavior is 

likely an indicative of an anomaly. 

IV. EXPERIMENTAL RESULTS 

This Section presents experimental testing of the 

implemented data fusion system. First, the considered 

experimental test-bed and the implemented test cases are 

described. Next, the performance of the data fusion system is 

demonstrated. 

A. Hytest Chemical Plan Model 

The used experimental test-bed was a Matlab Simulink 

model of the Idaho National Laboratory Hytest process, which 

is a testing facility for hybrid energy systems composed of 

tightly-coupled chemical processes [13], [14]. The system is 

composed of interconnected modules such as chemical 

reactors, heaters, condensers, storage tanks or compressors. 

Each Hytest module is equipped with a suite of 9 sensors 

measuring the stream flow rates, chemical compositions, 

pressure and temperature.  

The Hytest Simulink model was integrated with the 

designed data fusion system as described in Section III. Future 

work will be focused on designing a novel HMI for increased 

state-awareness of the plant control using the anomaly 

indication from the proposed data fusion system.  

B. Test Cases 

The implemented Hytest model allows for generating both 

normal and abnormal operating conditions. For the purposes 

of performance evaluation of the implemented data fusion 

system the following test cases have been considered: 

Test Case 1: Normal Steady Operations – The plant is in a 

stabilized steady state within the normal operating conditions. 

Test Case 2: Normal Transient Operation – The plant is in 

a dynamic transient purposely introduced by the operator 

within the normal operating conditions. 

Test Case 3: Component Failure in Transient Operation – 

In this scenario, a specific component of the modeled plant is 

subject to physical failure (e.g. stuck valve), which prevents 

the plant transient to perform according to the normal behavior 

patterns. 

Test Case 4: Intrusion Attempt in Steady Operation – Here, 

a component of the plant is compromised by an intrusion 

attack, which disrupts the steady state operation and forces the 

plant into a transient. 

C. Anomaly Detection 

Due to a limited space only the results of anomaly detection 

based of the prediction errors are demonstrated for test cases 

2, 3 and 4. In the testing scenarios, the sensors have been 

periodically sampled with a period of 10 seconds. The NN-

based forecaster was trained on the three most recent sensory 

readings as described in (10). For a single module with a suite 

of 9 sensors this resulted in 45-dimensional input vector for 

the NN. A dedicated NN was trained for prediction of the 

intermediate 6 future measurements for each sensors\, thus 

forecasting the next 1 minute of plant’s behavior. 

Fig. 6(a) shows the trended sensory variables during normal 

Hytest transient as recorded from one of the Hytest valves. 

The red line shows the true observed value. The overlapping 

blue dots show the next predicted 1 minute of plant behavior 

for each time sample. Finally, the black line denotes the 

prediction error. It can be observed that the beginning of the 

 
(a) 

 
(b) 

Fig. 6 Input fuzzy sets (a), (b) and output fuzzy sets (c) for the prediction error based anomaly indicator FLC. 

  



 

plant transient at time 300 seconds triggered prediction error 

due to unexpected gradient. Fig. 6(b) then shows the fused 

anomaly indicator. It can be seen that the FLC suppresses the 

amplitude of the anomaly indicator for the beginning of the 

transient due to high gradient of the sensory inputs. 

Fig. 7(a) shows the prediction error for the case of stuck 

valve. Because the stuck valve substantially changes the 

behavior of the plant model, the predicted signals do not 

match the observed behavior and high prediction errors are 

 
(a) 

 
(b) 

Fig. 8 Input fuzzy sets (a), (b) and output fuzzy sets (c) for the prediction error based anomaly indicator FLC. 
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(b) 

Fig. 7 Input fuzzy sets (a), (b) and output fuzzy sets (c) for the prediction error based anomaly indicator FLC. 
  



 

reported. Fig. 7(b) shows that the increased prediction error 

resulting in a timely reporting of this anomalous behavior. 

Finally, Fig. 8(a) shows the prediction errors due to 

malicious attack, when an intruder took control of the valve’s 

controller and started to gradually open this valve. Again, this 

unforeseen control action resulted in a mismatch between the 

predicted and the observed behavior. This is then reflected in 

the increased amplitude of the anomaly indicator as shown in 

Fig. 8(b). 

V. CONCLUSION 

This paper presented the design of a fuzzy-neural based data 

fusion system for increased state-awareness of resilient control 

systems. The implemented data fusion system consists of 

conventional threshold based alarms, anomalous behavior 

detector using self-organizing maps, and prediction error 

based alarms using neural network signal forecasting. The 

proposed system was integrated with a model of the Idaho 

National Laboratory Hytest hybrid energy systems testing 

facility. 

The presented experimental results demonstrated the 

benefits of the developed data fusion system in terms of 

improved cyber-security and state-awareness of the critical 

control system. The calculated anomaly indicators were shown 

to correctly predict the future plant’s normal behavior and 

detect anomalous behavior due to both system component 

failure and malicious network attack. Future work is intended 

to investigate the possibilities of further classifying the causes 

of observed anomalous behavior and integrating the results of 

the data-fusion system into an HMI. Furthermore, the 

performance validation, parameters tuning and resiliency 

improvement assessment of the designed data fusion engine is 

currently an ongoing research effort. 
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