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A voting scheme constitutes an essential component of many fault tolerant systems. Two
types of voters are commonly used in applications of real-valued systems: the inexact
majority and the amalgamating voters. The inexact majority voter effectively isolates erro-
neous modules and is capable of reporting benign outputs when a significant disagreement
is detected. However, an application specific voter threshold must be provided. On the
other hand, amalgamating voter, such as the weighted average voter, reduces the influence
of faulty modules by averaging the input values together. Unlike the majority voters, amal-
gamating voters are not capable of producing benign outputs. In the past, a Type-1 (T1)
fuzzy voting scheme was introduced, allowing for both smooth amalgamation of voter
inputs and effective signalization of benign outputs. The presented paper proposes an
extension to the fuzzy voting scheme via incorporating Interval Type-2 (IT2) fuzzy logic.
The IT2 fuzzy logic allows for an improved handling of uncertain assumptions about the
distributions of noisy and erroneous inputs which are essential for correct design of the
fuzzy voting scheme. The proposed voter design features robust performance when the
uncertainty assumptions dynamically change over time. The IT2 fuzzy voter architecture
was compared against the average voter, inexact majority voter, and the T1 fuzzy voter
using a refined experimental harness. The reported results demonstrate improved avail-
ability, safety and reliability of the presented IT2 fuzzy voting scheme.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Voting schemes constitute fundamental components of many fault tolerant systems [30]. Voters provide error masking
and noise removal capabilities in a variety of real world applications [18]. Voting can be implemented at different system
levels, for example in data fusion at sensory level using a set of redundant sensors [24], in control systems, where redundant
HW or SW components are used to produce control signals [39], or at the actuator level [31].

Voting systems typically include an arbiter that fuses the inputs from multiple redundant modules. This manuscript fo-
cuses on the Triple-Modular Redundancy (TMR) system. A schematic view of the TMR system is depicted in Fig. 1. Various
approaches for arbitration, such as amalgamating or majority voting, can be found in literature [18]. The amalgamating vot-
ers use the weighted average to obtain the final output value. The assumptions of independent noise and error signals in the
system are used to reduce their impact on the fused outputs. On the other hand, the majority voter attempts to isolate erro-
neous inputs by excluding them from the arbitration process [17]. In case of real valued systems, inexact majority voting
must be used. However, such systems require an application specific distance threshold for evaluating the equality among
voters. Unlike the amalgamating voters, the majority voters produce benign outputs in case of a complete disagreement
. All rights reserved.
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Fig. 1. A Triple-Modular Redundancy (TMR) voting system [19].
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among voter inputs. Here, benign output refers to a complete disagreement among individual modules likely leading to an
incorrect result of the arbitration.

Various applications of fuzzy logic related to voting and group decision-making systems can be found in literature. A fuz-
zy extension to the equivalence relation was proposed in [22], where fuzzy logic was used to smooth out the precise equiv-
alence concept. In a similar manner, the smoothing of the output decisions provided by fuzzy logic was used for combining of
the results of boosting classifiers and pattern classification algorithms [13,16]. Recently, a consensus model for group deci-
sion-making utilizing fuzzy preference relations and fuzzy linguistic context was also developed [12,25]. A distinct approach
to group decision-making utilizing the ranking values computed based on IT2 fuzzy sets was presented by Chen et al. [3].

A Type-1 (T1) fuzzy voting scheme was proposed in the past [19]. This system utilized T1 fuzzy logic to combine the amal-
gamating properties of averaging voters with the error separation capabilities of majority voters. Fuzzification of voter inputs
eliminated the need for specifying a precise and application-dependent distance threshold, while maintaining the ability of
the voter to report benign outputs. In [19], the experimental results demonstrated that the T1 fuzzy voter offers increased
availability and reduces the number of benign outputs at a cost of minor degradation in the safety performance.

This manuscript extends the T1 fuzzy voting design via incorporating the Interval Type-2 (IT2) fuzzy logic [14,27]. First, it
is demonstrated that the behavior of the T1 fuzzy voting scheme relies on an accurate assessment of the expected distribu-
tions of noise and errors in the system. The performance of the T1 fuzzy controller is susceptible to dynamic uncertainties
manifested as variations of the assumed input signals distributions. The IT2 fuzzy logic has the potential to cope with such
dynamic uncertainties. In other words, IT2 fuzzy logic based voters improve the system quality and stability when the initial
assumptions about the system behavior change over time.

Next, a specific asymmetrical blurring scheme for obtaining an IT2 fuzzy voting design from a given T1 fuzzy voter archi-
tecture is proposed. The performance of the IT2 fuzzy voting scheme is demonstrated on a refined experimental harness. The
experimental system allows for a separate modeling of noise and error signal distributions. The IT2 fuzzy voting system was
compared against the T1 fuzzy voter, the inexact majority voter, and the simple averaging voter.

The rest of the paper is organized as follows. Section 2 provides a background overview on T1 and IT2 fuzzy logic. Section
3 reviews and analyses the previously published T1 fuzzy voting system. The novel presented IT2 fuzzy voting scheme is
described in Section 4. Experimental results are presented in Section 5 and the paper is concluded in Section 6.

2. Overview of T1 and IT2 fuzzy logic systems

This section provides an overview of T1 and IT2 fuzzy logic systems.

2.1. Type-1 fuzzy logic systems

T1 fuzzy logic systems (FLSs) have been used in a wide range of engineering applications [26]. The main advantage of T1
FLSs is the ability to incorporate human-understandable knowledge encoded as linguistic fuzzy rules. In addition, T1 FLSs can
cope with ambiguity, imprecision and uncertainty.

A T1 FLS is composed of four major components – input fuzzification, fuzzy inference engine, fuzzy rule base and output
defuzzification. The considered Mamdani FLS maintains a fuzzy rule base populated with fuzzy linguistic rules in an impli-
cative form. As an example, consider rule Rk:
Rule Rk : IF x1 is Ak
1 AND � � �AND xn is Ak

n THEN yk is Bk ð1Þ
Here, symbol Ak
j and Bk denote the jth input fuzzy set and the output fuzzy set, n is the dimensionality of the input vector

~x, and yk is the associated output variable. Each element of the input vector ~x is first fuzzified using the respective fuzzy
membership function (e.g. Gaussian, triangular, trapezoidal, etc.). The fuzzification of input xi into fuzzy set Ak

i yields a fuzzy
membership grade lAk

i
ðxiÞ. Using the minimum t-norm, the degree of firing of rule Rk can be calculated as
lRk
ð~xÞ ¼minflAk

i
ðxiÞg; i ¼ 1; . . . ;n ð2Þ
Upon applying the rule firing strength via the t-norm operator (e.g. minimum or product) to each rule consequent, the
output fuzzy sets are aggregated using the t-conorm operator (e.g. the maximum operator), resulting in an output fuzzy
set B. Detailed description of the fuzzy inference process can be found in [26].



O. Linda, M. Manic / Information Sciences 181 (2011) 2933–2950 2935
Finally, the output fuzzy set B is defuzzified in order to obtain the final output value. Several defuzzification techniques
can be found in literature, e.g. centroid defuzzifier, center-of-sums defuzzifier, heights defuzzifier, or the center-of-sets
defuzzifier [26]. Here, upon discretizing the output domain into N samples, the centroid defuzzifier is used to produce a final
output value y:
y ¼
PN

i¼1yilBðyiÞPN
i¼1lBðyiÞ

ð3Þ
2.2. Interval Type-2 fuzzy logic systems

Dynamic uncertainties, ubiquitous in many real world applications, can negatively affect the performance of the imple-
mented control system [1,4,26]. The T1 FLS uses fixed fuzzy memberships that cannot directly address such variable condi-
tions. Neglecting this uncertainty can lead to a subsequent deterioration of the system quality [10].

Type-2 fuzzy logic systems (T2 FLSs), originally proposed by Zadeh [40], have recently gained increased attention
[6,14,27,28,35,41]. Their ability to outperform T1 FLSs when presented with dynamic uncertainties was demonstrated in
many engineering applications [10,20,26]. T2 FLSs allow for modeling of dynamic uncertainties by introducing additional
degrees of freedom (the T2 fuzzy membership functions use membership degrees that are themselves fuzzy sets).

Recently, new representations for general T2 FLSs such as geometric T2 FLSs [6], zSlices [35], a-planes [21,28] or a-cuts
[11] were introduced. However, the Interval T2 (IT2) FLSs [27,37], also known as Interval-Valued FLSs [7,32,33] are still
the most commonly used. The favored computational efficiency of IT2 FLSs comes from using the concept of Footprint of
Uncertainty (FOU) for defining each IT2 fuzzy set. The FOU can be described by two bounding T1 fuzzy membership func-
tions [26].

An IT2 fuzzy set eA can be expressed as [26]:
eA ¼ Z
x2X

Z
u2Jx

1=ðx;uÞ Jx # ½0;1� ð4Þ
Here, x and u are the primary and the secondary variables, and Jx is the primary membership of x. In case of IT2 fuzzy sets,
all secondary grades of fuzzy set eA are equal to 1. A vertical slice of the IT2 fuzzy set can be obtained by instantiating the
variable x into a specific value x0:
leAðx ¼ x0;uÞ � leAðx0Þ ¼
Z

u2Jx0

1=u Jx0 # ½0;1� ð5Þ
The domain of the primary memberships Jx defines the FOU of fuzzy set eA:
FOUðeAÞ ¼[
x2X

Jx ð6Þ
The FOU of an IT2 fuzzy set eA can be also described by its upper and lower membership functions. Hence
FOUðeAÞ ¼ [
8x2X

ðleAðxÞ; �leAðxÞÞ ð7Þ
For an ease of understanding, the concepts of FOU and the lower and upper membership function are depicted in Fig. 2. This
representation offers a substantial simplification when compared to general T2 FLSs. Here, only two T1 fuzzy membership
functions (the upper, �leAðxÞ, and the lower, leAðxÞ boundary of the FOU) are used to completely describe each IT2 fuzzy set.
This simplification is then transferred through an altered inference mechanism utilizing the modified interval T2 fuzzy join
and meet operations [26]. The interval join and meet operations work exclusively with the FOU of the IT2 fuzzy sets, thus
removing much of the computational burden that comes with general T2 fuzzy set arithmetic.

In order to obtain an output value, the resulting output IT2 fuzzy set eB must be first type-reduced and then defuzzified.
The interval centroid of the IT2 fuzzy set eB is defined as [15]:
Fig. 2. Interval Type-2 fuzzy set.
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CeB ¼
Z

h12Jx1

� � �
Z

hN2JxN

1
PN

i¼1xihiPN
i¼1hi

,
ð8Þ
Here, every combination of variables h1, . . . ,hN, each selected from the respective primary memberships, forms and
embedded fuzzy set [26]. In the presented manuscript, the Nie–Tan (N–T) type reduction method was used due to its com-
putational inexpensiveness [29]. The N–T method first computes the centroid of each vertical slice in each primary member-
ship Jxi

of the output IT2 fuzzy set and then defuzzifies the resulting type-reduced set. For the IT2 fuzzy sets, the centroid uj of
the jth vertical slice simply becomes
uj ¼
1
2
ðleAðxjÞ þ �leAðxjÞÞ ð9Þ
Assuming that the output domain was discretized into M samples, the defuzzified output is obtained as in [29]:
y ¼
PM

j¼1xj �leAðxjÞ þ
PM

j¼1xjleAðxjÞPM
j¼1 �leAðxjÞ þ

PM
j¼1leAðxjÞ

ð10Þ
In other literature, the Karnik–Mendel (KM) iterative procedure is typically used [38]. The KM method computes the left
and the right boundaries of the output interval centroid CeB . However, since this information is not utilized in the presented
work, the computationally less expensive N–T method was favored instead. Other available methods for defuzzification of
IT2 FS are the direct defuzzifier [5], the collapsing method [9] or the sampling approach [8].

3. Type-1 fuzzy voting scheme: review and analysis

This section reviews the previously published T1 fuzzy voting scheme [19]. In addition, an analysis of the T1 fuzzy voter is
presented.

3.1. Type-1 fuzzy voting scheme

A T1 fuzzy voting scheme was introduced by Latif-Shabgahi and Hirst in [19]. This voter design combined the amalgam-
ating capability of averaging voters with the benign input and outlier recognition ability of inexact majority voters. The T1
fuzzy voting architecture was explained on an example of a TMR system (illustrated in Fig. 1). Nevertheless, the proposed
concept can be generalized for an n-modular system. An overview of this T1 fuzzy voter architecture is shown in Fig. 3.
The fuzzy voter computes the weighted average of the system inputs using weights, which are determined by a T1 fuzzy
inference engine.

In the first step of the algorithm, the differences between all pairs of input signals are computed as follows:
dij ¼ jxi � xjj; i – j ð11Þ
Here, xi and xj are distinct voter inputs.
Next, the differences dij are fuzzified using the fuzzy difference concept lA(dij), where A : {Small,Medium,Large}. As shown

in Fig. 4, the design of the triangular fuzzy difference membership functions is determined by three parameters p, q and r. As
denoted in [19], the behavior of the fuzzy voter can be tuned by adjusting these parameters. Fig. 4 also depicts that the fuzzy
difference concept divides the range of difference values into three sub-regions of definite agreement, uncertain fuzzy agree-
ment and definite disagreement. The second part of this section demonstrates that the correct initial assumptions about the
distributions of noise and errors in the voter’s inputs are required for the selection of parameters p, q and r.

The computed fuzzy differences describe the agreement of each input signal of the TMR system with the other two inputs.
The fuzzy voter transforms this input measure into a concept of fuzzy agreeability. In [19], the fuzzy agreeability concept
lB(wi) of weight wi was modeled using five evenly positioned output fuzzy sets {vlow, low,med,high,vhigh}. As depicted in
Fig. 5, the output fuzzy sets are determined by three parameters u, v and w, which allow for additional tuning of the behavior
of the voter.

The mapping of fuzzy differences into fuzzy agreeability is achieved via standard fuzzy inference mechanism [26]. The
fuzzy knowledge base contains linguistic rules in the implicative form given in (1). The minimum t-norm was used to
Fig. 3. Architecture of the T1 fuzzy voter [19].



Fig. 4. Fuzzy difference concept of T1 fuzzy voter.

Fig. 5. Fuzzy agreeability concept of T1 fuzzy voter [19].

Table 1
Rule matrix for fuzzy input variables [19].

& dij

Small Medium Large

dik Small Vhigh High Med
Medium High Low Vlow
Large Med Vlow Vlow
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compute the rule firing strength based on the set of antecedents. The outputs of the fuzzy rules were aggregated using the
maximum t-conorm.

The set of linguistic fuzzy rules provides a fundamental description of the voting behavior. Table 1 shows the fuzzy rule
base for a TMR system adopted from [19] and also used in this paper. The included rules provide an intuitive way of mapping
the fuzzy differences between individual inputs to the fuzzy agreeability concept. In this specific set of linguistic rules, higher
value of fuzzy agreeability is assigned when smaller differences between inputs are detected. In a similar manner, the system
outputs small fuzzy agreeability when the input value is far apart from the other inputs. Other variations of the fuzzy rule
table are also possible.

The fuzzy voting scheme uses the weighted average calculation to obtain the final output. The weights are determined by
defuzzifying the fuzzy agreeability concept of each input signal. In [19], the height-type defuzzifier was used. For a set of
output fuzzy sets Bj, as depicted in Fig. 5, and the calculated centroids Cj of output fuzzy sets Bj the weight wi of input xi

can be computed as
wi ¼
PM

j¼1lBj
CjPM

j¼1lBj

ð12Þ
Here, M is the number of output fuzzy sets. For the special case depicted in Fig. 5, Cvlow = 0, Clow = u = 0.25, Cmedium = v = 0.5,
Chigh = w = 0.75 and Cvhigh = 1.

The final output value y for an m-way fuzzy voter is obtained by weighting each input signal xi with the calculated weight
wi:
y ¼
Pm

i¼1xiwiPm
i¼1wi

ð13Þ



Fig. 6. Fuzzy difference concept D1 (a) and D2 (b).

Fig. 7. Output of the T1 fuzzy voter for different system parameters.
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The T1 fuzzy voting system is specified by its six parameters {p,q,r,u,v,w}. Two common approaches can be adopted to
set the values of these parameters. Typically, the parameters can be set based on expert’s knowledge about the problem do-
main. Alternatively, the parameters can be tuned using an optimization algorithm to maximize specific performance criteria.
Here, for example the genetic algorithms can be utilized [23].

3.2. T1 fuzzy voter analysis

In the original publication [19], no guidelines were given for determining the parameters of the T1 fuzzy voting system. In
this section, it is demonstrated that appropriate choice of these parameters is necessary, should the fuzzy voter perform as
desired.

Consider a set of 10 distinct fuzzy voters obtained by linearly interpolating between two fuzzy difference concepts D1 and
D2, with parameter values as follows (depicted in Fig. 6):
D1 : p ¼ 1; q ¼ 3; r ¼ 6 ð14Þ
D2 : p ¼ 5; q ¼ 14; r ¼ 19 ð15Þ
This interpolation process constructs 10 fuzzy voters by linearly shifting (stretching) the fuzzy difference sets of D1 to-
wards the fuzzy difference sets of D2. For instance, voter number 5, will be constructed using the parameters p = 3,
q = 8.5, r = 12.5.

Consider three inputs to the TMR fuzzy voter system with values Input1 = � 0.5, Input2 = 1.0 and Input3 = 7.0, when the
correct input value is assumed to be 0. Signals Input1 and Input2 simulate noisy inputs, while signal Input3 carries an erro-
neous value.

Fig. 7 demonstrates the output of the 10 tested T1 fuzzy voters obtained by interpolating between the fuzzy difference
concepts D1 and D2. It can be observed that for fuzzy difference concept D1 the T1 fuzzy voter behaves similarly as the inexact
majority voter. As the interpolated fuzzy difference concept approaches concept D2, the behavior of the fuzzy voter smoothly
shifts towards the performance of the averaging voter. This change in behavior is achieved by assigning more fuzzy agree-
ability to higher values of fuzzy difference between the input signals. This result demonstrates that for a given distribution of
input signals, the behavior of the T1 fuzzy voter can be tuned by changing the design of the fuzzy difference concept.



Fig. 8. Fuzzy difference concept D3.

Fig. 9. Output of the fuzzy voter for different input values.
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The opposite problem can be encountered when the parameters of the T1 fuzzy voter are fixed, but the distributions of
noise and errors in the input signals dynamically change over time (simulating dynamic uncertainties). Consider the fuzzy
difference concept D3, depicted in Fig. 8 and defined as
D3 : p ¼ 3; q ¼ 8; r ¼ 15 ð16Þ
The behavior of this TMR T1 fuzzy voter is demonstrated for three input signals, where Input3 signal is increasing its dif-
ference from the other two inputs. Signals Input1 and Input2 are constant. This scenario demonstrates dynamically changing
error signal distribution imposed on the Input3 signal. The behavior of the T1 fuzzy voter using the fuzzy difference concept
D3 is demonstrated in Fig. 9. It can be observed that for the chosen parameters, the final output of the T1 fuzzy voter behaves
similar to the averaging voter for small differences between inputs and it smoothly approaches the behavior of the majority
voter for larger input signal differences. This behavior variation is achieved by shifting the difference of the Input3 signal
away from the averaging section (region of definite agreement in Fig. 4) of the fuzzy voter towards the outlier detection sec-
tion (region of definite disagreement in Fig. 4).

The presented analysis revealed the importance of designing the T1 fuzzy voter architecture respective of the expected
distributions of noise and error signals in voter inputs. Furthermore, it was observed that the T1 fuzzy voter behavior is
highly sensitive to dynamically changing and uncertain input noise and error distributions. In order to reduce such sensitiv-
ity and improve the robustness of the voting system, the IT2 fuzzy voting scheme is introduced in this paper.
4. Interval Type-2 fuzzy voting scheme

The performance of the T1 fuzzy voting scheme deteriorates when confronted with dynamically changing and uncertain
distributions of noise and errors. Many researchers showed that T2 fuzzy logic controllers are more robust to uncertain in-
puts and that they can cope with dynamic uncertainty [10,20,26]. In this section, an IT2 fuzzy voting scheme is proposed.

Assume a previously constructed T1 fuzzy voter architecture specified by its six design parameters {p,q,r,u,v,w} and by a
set of linguistic fuzzy rules as depicted in Figs. 4, 5 and shown in Table 1. The T1 fuzzy membership functions can be
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transformed into their respective IT2 counterparts by introducing the secondary uncertainty domain and blurring the fuzzy
sets into their FOUs. In this manner, the T1 fuzzy concepts of difference and agreeability become IT2 fuzzy concepts. The
created IT2 fuzzy voting scheme then uses the IT2 fuzzy inference process.

In the specific application of fuzzy voting, the introduction of IT2 fuzzy membership functions improves the ability of the
fuzzy voter to cope with varying noise distributions in the input signals. However, a special care needs to be applied when
blurring the fuzzy difference membership functions. As already argued in [19], the range of input differences is divided by
the fuzzy sets into three distinct regions of definite agreement, uncertain fuzzy agreement and definite disagreement (Fig. 4).
Small values of input difference are mapped into the region of definite agreement, where the voter performs mainly the aver-
aging function. Next, the middle region of uncertain fuzzy agreement considers the inputs to be correct to a lesser or greater
extent. Finally, the third region of definite disagreement is responsible for recognizing and isolating erroneous inputs. The
averaging capability of the fuzzy voter should be strengthened in the first two regions. However, such modification should
not affect the region of definite disagreement, where strict recognition of the erroneous inputs and their subsequent isolation
is desired.

Here, an asymmetric blurring scheme of the input fuzzy sets of the fuzzy difference concept is presented. In the proposed
design, the Small difference fuzzy set is blurred symmetrically in both directions around the T1 fuzzy membership function.
The T1 fuzzy membership function becomes the principal membership function of the created IT2 fuzzy set. The Medium
difference fuzzy set is blurred only in the direction of the smaller differences. Finally, the Large difference fuzzy set remains
unchanged as T1 fuzzy set. In this manner, the IT2 fuzzy logic improves the robustness of the controller in the first two re-
gions of definite agreement and uncertain fuzzy disagreement. However, the ability of the controller to recognize faulty inputs
in the definite disagreement region is maintained by using the T1 fuzzy sets for the fuzzy difference concept Large. The output
fuzzy agreeability fuzzy sets are blurred symmetrically around the respective output T1 fuzzy sets. In this manner, uncer-
tainty about the output value is incorporated into the controller’s design.

The IT2 fuzzy voter design process goes as follows. First, the proposed design methodology computes the maximum
amount of allowable blur for the provided T1 fuzzy voting architecture. This process is depicted in Fig. 10. The calculation
of maximum allowable blur ensures that reasonable amount of overlap between neighboring fuzzy sets is achieved. The
maximum allowable blur for fuzzy difference sets Small and Medium DS

X and DM
X and the output fuzzy sets of fuzzy agreeabil-

ity DOut are determined as follows:
Fig. 10.
DS
X ;D

M
X ;DOut

n o
¼ ðq� pÞ

3
;
2ðq� pÞ

3
;
ðv � uÞ

4

� �
ð17Þ
The computation of the maximum allowable blur for the output fuzzy sets DOut assumes regular distribution of fuzzy
agreeability membership functions. If this is not the case, the smallest distance between two neighboring output fuzzy sets
can be used instead.

Second, the user-specified blurring constant a 2 [0,1]is applied to calculate the parameters of the new IT2 fuzzy member-
ship functions. This process is illustrated in Fig. 11(b) and (d) for the fuzzy difference concept. The final design of the mem-
bership functions of the IT2 fuzzy voting scheme is demonstrated in Fig. 12.

The size of the FOUs of the IT2 fuzzy sets can be controlled by varying the blurring constant a. Values close to zero result
only in minor modification of the original T1 fuzzy voter. Values close to 1 create IT2 fuzzy voting system with large FOUs
producing maximum smoothing of the arbitrated result. It should be noted here that other blurring schemes that can lead to
different voting behaviors and performance are also possible. Alternatively, optimization method such as genetic algorithms
could be applied to tune the IT2 fuzzy voter to the specific operating conditions and the desired objective function [34,36].

The proposed asymmetrical blurring design is in agreement with an experimental study performed by the authors [20].
Here, it was demonstrated that the symmetrical blurring design introduces global smoothing of the control surface. This can
improve the ability of the controller to deal with noisy inputs; however, it can also reduce the responsiveness of the control-
ler. In scenarios when fast and sudden response is required (e.g. turning around corners for a wall-following robot, or deter-
mining erroneous modules in fault-tolerant systems), the T1 fuzzy membership function could outperform their IT2
counterparts.
The proposed blurring of the Small and Medium fuzzy difference membership functions (a) and blurring of the output concept of fuzzy agreeability.



Fig. 11. The proposed blurring of the small (a) and (b) and the medium (c) and (d) fuzzy difference membership functions.

Fig. 12. Type-2 fuzzy difference concept (a) and the type-2 fuzzy agreeability concept (b) obtained by blurring the original Type-1 membership functions.
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The IT2 fuzzy voting scheme was explained on an example of a Triple-Modular Redundancy system. However, the algo-
rithm can be easily extended to voting systems with higher dimensionality. For an m-way voter m weights must be calcu-
lated, one for each individual input signal. The number of individual fuzzy logic engines will also be m. Each fuzzy logic
engine takes as input (m � 1) differences to the other input signals. For the considered Mamdani type fuzzy logic controller,
the fuzzy rule base of each fuzzy logic engine must contain n(m�1) fuzzy rules, where n is the number of input fuzzy sets. This
exponential growth of the size of the fuzzy rule base might be considered a potential bottleneck for the fuzzy voting system
with higher dimensionality. However, it should be noted that majority of voting systems are constructed as TMR or as a hier-
archy of TMR subsystems.

5. Experimental results

This section presents the performance evaluation of the proposed IT2 fuzzy voting system. First, a novel experimental
harness is introduced. The proposed experimental setup allows for separate injection of noise and errors into the input sig-
nals. Next, the quality of the proposed voting scheme is validated using an exemplary test case. The performance of the vot-
ing system is compared to the averaging, inexact majority and the T1 fuzzy voting systems. Finally, the effect of parameter
adjustment and the scalability of the fuzzy voting scheme are studied.

5.1. Testing methodology

An experimental harness for testing the performance of voting systems was presented in [2]. In this paper, the testing
methodology is further refined in order to better assess the performance of the proposed voting system with respect to noise
and errors contained in the input signal. The proposed experimental harness for a TMR system is depicted in Fig. 13.



Fig. 13. Refined TMR experimental harness for testing of voting algorithms.
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In this scheme, the input generator replicates the input signal into three branches. In each branch, the signal can either
undergo an error injection with probability perr, or a noise injection with probability (1 � perr). The resulting signals are then
presented to the voter, which arbitrates among them. The final result is obtained by comparing the initial correct input value
to the voter’s output.

When compared to the previous experimental setup presented in [2], the novel methodology allows for separate simu-
lation of erroneous and noisy signals. This is essential in the presented work, since modulating the amplitudes and distribu-
tions of noise and error signals simulates the dynamic uncertainties of real world systems. In addition, the likelihood of an
error can be adjusted for each module separately.

In the rest of this section an exemplary test case is presented and studied. The outputs of the implemented voters are
compared to the correct input signal by using a specified distance threshold. In the performed experiments, the distance
threshold should distinguish between noisy and erroneous inputs. Hence, the value of the distance threshold was chosen
equivalent to the q parameter of the fuzzy difference concept (Fig. 4). The same value was also selected as the equivalence
threshold for the inexact majority voter.

The voter’s output is considered correct if its value differs from the correct reference input by lesser value than the dis-
tance threshold. In the opposite case, an incorrect voting result is reported. The inexact majority voter and the T1 and the IT2
fuzzy voters can also produce benign outputs. A benign output occurs when a complete disagreement is found among all
input signals.

The behavior of a certain voting algorithm can be described by different quality measures. The following values are com-
puted during the experiment: nc is the number of correct outputs, nic is the number of incorrect voting outputs, nb is the
number of benign outputs and N is the total number of voting cycles. For the purpose of qualitative comparison, several cri-
teria that are essential to fault tolerant systems are considered. The availability measure is computed as 1 � nb/N, defining the
ratio of time when an output is available to the user. The safety measure is calculated as 1 � nic/N. The reliability measure is
obtained as nc/N. In addition, the Root Mean Square Error (RMSE) of all, correct and incorrect voting cycles was computed.
The RMSE measures provide additional insight into the degree of correctness or incorrectness of the arbitrated output.

It is worth noting that the availability of the averaging voter is not considered, since the voting scheme is not capable of
reporting a benign output. The averaging voter always produces an output value regardless of its meaningfulness.
5.2. Test case

In this experimental evaluation, a simulated TMR system receives a reference input signal, which is set to 0. The TMR sys-
tem has one faulty module, which produces an error with probability perr = 0.2. The error is manifested as a value of 20.0
injected to the reference signal. In addition all modules inject noise into the input signal. The injected noise has a uniform
distribution in the interval [� Amp,Amp], where Amp 2 {1, . . . ,12}. This interval of values covers a reasonable range of noise
signals with respect to the error signal.

In this case study, the parameters of the fuzzy difference concept of the T1 fuzzy voter are as follows:
DA : p ¼ 3; q ¼ 7; r ¼ 15 ð18Þ
The IT2 fuzzy voter is constructed according to the algorithm presented in Section 4. Here, the blurring constant a = 1 was
applied implementing the maximum allowable amount of blur into the design of the respective IT2 fuzzy membership func-
tions. Both T1 and IT2 fuzzy difference and fuzzy agreeability concepts are shown in Fig. 14.



Fig. 14. Fuzzy difference and fuzzy agreeability concepts of the T1 (a) and (c) and IT2 (b) and (d) fuzzy voter for the presented test case.

Fig. 15. Comparison of the control surfaces of the T1 (a) and the IT2 (b) fuzzy voters for the presented test case.
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The behavior of both TMR T1 and IT2 fuzzy voters can be compared by plotting their respective control surfaces. The con-
trol surfaces are constructed by calculating the fuzzy agreeability value for each combination of the input fuzzy differences.
The T1 and IT2 fuzzy control surfaces are depicted in Fig. 15.

The following observations can be made. Firstly, as the plotted control surfaces demonstrate, the IT2 fuzzy voter design
introduces substantially smother control surface. However, the complexity of the system with respect to the size of the fuzzy
rule base remained the same (no additional fuzzy rules or fuzzy sets were used). Hence, smoother arbitrating can be
achieved.

Secondly, the plotted control surfaces in Fig. 15 also show the benefit of the proposed asymmetric blurring design for
obtaining the IT2 fuzzy voter architecture. While the control performance was smoothed out in the definite agreement
and the uncertain fuzzy agreement regions of the fuzzy difference concept, the desired separation of erroneous inputs in
the definite disagreement region was retained.

Next, the proposed IT2 fuzzy voter was compared to the averaging, inexact majority and the T1 fuzzy voting scheme. A
batch of 10,000 voting cycles was repeated 10 times for each considered noise level. The distance threshold for both the inex-
act majority voting and for identifying correct voting outputs was set to 7 (the value of parameter q for the fuzzy difference



Fig. 16. Experimental results of the presented test case: availability (a), safety (b), reliability (c), RMSE (d), RMSE correct (e), and RMSE incorrect (f).
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concept). The average values as well as the standard deviations of the results were computed. The calculated quality
measures of availability, safety, reliability, RMSE and RMSE of correct and incorrect voting cycles are all plotted in Fig. 16.
In addition, the calculated results are also presented in Tables 2 and 3. Here, both average (bold italics font size) and standard
deviations (italics font size) of the results are denoted. For ease of understanding, the best voting performance for each level
of noise is highlighted by using bold font in Tables 2 and 3.

By observing Fig. 16 and studying Table 2 it can be concluded that one of the main benefits of the proposed IT2 fuzzy voter
is its increased availability. This is achieved by increasing the overlap between neighboring fuzzy sets and thus avoiding pre-
mature definite disagreement among system inputs.

Less expected might the fact that the cost of the increased availability was not paid by either decreased safety or reliabil-
ity. In the matter of fact, in most cases the safety and the reliability measures of the proposed IT2 fuzzy voting scheme were
higher than of its T1 counterpart or the inexact majority voter. This can be attributed to the increased overlap between
neighboring fuzzy sets and the non-linearity and smoothness of the arbitrating behavior.



Table 2
Comparison of availability, safety and reliability for different voting schemes, mean (bold italic font) and standard deviation (italic font).

Noise amplitude Availability Safety Reliability

Majority Fuzzy T1 Fuzzy IT2 Average Majority Fuzzy T1 Fuzzy IT2 Average Majority Fuzzy T1 Fuzzy IT2

1 1.0000 1.0000 1.0000 0.9751 1.0000 1.0000 1.0000 0.9751 1.0000 1.0000 1.0000
±0.0000 ±0.0000 ±0.0000 ±0.0012 ±0.0000 ±0.0000 ±0.0000 ±0.0012 ±0.0000 ±0.0000 ±0.0000

2 1.0000 1.0000 1.0000 0.9441 1.0000 1.0000 1.0000 0.9441 1.0000 1.0000 1.0000
±0.0000 ±0.0000 ±0.0000 ±0.0016 ±0.0000 ±0.0000 ±0.0000 ±0.0016 ±0.0000 ±0.0000 ±0.0000

3 1.0000 1.0000 1.0000 0.9315 1.0000 1.0000 1.0000 0.9315 1.0000 1.0000 1.0000
±0.0000 ±0.0000 ±0.0000 ±0.0027 ±0.0000 ±0.0000 ±0.0000 ±0.0027 ±0.0000 ±0.0000 ±0.0000

4 0.9970 0.9968 1.0000 0.9248 1.0000 1.0000 1.0000 0.9248 0.9970 0.9968 1.0000
±0.0004 ±0.0005 ±0.0000 ±0.0021 ±0.0000 ±0.0000 ±0.0000 ±0.0021 ±0.0005 ±0.0005 ±0.0000

5 0.9823 0.9819 0.9942 0.9179 1.0000 1.0000 1.0000 0.9179 0.9823 0.9819 0.9942
±0.0014 ±0.0015 ±0.0008 ±0.0023 ±0.0000 ±0.0000 ±0.0000 ±0.0023 ±0.0014 ±0.0015 ±0.0008

6 0.9657 0.9751 0.9876 0.9142 1.0000 1.0000 1.0000 0.9142 0.9657 0.9751 0.9876
±0.0023 ±0.0016 ±0.0011 ±0.0026 ±0.0000 ±0.0000 ±0.0000 ±0.0026 ±0.0023 ±0.0016 ±0.0011

7 0.9486 0.9706 0.9824 0.9148 1.0000 0.9993 0.9995 0.9148 0.9486 0.9699 0.9819
±0.0018 ±0.0016 ±0.0013 ±0.0030 ±0.0000 ±0.0003 ±0.0002 ±0.0030 ±0.0018 ±0.0018 ±0.0014

8 0.9354 0.9688 0.9791 0.9089 0.9760 0.9775 0.9794 0.9089 0.9114 0.9463 0.9586
±0.0015 ±0.0019 ±0.0016 ±0.0026 ±0.0016 ±0.0011 ±0.0009 ±0.0026 ±0.0027 ±0.0026 ±0.0018

9 0.9176 0.9610 0.9699 0.9020 0.9178 0.9240 0.9298 0.9020 0.8354 0.8850 0.8997
±0.0029 ±0.0024 ±0.0023 ±0.0025 ±0.0022 ±0.0028 ±0.0023 ±0.0025 ±0.0033 ±0.0035 ±0.0031

10 0.8947 0.9519 0.9611 0.8864 0.8458 0.8473 0.8571 0.8864 0.7406 0.7992 0.8182
±0.0029 ±0.0023 ±0.0021 ±0.0026 ±0.0035 ±0.0023 ±0.0030 ±0.0026 ±0.0044 ±0.0024 ±0.0028

11 0.8676 0.9438 0.9521 0.8660 0.7718 0.7746 0.7840 0.8660 0.6394 0.7184 0.7360
±0.0030 ±0.0017 ±0.0015 ±0.0044 ±0.0044 ±0.0036 ±0.0030 ±0.0044 ±0.0055 ±0.0032 ±0.0029

12 0.8407 0.9328 0.9445 0.8431 0.7177 0.7154 0.7163 0.8431 0.5583 0.6482 0.6608
±0.0032 ±0.0019 ±0.0018 ±0.0052 ±0.0063 ±0.0048 ±0.0055 ±0.0052 ±0.0043 ±0.0047 ±0.0051
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Next, it can be observed that the overall RMSE measure was slightly lower for the IT2 fuzzy voter in majority of the con-
sidered noise levels. In other words, when both fuzzy voters were correct the IT2 fuzzy voter typically produced results that
were closer to the reference correct output signals.

Fig. 16 also clearly demonstrates the fundamentally different arbitrating behavior of the averaging voting scheme. The
first difference is that the averaging voter always offers an arbitrated result, since it does not maintain any means for detect-
ing benign outputs. While this can be considered as a maximum availability, the results of the averaging voter feature sub-
stantially lower reliability and safety and higher RMSE for most of the considered noise levels. Fig. 16 further illustrates that
there is a certain uncertainty threshold that marks the region of reasonable arbitration (in this test case around noise ampli-
tude of 8). When the level of uncertainty (noise) increases above this threshold, simple averaging is the most reliable voting
strategy.

Finally, in order to illustrate the difference in the voting behavior of both T1 and IT2 fuzzy voting schemes, the arbitrated
outputs of 20 voting cycles are plotted in Fig. 17. Here, four different noise levels were considered. The figure also shows the
manifestation of erroneous values in signal In3 as the value of 20. It can be observed that the IT2 fuzzy voting scheme pro-
duces better results with the arbitrated signal closer to the reference correct signal when higher uncertainty levels are
applied.

5.3. Parameter adjustment

The proposed transition from T1 fuzzy sets to the IT2 fuzzy sets of the voting system is controlled by the blurring param-
eter a. This parameter defines the amount of blur of the IT2 fuzzy sets and thus directly determines the size of the FOUs of
individual fuzzy sets. In the previous section, an IT2 fuzzy voting system was examined, which was constructed with an arbi-
trarily selected blurring parameter of 1. Here the effect of adjusting the blurring parameter a is studied.

In this experiment four IT2 fuzzy voting systems are considered. They were all constructed from the T1 fuzzy voting sys-
tem presented in Fig. 14, but with values of the blurring parameter: 0.25, 0.5, 0.75, and 1.0. All constructed voters have been



Table 3
Comparison of RMSE, RMSE on correct and RMSE on incorrect voting results, mean (bold italics font) and standard deviation (italics font).

Noise
amplitude

RMSE RMSE correct RMSE incorrect

Average Majority Fuzzy
T1

Fuzzy
IT2

Average Majority Fuzzy
T1

Fuzzy
IT2

Average Majority Fuzzy
T1

Fuzzy
IT2

1 2.9911 0.3502 0.3502 0.3559 2.8080 0.3502 0.3502 0.3559 7.1101 0.0000 0.0000 0.0000
±0.0349 ±0.0023 ±0.0023 ±0.0023 ±0.0400 ±0.0023 ±0.0023 ±0.0023 ±0.0035 ±0.0000 ±0.0000 ±0.0000

2 3.0429 0.6993 0.7002 0.7179 2.5725 0.6993 0.7002 0.7179 7.3417 0.0000 0.0000 0.0000
±0.0196 ±0.0048 ±0.0048 ±0.0049 ±0.0259 ±0.0048 ±0.0048 ±0.0049 ±0.0088 ±0.0000 ±0.0000 ±0.0000

3 3.1251 1.0534 1.0695 1.0890 2.5035 1.0534 1.0695 1.0890 7.5730 0.0000 0.0000 0.0000
±0.0326 ±0.0035 ±0.0031 ±0.0030 ±0.0202 ±0.0035 ±0.0031 ±0.0030 ±0.0116 ±0.0000 ±0.0000 ±0.0000

4 3.2355 1.4487 1.4693 1.4605 2.5245 1.4487 1.4693 1.4605 7.7940 0.0000 0.0000 0.0000
±0.0210 ±0.0087 ±0.0099 ±0.0104 ±0.0218 ±0.0087 ±0.0099 ±0.0104 ±0.0153 ±0.0000 ±0.0000 ±0.0000

5 3.3972 2.0205 1.9468 1.8839 2.6096 2.0205 1.9468 1.8839 8.0272 0.0000 0.0000 0.0000
±0.0273 ±0.0124 ±0.0105 ±0.0105 ±0.0200 ±0.0124 ±0.0105 ±0.0105 ±0.0085 ±0.0000 ±0.0000 ±0.0000

6 3.5684 2.6229 2.5137 2.4006 2.7421 2.6229 2.5137 2.4006 8.2648 0.0000 0.0000 0.0000
±0.0305 ±0.0125 ±0.0145 ±0.0143 ±0.0275 ±0.0125 ±0.0145 ±0.0143 ±0.0375 ±0.0000 ±0.0000 ±0.0000

7 3.7299 3.2345 3.1074 2.9800 2.9134 3.2345 3.1025 2.9764 8.4959 0.0000 7.2453 7.1793
±0.0388 ±0.0141 ±0.0118 ±0.0112 ±0.0215 ±0.0141 ±0.0107 ±0.0104 ±0.0378 ±0.0000 ±0.0564 ±0.0404

8 3.9498 3.8379 3.7093 3.5844 3.0830 3.7013 3.5723 3.4551 8.7405 7.3324 7.4605 7.4344
±0.0201 ±0.0124 ±0.0112 ±0.0107 ±0.0127 ±0.0095 ±0.0122 ±0.0110 ±0.0526 ±0.0146 ±0.0115 ±0.0119

9 4.1578 4.4508 4.3099 4.2064 3.2649 3.9942 3.8778 3.7954 8.8486 7.6810 7.7318 7.7346
±0.0254 ±0.0199 ±0.0193 ±0.0190 ±0.0204 ±0.0185 ±0.0217 ±0.0186 ±0.0265 ±0.0150 ±0.0236 ±0.0295

10 4.3871 5.0138 4.8542 4.7820 3.3786 4.1134 3.9519 3.9336 8.9652 8.0377 8.0719 8.0750
±0.0224 ±0.0206 ±0.0169 ±0.0152 ±0.0181 ±0.0161 ±0.0172 ±0.0190 ±0.0267 ±0.0092 ±0.0172 ±0.0197

11 4.6313 5.5970 5.4120 5.3699 3.4742 4.1510 3.9903 4.0300 9.0585 8.4154 8.4792 8.4704
±0.0379 ±0.0231 ±0.0291 ±0.0268 ±0.0149 ±0.0229 ±0.0235 ±0.0228 ±0.0453 ±0.0177 ±0.0238 ±0.0272

12 4.8778 6.1503 5.9324 5.9629 3.5480 4.1236 3.9490 4.0172 9.1655 8.8887 8.9349 8.9879
±0.0466 ±0.0360 ±0.0393 ±0.0426 ±0.0127 ±0.0179 ±0.0258 ±0.0240 ±0.0453 ±0.0163 ±0.0222 ±0.0335
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tested as described in Section 5.2. The improvements in availability, safety and reliability relative to the original T1 fuzzy
voting system are summarized in Fig. 18.

Two observations can be made by studying Fig. 18. Firstly, it can be noted that voting behavior of both T1 and IT2 fuzzy
voters is identical for small levels of noise, when all input signals maintain high similarity. The behavior of the IT2 fuzzy vo-
ter starts differentiating when the noise amplitude of the input signals reaches the region of uncertain fuzzy agreement of the
voter. Secondly, it is important to observe that the IT2 fuzzy voting system might also cause performance deterioration as it
is shown in Fig. 18 for safety and reliability. Hence, it is important to explore the design space of the voting system, in order
to achieve robust voting system yielding performance improvement.
5.4. Scalability

The proposed IT2 fuzzy voting system was presented on an example of a TMR system. However, the developed voting
system is easily extendable for systems with higher dimensionality. Additional experiments have been performed to validate
the scalability of the benefits of incorporating IT2 fuzzy logic into the design of the fuzzy voting system.

The experimental harness presented in Fig. 13 was extended for the case of 4-way and 5-way voter. All 4-way and 5-way
average, majority, T1 fuzzy and IT2 fuzzy voters have been implemented. The testing methodology remained identical as de-
scribed in Section 5.2. The architectures of each T1 and IT2 fuzzy logic system computing the weight for each input were also
identical as shown in Fig. 14. The fuzzy rule base was extended to account for 3 and 4 differences to the other input signal for
the 4-way and the 5-way voters, respectively.

The availability, safety, reliability and the RMSE measures were computed for both 4-way and 5-way voters over 10,000
voting cycles. The results are presented in Figs. 19 and 20. The presented experimental results demonstrated that the advan-
tageous properties of the IT2 fuzzy voter are preserved when the dimensionality of the systems increases. In both Figs. 19
and 20 the 4-way and 5-way IT2 fuzzy voters provide increased availability, safety and reliability together with reduced
RMSE of the arbitrated results, when compared to the majority and the T1 fuzzy voters. In addition, Table 4 summarizes



Fig. 17. Recorded arbitrated outputs for different input signals with noise amplitude of 1 (a), 4 (b), 7 (c) and 10 (d).

O. Linda, M. Manic / Information Sciences 181 (2011) 2933–2950 2947
the relative average performance improvements of the T1 and IT2 fuzzy voters with respect to the majority voter for all the
considered levels of uncertainty. From the table it can be concluded that both voting schemes provided significant perfor-
mance improvement relative to the majority voter and that the IT2 fuzzy voter consistently outperformed the T1 fuzzy vot-
ing design. The relationship was preserved despite the dimensionality of the input.

Overall, it can be concluded that when an excessive amount of uncertainty is present, the best that a voting system can do
is to average the input signals together. However, when reasonable noise amplitudes are present, the inexact majority and
the fuzzy voting schemes provide substantially improved voting performance. The IT2 fuzzy voting scheme offers improved
availability, reliability and safety in a wide range of uncertainty amplitudes. The performance of the T1 and IT2 fuzzy voters
and the inexact majority voters are nearly identical within the small amount of uncertainty.



Fig. 18. The relative improvements in availability (a), safety (b) and reliability (c) for IT2 fuzzy systems constructed with a = 0.25, 0.5, 0.75, 1.

Fig. 19. The availability (a), safety (b), reliability (c) and RMSE (d) measures for the 4-way voters.
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Fig. 20. The availability (a), safety (b), reliability (c) and RMSE (d) measures for the 5-way voters.

Table 4
Average relative performance improvement of the T1 and IT2 fuzzy voters over the majority voter.

Number of inputs FLS type Availability (%) Safety (%) Reliability (%) RMSE (%)

3 Type-1 3.14 0.08 4.11 2.10
Interval Type-2 3.94 0.36 5.34 3.20

4 Type-1 11.22 1.35 15.12 7.92
Interval Type-2 11.40 1.62 15.72 9.15

5 Type-1 3.88 2.43 7.68 10.90
Interval Type-2 3.9 2.81 8.13 12.77
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6. Conclusion

This paper presented a novel design of an Interval Type-2 fuzzy voting scheme. The architecture of the IT2 fuzzy voter was
obtained by asymmetrically blurring the membership functions of the respective T1 fuzzy voting system. This specific asym-
metric blurring methodology was presented to accentuate the amalgamating capability for cases of definite agreement and
uncertain agreement among inputs of the fuzzy voter and to preserve the outlier detection capability for definitely disagree-
ing input signals.

The performance of the proposed IT2 fuzzy voter was tested on a refined experimental harness. The testing system allows
for modeling of various distributions of both noise and errors in the input signal. The performance of the IT2 fuzzy voting
system was compared to the T1 fuzzy voter, the averaging voter and the inexact majority voter.

The obtained results demonstrated that the IT2 fuzzy voter increases the availability of the voting system, while main-
taining high safety and reliability. In addition, the RMSE measure of the voter outputs was lower for most of the considered
noise levels than of the other voting systems. Further experiments demonstrated that this advantageous voting behavior is
preserved for higher-dimensional systems. Overall, the experimental results showed that an appropriate management of the
amount of blur in the IT2 fuzzy sets can lead to robust voting behavior. In addition, it was concluded that when an excessive
amount of uncertainty is present, the best that a voting system can do is to average the input signals together. When rea-
sonable noise amplitudes are present, the inexact majority and the fuzzy voting schemes provide substantially improved
voting performance.
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