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Abstract. As a consequence of recent theoretical 

advancements in Type-2 (T2) fuzzy logic, applications of T2 

Fuzzy Logic Controllers (FLCs) are becoming increasingly 

popular in various engineering areas. Nevertheless, the 

qualitative comparison of Type-1 (T1) and T2 FLCs and the 

assessment of the potential of T2 fuzzy logic can still be 

considered open questions. Despite this fact, researchers 

commonly claim superiority of T2 FLC in uncertain 

conditions based on a very limited exploration of the design 

parameter space. This manuscript provides a systematic 

analysis of the uncertainty resiliency of T2 FLC used for 

position control of parallel delta robot. In order to allow for 

objective comparison among different T1 and T2 FLCs, the 

controllers were constructed using a partially-dependent 

approach. Here, the T2 FLC is created based on an initially 

optimized T1 FLC. In this, manner the constrained design 

space allows for its full systematic exploration and analysis. 

The performance of each controller was evaluated on the real 

parallel delta robot under various levels of dynamic 

uncertainty. The experimental results support the theoretical 

claims about the superiority of T2 FLC. However, it was also 

demonstrated that there is a clear upper bound on the amount 

of “type-2 fuzziness” in the controller design, which can result 

in performance improvement. Exceeding such upper bound 

leads to performance deterioration.  

 

Keywords: Delta Parallel Robot, Interval Type-2 Fuzzy 

Logic Control, Resilient Systems. 

 

I. INTRODUCTION 

HE ability to cope with the linguistic uncertainty 

originating in the imprecise and vague meaning of 

words, made the Type-1 Fuzzy Logic Systems (T1 FLSs) 

popular in many engineering areas [1]. However, when 

various kinds of dynamic uncertainties are encountered, the 

control performance can significantly deteriorate [2]. In [2] 

the various sources of uncertainty were identified as 

follows: i) uncertainty in the linguistic knowledge in FLS 

(simply different designers might have different opinions 

about the optimal behavior), ii) uncertainty about the 

correct output of the system, iii) uncertainty associated with 

noisy inputs, and iv) uncertainty about the data that were 

used to tune the parameters of the control system. These 

sources of uncertainty can lead to performance degradation 

that is primarily caused by the T1 fuzzy membership 

functions, which become fixed once the design process is 

finalized. 

 
 

 As an extension to T1 fuzzy logic, the Type-2 (T2) fuzzy 

logic was originally proposed by Zadeh [3]. T2 FLSs have 

recently become the scope of work of many researchers [2], 

[4]-[8]. T2 FLSs found successful application in many 

engineering areas, demonstrating ability to perform better 

than T1 FLSs when facing dynamic uncertainties [9]-[12]. 

The fundamental difference between T1 and T2 FLSs is in 

the model of fuzzy sets. T2 fuzzy sets employ membership 

degrees that are fuzzy sets themselves. This additional 

uncertainty dimension provides new degrees of freedom for 

modeling and coping with dynamic input uncertainties. 

 However, the understanding and correctness of the 

design process of T2 FLCs can still be considered an open 

question. In addition, the qualitative comparison of Type-1 

(T1) and T2 FLCs and the systematic assessment of the 

potential of T2 fuzzy logic is currently an active area of 

research [13]. It is very common that researchers claim 

superiority of T2 FLC based on a very limited exploration 

of the space of design parameters. However, as previously 

demonstrated, T2 FLCs might exhibit slower 

responsiveness and excessive dumping of the output signal 

in specific scenarios (e.g. autonomous robot navigation) 

[6], [12]. It is natural to expect that with the increased 

amount of “type-2 fuzziness” in the controller design, such 

negative effects will be further accentuated.  

 This manuscript provides a systematic analysis of the 

performance and uncertainty resiliency of T2 FLC used for 

position control of parallel delta robot. Here, the Interval 

Type-2 (IT2) FLC was considered [8]. The IT2 FLC 

assumes only interval membership grades for each fuzzy 

set. This constitutes a substantial simplification for the 

design process and implementation. In order to allow for a 

systematic analysis, the space of design parameters was 

constrained by considering only partially-dependent design 

of IT2 FLCs [2]. The partially-dependent approach starts 

with an optimized T1 FLC and then symmetrically blurs all 

membership functions. While this design approach is 

clearly not optimal, it allows for exhaustive exploration of 

the constrained design space. The authors believe that the 

presented study of this constrained set of T1 and IT2 fuzzy 

controllers can provide insights into important conclusions 

widely applicable to fuzzy logic control.  

 In this paper, the constructed FLCs were used for 

position control of the end-effector of a 3DOF parallel delta 

robot. Such systems are applicable in many engineering and 

industrial areas, e.g. robotic teleoperation or remote 

welding [14], [15]. This specific robotic architecture is 
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ideal for the systematic performance evaluation as it allows 

for automatic testing of the constructed controllers on the 

real robotic hardware. The controller’s performance was 

subjected to different levels of uncertainty, manifested as 

different amplitudes of the injected noise combined with 

the inherent uncertainties of the real robotic hardware.  

 The rest of the paper is organized as follows. Section II 

provides background review of T1 and IT2 fuzzy logic 

control. The robotic platform for the 3DOF parallel delta 

robot is introduced in Section III. Section IV discusses the 

design of the fuzzy PD controllers. Finally, the results are 

presented in Section V and the paper is concluded in 

Section VI. 

II. T1 AND IT2 FUZZY LOGIC SYSTEMS 

 This section provides fundamental background overview 

of T1 and IT2 FLSs. 

A. Type-1 Fuzzy Logic Systems (T1 FLSs) 

 Type-1 Fuzzy Logic Systems have been successfully 

applied to many engineering problems [1]. The primary 

advantage of T1 FLSs is the ability to encode knowledge 

via linguistic fuzzy rules so it can be easily understood by 

humans. Furthermore, T1 FLSs can cope with ambiguity, 

imprecision and uncertainty [2]. 

 In general, a T1 FLS is composed of four major 

components – input fuzzification, fuzzy inference engine, 

fuzzy rule base and output defuzzification [2]. Here, the 

considered Mamdani FLS maintains a fuzzy rule base 

populated with fuzzy linguistic rules in an implicative form. 

As an example consider rule Rk: 

 

 Rule Rk: IF x1 is kA1
AND … AND xn is k

nA  

               THEN yk is B
k
 (1)

 
  

Here, symbol k

jA and B
k
 denote the j

th
 input fuzzy set and 

the output fuzzy set, n is the dimensionality of the input 

vector x


, and yk is the associated output variable. Each 

system input is first fuzzified using the respective fuzzy 

membership function (e.g. Gaussian, triangular, 

trapezoidal, etc.). The fuzzification of input xi into fuzzy set 

Ai  results in  a fuzzy membership grade )( iA
xk

i

 . Using 

the minimum t-norm, the degree of firing of rule Rk can be 

computed as follows: 
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The results of each rule are computed by applying the 

rule firing strength via the t-norm operator (e.g. minimum 

or product) to each rule consequent. Then the output fuzzy 

sets are aggregated using the t-conorm operator (e.g. the 

maximum operator), resulting in an output fuzzy set B. 

Detailed description of the fuzzy inference process can be 

found in [2]. 

Finally, the defuzzification of the output fuzzy B set 

yields the crisp output value. Several defuzzification 

techniques can be found in literature, e.g. centroid 

defuzzifier, center-of-sums defuzzifier, heights defuzzifier, 

or the center-of-sets defuzzifier [2]. Assuming that the 

output domain is discretized into N samples, the centroid 

defuzzifier can be used to produce the crisp output value y 

as follows: 
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B. Interval Type-2 Fuzzy Logic Systems 

The Interval Type-2 (IT2) FLSs are considered in this 

paper because of their computational inexpensiveness and 

ease of implementation [8]. In addition, the space of design 

parameters of IT2 FLSs is substantially smaller than for 

full-blown general T2 FLSs. An IT2 fuzzy set A
~

 can be 

expressed as follows: 

 

   


Xx Ju x
x

JuxA ]1,0[),(/1
~

  (4) 

 

 Here, x and u are the primary and secondary variables, 

and Jx is the primary membership of x. In case of IT2 fuzzy 

sets, all secondary grades of fuzzy set A
~

 are equal to 1. By 

instantiating the variable x into a specific value x’, the 

vertical slice of the IT2 fuzzy set can be obtained: 
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 The domain of the primary memberships Jx defines the 

Footprint-Of-Uncertainty (FOU) of fuzzy set A
~

: 
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 The FOU of an IT2 fuzzy set is schematically denoted in 

Fig. 1. Alternatively, the FOU of an IT2 fuzzy set A
~

can be 

conveniently and completely described by its upper and 

lower membership functions: 
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 This constitutes a substantial simplification when 

compared to the general T2 FLS. In this way, only two T1 

fuzzy membership functions (the upper and the lower 

boundary of the FOU) are needed to fully describe the IT2 

fuzzy set. This simplification is then transferred through the 

inference mechanism taking advantage of the modified T2 

fuzzy join and meet operations [2]. The interval join and 

 

Fig. 1 Interval type-2 fuzzy set A
~
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meet operations work exclusively with the FOU of the IT2 

fuzzy sets, thus removing much of the computational 

burden associated with general T2 fuzzy sets. 

 In order to obtain a crisp output value, the resulting IT2 

output fuzzy set B
~

 is first type reduced and then 

defuzzified. The centroid of the IT2 fuzzy set B
~

 can be 

defined as [16]: 
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 The centroid 
B

C ~  is an interval T1 fuzzy set. This fuzzy 

set can be completely described by its left and right end 

points yl and yr. These boundary points can be calculated 

using the Karnik-Mendel iterative procedure [17]. Using 

the boundary values of the type-reduced centroid 
B

C ~ , the 

final crisp defuzzified value y can be computed as the mean 

of the centroid interval:  

 
2

)( rl yy
y


  (9) 

 

 Fig. 2 shows a block diagram of the T2 FLS. 

III. 3DOF PARALLEL DELTA ROBOT 

In this paper, the fuzzy logic control is applied to the 

problem of precise and robust position control for 3DOF 

parallel delta robot [18]. In general, parallel robotic 

architectures feature substantially increased rigidity and 

allowable workload when compared to their sequential 

counterparts. However, parallel robots also suffer from 

constrained workspace and increased complexity of the 

kinematic and dynamic mechanism [18], [20]. 

The actual robotic platform consists of Novint Falcon 

haptic device [19]. This force-controlled parallel delta robot 

configuration has three force-feedback and tactile sensation 

enabled degrees of freedom. Working frequency of 1kHz 

and position resolution of 400 dpi within the 4” x 4” x 4” 

workspace allows for smooth control of the multi-robot 

system as well as fluent perception of the generated haptic 

force. The Novint Falcon haptic device is depicted in Fig. 3. 

The Falcon typically serves as a 3DOF input device. 

However, due to the presence of force-feedback, the flow of 

control can be reversed and a 3DOF robotic manipulator 

can be created. The Falcon can be then viewed as a 3DOF 

parallel delta robot. From a robotic control point of view, 

Novint Falcon constitutes an excellent experimental 

platform. Sampling of 1kHz and smooth actuation allow for 

very precise position sensing and high fidelity control. The 

suitability of the Falcon device for research and application 

as a robotic manipulator was investigated in [20]. 

The Novint Falcon is accompanied by a powerful C++ 

based Software Development Kit (SDK), which allows for 

programmatic modifications of the robot behavior. The 

SDK abstracts the user from the inverse kinematics of the 

robot, which provides convenient control of robot’s motion 

on the actual three motion axis – x, y, and z. In addition, the 

SDK also allows for connecting multiple Falcons in one 

software application. This capability can be utilized for 

controlling the reversed Falcon robot manipulator (slave) 

via another Falcon input device (master). In this scenario, 

the slave Falcon uses the implemented position control to 

accurately mimic master’s motion (e.g. controlled by the 

hand of an operator). 

IV. FUZZY PD CONTROLLER DESIGN FOR 3DOF 

PARALLEL ROBOT 

This section describes the initial baseline design of the T1 

FLC for position control of the delta parallel robot and its 

subsequent extension to IT2 FLC. The resiliency of the 

constructed IT2 FLC is then evaluated with respect to the 

baseline T1 FLC. The design methodology can be 

summarized in three steps as follows: 

Step 1: Manually design an initial T1 FLC. 

Step 2: Tune the parameters of the initial T1 FLC using one 

of the available optimization techniques (here the Particle 

Swarm Optimization (PSO) algorithm was used). 

Step 3: Extend the T1 FLC into an IT2 FLC using the 

partially dependent design. 

Individual steps are described below. 

A. Initial Manual Fuzzy Controller Design 

The classical way of designing controllers is to use the 

PID controller (or its PD or PI variants). For the PID 

controller, the control signal out(t) at time t is proportional 

to the error e(t) measured by the input sensors. The general 

control law of the PID controller can be stated as follows 

[21]: 

 
dt

ted
KdtteKteKtout dip

)(
)()()(    (10) 

 

Here, coefficients Kp, Ki and Kd are the gains for the 

specific actuator (e.g. servo motor). In this paper, the 

integral term is omitted and only a PD controller is 

considered. A schematic view of the controller is presented 

in Fig. 4. 

The fuzzy PD controller is commonly adopted in 

engineering applications for its several advantages: i) it can 

 
Fig. 2 Type-2 fuzzy logic system [2].  

 

 
 

Fig. 3 Novint Falcon haptic device [20]. 



 

be constructed using linguistic knowledge about the 

controlled system, ii) it features more degrees of freedom, 

and iii) it was shown to produce smoother control behavior 

[21], [22].  

In the presented paper, the fuzzy controller was designed 

using two fuzzy sets {negative, positive} for describing 

error e and error derivative e , and three output fuzzy sets 

{negative, zero, positive} for describing the output signal 

out. The fuzzy rule base presented in Table I provides four 

linguistic control rules for the control process. This rule 

table constitutes a commonly adopted set of linguistic rules 

for fuzzy PD controllers. As derived in the work of Du and 

Ying [23], the fuzzy PD controller can be understood as a 

composition of multiple classical PD controllers with 

variable gains.  

In this specific application, three fuzzy PD controllers 

were implemented for each degree of freedom of the 

parallel delta robot. The error of the controller was 

calculated as the difference between the desired position of 

the robot’s end-effector and its actual position sensed by the 

position sensors of the robot. The fuzzy controller 

implemented triangular membership function. The initial 

parameters of the T1 fuzzy sets were determined by a trial 

and error process with the intention to produce preceise and 

stable initial robot’s performance.  

B. Optimization of T1 FLC using PSO 

Next, the tools of evolutionary computation were used to 

further optimize the performance of the T1 FLC. Here, the 

PSO algorithm was used to tune the parameters of the fuzzy 

membership functions of the respective T1 fuzzy PD 

controllers. The linguistic rules of the controllers remained 

fixed during the parameter tuning process.  

The PSO algorithm is a biologically and physically 

inspired paradigm which has been successfully applied to 

many optimization problems [21]. The algorithm was 

designed to resemble the patterns observed in social species 

such as swarms of fish or flocks of birds when searching for 

food. The PSO algorithm was originally developed by 

Kennedy and Ebenhart in 1995 [24]. Due to the limited 

space, the details of the PSO algorithm are not described 

here but can be found in [21]. 

Each particle represents a single design of a T1 FLC. The 

fitness of each particle was evaluated as the total Root 

Mean Square Error (RMSE) of the respective T1 FLC on 

the given training dataset. Fig. 5(a)-5(c) depicts the 

architecture of the optimized T1 FLC for the position 

control of robot’s x-axis. Fig. 6(a) shows the output control 

surface for the x-axis. 

 
Fig. 4 The control loop of the robot.  

TABLE I 
FUZZY RULE TABLE 

 nege  pose  

eneg Outneg Outzero 

epos Outzero Outpos 

 

 
 (a) (b) 

Fig. 6 The output surface of the optimized T1 FLC (a) and the IT2 FLC constructed via the partially-dependent approach (b) for control of robot’s x-axis. 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

Fig. 5 Optimized design of the T1 FLC (a)-(c) and the IT2 FLC constructed via the partially-dependent approach (d)-(f) for position control of robot’s x-axis.  



 

C. Partially-Dependent Design of IT2 fuzzy PD controller 

In general, there are two available strategies for 

designing T2 FLCs [2]. Firstly, the controller can be 

designed via fully-independent approach, when the entire 

T2 FLC is designed from scratch. Secondly, the 

partially-dependent approach can be used. In this method, 

an initial T1 FLC is constructed first and next this controller 

is extended into the T2 FLC. In this manner, the T2 FLC 

builds on the architecture of the original T1 FLC and it 

should provide an additional performance improvement.  

The partially-dependent T2 FLC design was favored in 

this work for two main reasons. First, this design 

methodology substantially reduces the number of design 

parameters. Second, the derived T2 FLC can be objectively 

compared to the original T1 FLC.  

In order to allow for systematic exploration of the design 

space, the simplest version of the partially-dependent 

design was used. Here, the trapezoidal and triangular fuzzy 

sets with uncertain spreads were implemented. The spread 

of each IT2 fuzzy membership function was calculated by 

symmetrical blurring the original T1 fuzzy membership 

function.  

First, the maximum allowable spread is determined for 

each fuzzy set of the optimized T1 FLC, assuring 

reasonable overlap between neighboring fuzzy sets. Next, a 

specific ration (0.0-1.0) of the maximum spread called the 

blurring parameter is used to construct the fuzzy sets of the 

IT2 FLC. Note that 0.0 spread reduces the IT2 FLS to the 

original T1 FLC, whereas blurring parameter of 1.0 

implements IT2 fuzzy set with the maximum amount of 

blur. The same blurring parameter was used for all fuzzy 

membership function of the whole IT2 FLC. In this manner, 

given the original T1 FLC, the number of design parameters 

of the partially-dependent approach was reduced to a single 

parameter – the blurring parameter. 

Fig. 5(d)-(f) depict the IT2 FLC designed with the 

blurring parameter of 0.5 for position control of robot’s 

x-axis. Fig. 6(b) plots the respective output control surface. 

It can be observed that the IT2 FLC offers substantially 

smoother control performance. 

V. EXPERIMENTAL RESULTS 

This section presents the results of the experimental 

performance and uncertainty resilience evaluation of the 

designed fuzzy controllers. First, the correctness of the 

proposed fuzzy PD controller design is validated by 

observing its position tracking performance on the real 

robot. The robot was controlled with both automated input 

signal and using operator’s hand motion. Next, the 

uncertainty resiliency of the fuzzy controllers under various 
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Fig. 7 Position control for the robot’s x-axis for the PSO optimized T1 FLC and the IT2 FLC for the clean signal (a), (b),  for the noisy signal (c), (d), and for 

the manual control (e), (f). (Desired position – thin line, robot’s position – thick line) 
 



 

levels of noise is evaluated. 

A. Position Control Testing 

In order to validate the correctness of the initial design, 

the performance of the fuzzy PD controllers was first tested 

on the real robot. In this experiment the PSO optimized T1 

FLC and the partially-dependent IT2 FLC constructed with 

the blurring parameter of 0.5 were used to control the 

position of the robot’s end-effector in the 3D work-space. 

The testing trajectory was implemented as a sinusoidal 

signal simultaneously applied to all three control axis 

resulting in a smooth movement of the end-effector in the 

3D work space. The control trajectories for clean signal and 

for signal with injected noise are depicted in Fig. 7(a)-(d). 

In addition, Fig. 7(e) and Fig. 7(f) demonstrate the 

real-world example of the control system performance. In 

this example, slave Falcon device is following the 

trajectory produced by a human operator controlling the 

master Falcon input device. 

Fig. 7 demonstrates that both T1 and IT2 FLCs are 

capable of precise control of the robot’s end-effector. 

B. Uncertainty Resiliency Evaluation 

In this experiment the design space of the IT2 FLC and 

the space of different uncertainty levels was systematically 

explored. In this manner, a systematic insight into the 

performance quality and the uncertainty resiliency (i.g. 

robustness to injected noise) of IT2 FLC for the parallel 

delta robot was provided.  

For each considered value of the blurring parameter, the 

IT2 FLC was constructed. This IT2 FLC was then 

implemented on the robot and used for its position control. 

The controller’s performance was subjected to different 

levels of uncertainty, manifested as different amplitudes of 

the injected noise. The amplitude of the injected noise was 

systematically increased starting from 0% all the way to 5% 

of the actual signal amplitude. Each constructed IT2 FLC 

was tested 10 times for each level of uncertainty. The 

RMSE of the entire run was recorded for all controllers on 

all three control axis. 

Each value of the blurring parameter and the uncertainty 

level specifies a position on a 3D surface, where the 3
rd

 

dimension stores the achieved RMSE of the robot’s 

controllers. Discretization of the interval of possible 

blurring parameters and possible noise amplitudes allows 

for systematic reconstruction of this error surface. The 

reconstructed landscape provides a clear picture of 

suitability of IT2 FLC architectures for a specific level of 

noise. 

In this experiment, the range of blurring parameter was 

discretized into 21 values: {0.0, 0.05, 0.1,…,1.0}. The 

noise amplitude was also discretized into 21 values: 

 
 (a) (b) 

 
 (c) (d) 

Fig. 8 The noise-blur RMSE surface for the 3D robot position control (a), the x-axis control (b), the y-axis control (c), and the z-axis control (d) (the black 

points depict 3 levels of blur with the lowest error for the each noise level). 



 

{0.0025, 0.005,…,0.05}. Fig. 8 shows the blur/uncertainty 

RMSE surface for all three FLCs on individual control axis 

of the robot together with the accumulated RMSE surface 

of the 3D position tracking performance. For an ease of 

understanding, the best three controllers are depicted with 

black points for each noise amplitude level. Note, that the 

amplitude of injected noise was normalized into a unit 

interval. By observing the location of the black points, the 

most uncertainty resilient designs can be easily determined. 

C. Discussion 

The initial testing demonstrated that the designed fuzzy 

PD controller provides robust position control of the 

end-effector of the 3DOF parallel delta robot. The 

controllers were capable of following the generated testing 

trajectory as well as manual control signal provided by an 

operator. 

The observation of the constructed blur/uncertainty 

RMSE landscapes reveals some interesting conclusions. 

Firstly, it can be observed that the performance of the IT2 

FLC varies for different control axis. This suggests that the 

performance improvement provided by the IT2 FLC is 

dependable on the dynamics of the robotic hardware as well 

as on the initial design of the T1 FLC. Secondly, it can be 

observed that in all cases the IT2 FLC provided 

performance benefits over the T1 FLC (equivalent to T2 

FLC with 0% blurring parameter). Thirdly, perhaps the 

most important observation is that excessive blurring of the 

membership functions results in significant performance 

deterioration (shown by the high RMSE values for the 

blurring parameter values close to 1).  

The first two observations are in agreement with the 

recently published study on the robustness of T1 and IT2 

fuzzy logic systems in modeling [25]. The last observation 

clearly demonstrates that the superiority of IT2 FLC over 

T1 FLC is strongly dependent on careful selection of the 

parameters of the designed system.  

VI. CONCLUSION 

This paper presented a systematic analysis of the 

performance and uncertainty resiliency of T2 FLC used for 

position control of parallel delta robot. In order to allow for 

systematic exploration of the problem domain, the FLC was 

constrained to IT2 FLC constructed using the 

partially-dependent approach. 

The systematic exploration of the space of blurring 

parameters and uncertainty levels allowed for global 

assessment of controllers’ performance. The presented 

results revealed that the IT2 FLC is more resilient than T1 

FLC when dealing with dynamic uncertainties. However, 

the experimental testing also showed that excessive 

blurring of the IT2 fuzzy membership functions might 

likely lead to significant performance deterioration.  
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