
Centroid Density of Interval Type-2 Fuzzy Sets: 

Comparing Stochastic and Deterministic 

Defuzzification 
 

Ondrej Linda, Milos Manic 

University of Idaho 

Idaho Falls, ID, USA 

olinda@uidaho.edu, misko@ieee.org 

 

 
Abstract— Recently, Type-2 (T2) Fuzzy Logic Systems (FLSs) 

gained increased attention due to their capability to better 

describe, model and cope with the ubiquitous dynamic 

uncertainties in many engineering applications. By far the most 

widely used type of T2 FLSs are the Interval T2 (IT2) FLSs. This 

paper provides a comparative analysis of two fundamentally 

different approaches to defuzzification of IT2 Fuzzy Sets (FSs) - 

the deterministic Karnik-Mendel Iterative Procedure (KMIP) 

and the stochastic sampling defuzzifier. As previously 

demonstrated by other researchers, these defuzzification 

algorithms do not always compute identical output values. In the 

presented work, the concept of centroid density of an IT2 FS is 

introduced in order to explain such discrepancies. It was 

demonstrated that the stochastic sampling defuzzification method 

converges towards the center of gravity of the proposed centroid 

density function. On the other hand, the KMIP method calculates 

the midpoint of the interval centroid obtained according to the 

extension principle. Since the information about the centroid 

density is removed via application of the extension principle, the 

two methods produce inevitably different results. As further 

demonstrated, this difference significantly increases in case of 

non-symmetric IT2 FSs. 

Keywords-Interval Type-2 Fuzzy Sets; Defuzzification; 

Centroid; Karnik-Mendel Algorithms; Sampling Defuzzifier 

I. INTRODUCTION 

Type-2 Fuzzy Logic Systems (T2 FLSs), originally 

proposed by Zadeh [1], constitute powerful tool for dealing 

with dynamic uncertainty. The T2 Fuzzy Sets (FSs) introduce 

additional design dimension for modeling and describing the 

uncertainty in the specific problem domain [2]. Unlike the 

Type-1 (T1) FSs with fixed membership functions, the T2 

fuzzy membership functions are defined using the Footprint-

of-Uncertainty (FOU) offering more design degrees of 

freedom [3]. The defuzzification of T2 FSs contains a type- 

reduction phase, which acts as a mapping between the original 

T2 FS and the type-reduced T1 FS, also called the centroid of 

the T2 FS [2], [3]. Despite some new recently introduced 

representations of general T2 FSs such as geometric T2 fuzzy 

sets [4], zSlices [5],  - planes [6], [7] or  - cuts [8], the 

Interval T2 (IT2) FSs are still most commonly used [9]. IT2 

FLSs have been successfully applied in a wide range of 

applications [10]-[15].   

This paper provides a comparative analysis of two 

fundamentally different approaches to defuzzification of IT2 

FSs [9], the Karnik-Mendel Iterative Procedure (KMIP) [16] 

and the sampling defuzzification method [17]. The KMIP is a 

deterministic approach, which concentrates on bounding the 

type-reduced centroid of the IT2 FS by its left-most and right-

most points [18]. The sampling defuzzification method, 

proposed by Greenfield et al., uses stochastic sampling method 

to sample the set of all embedded fuzzy sets and provide an 

estimate of the true defuzzified value [19]. The sampling 

defuzzification method was developed as a cut-down version 

of the original exhaustive defuzzification method, which 

enumerates and defuzzifies all available embedded fuzzy sets 

[20]. Other available methods for defuzzification of IT2 FSs 

are the direct defuzzifier [21], the Nie-Tan method [22], or the 

collapsing method [23]. 

As demonstrated by other researchers, the KMIP method 

and the sampling defuzzification method do not always 

compute identical solutions [24]. In this paper, the concept of 

centroid density of an IT2 FS is introduced to provide an 

experimental explanation for such discrepancies. The concept 

of centroid density describes the histogram of defuzzified 

embedded fuzzy sets within the boundaries of the type-

reduced centroid. It is shown through experimental study that 

the stochastic sampling defuzzification method converges 

towards the center of gravity of the proposed centroid density 

function. On the other hand, the KMIP method computes the 

midpoint of the interval centroid obtained according to 

Zadeh’s extension principle. Because the information about 

the centroid density is removed via application of the 

extension principle, the two methods produce inevitably 

different results. This difference becomes especially 

significant in case of non-symmetric IT2 FSs. 

The rest of the paper is organized as follows. Section II 

provides an overview of IT2 FSs together with a review of the 

considered defuzzification techniques. Section III introduced 

the concept of centroid density for an IT2 FS. The 

comparative analysis is presented in Section IV and the paper 

is concluded in Section V. 



II. INTERVAL TYPE-2 FUZZY SETS 

This section reviews fundamentals about the IT2 fuzzy sets 

together with a brief description of the defuzzification 

techniques considered in this work. 

A. Interval Type-2 Fuzzy Sets 

The IT2 FSs were introduced as a simplification to the 

general T2 FSs, which have been rarely applied to engineering 

problems due to their immense computational complexity. An 

IT2 FS A
~

 can be described as: 
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Here, x and u constitute the primary and the secondary 

variables and Jx is the primary membership of variable x. The 

secondary grades of IT2 FS are all limited to 1. Hence, the IT2 

FS can be completely described by its Footprint of Uncertainty 

(FOU), which is the area of non-zero secondary grade.  

The vertical slice of an IT2 fuzzy set defines the secondary 

membership function. It can be obtained by instantiating the 

primary variable x into a specific value x : 

 

 



 

xJu
xAA

Juxuxx ]1,0[/1)(),( ~~ 
 

(2) 

 

Using the concept of vertical slices the FOU can be 

expressed as follows: 
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According the Mendel-John representation theorem [25], the 

IT2 FS can be also seen as a collection of all its embedded 

fuzzy sets. An embedded fuzzy eA
~

can be described as: 
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Using this concept the IT2 FS A
~

 can be also expressed as: 
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Alternatively, the FOU of an IT2 fuzzy set A
~

 can be 

conveniently and completely described by its upper and lower 

membership functions )(x  and )(x : 
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During the output processing stage the output IT2 FS B
~

must be first type-reduced, which results in the centroid of the 

IT2 FS )
~

(BC [20]: 
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This formula was derived using Zadeh’s extension principle 

[28]. In the special case of IT2 FSs the centroid )
~

(BC is an 

interval T1 FS, which can be described by its left and right 

boundary points yL and yR. Finally, this interval centroid can 

be defuzzified to obtain the final output value. 

B. Exhaustive Defuzzification  

The definition of the generalized centroid of the IT2 FS 

presented in (7), describes the centroid as a composition of 

individual centroids of all of its embedded fuzzy sets. The 

exhaustive defuzzification method constructs this interval 

centroid by enumerating all the embedded fuzzy sets and 

calculating their respective centroids. This exhaustive 

algorithm for defuzzification of general T2 FSs can be adapted 

for the case of IT2 FSs as follows [20]: 

 

Step 1: Enumerate all possible interval type-2 embedded fuzzy 

sets. The are  


N

i iMn
1

embedded fuzzy sets, where N is the 

resolution of the primary domain and Mi is the resolution of 

the secondary domain at the i
th

 slice. 

 

Step 2: For each embedded fuzzy set find the minimum 

secondary grade. This is trivial as all secondary membership 

grades equal to 1. 

 

Step 3: For each embedded fuzzy set calculate the domain 

value of the centroid of the type-2 embedded fuzzy set. 

 

Step 4: Pair the computed domain value from Step 3 with the 

secondary grade of 1. 

 

Step 5: For each unique domain value, the maximum 

secondary grade is selected. In case of IT2 FSs, this means 

that only a single record about a defuzzified embedded FS is 

kept for each unique domain value. 

 

The set of ordered pairs defines the centroid. The crisp 

output can then be calculated as the average of all calculated 

centroid coordinates. The average will be uniformly weighted, 

as the secondary grade of each defuzzified embedded FS 

equals to 1. Note that if the primary domain is considered to 

be continuous as opposed to the discretized one, the centroid 

becomes a continuous interval T1 FS. 

C. Karnik-Mendel Iterative Procedure (KMIP) 

The centroid of the IT2 FS is an interval T1 FS. According 

to Karnik and Mendel, it can be completely described by its 

left and right end points yL and yR. As derived by Karnik and 

Mendel, these boundary points can be expressed as in [20]: 
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Points L and R are important switching points computed by 

the KMIP algorithm. Using the boundary values of the type-

reduced centroid )
~

(BC
 
the final crisp defuzzified value y can 

be computed as the mean of the centroid interval:  
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The KMIP algorithm calculates the switching points L and 

R in (8) and (9) and the boundaries yL and yR of the centroid of 

the respective IT2 FS. The description of the KMIP algorithm 

given below was adopted from [20]. The algorithm consists of 

two phases, which independently compute the values of yL and 

yR. The algorithm for computing the left boundary yL can be 

described in several steps as follows: 

 

Step 1: Initialize a vector of weights wi as follows: 
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And compute the value of y: 
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Step 2: Find switching point k ( 11  Nk ) such that 
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Step 3: Set 
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And compute the value of y as: 
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Step 4: If yy  , stop and set yL = y and L = k. Otherwise, go 

to Step 5. 

Step 5: Set yy  and go to Step 2. 

 

The procedure for computing the value of yR is identical to 

computing yL except that in Step 3 different update of weights 

wi is used as follows: 
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The final output value is assigned to yR and R=k.  

In [16], the Enhanced KMIP algorithm was presented. 

However, the proposed enhancements only improved the 

convergence of the algorithm. As both approaches produce 

numerically identical results, only the original KMIP 

algorithm is considered in the rest of this paper. 

D. Sampling Defuzzification 

The sampling defuzzification method for T2 FS was 

presented and analyzed in [17], [19], [24] and [27]. This 

method follows the steps of the exhaustive defuzzification 

method. The major difference is that only a subset of 

randomly sampled embedded fuzzy set is considered during 

the calculation. According to the description in [24] the 

sampling defuzzification for IT2 FS can be described in 

several steps as follows: 

 

Step 1: Select the required number of embedded fuzzy sets to 

be sampled. 

 

Step 2: Repeat for each sample: 

 

Step 2.1: Select an embedded fuzzy set at random. 

 

Step 2.2: Find the domain value by defuzzifying the 

sampled embedded fuzzy set. 

 

Step 2.3: Find the minimum secondary grade. In case of IT2 

FSs this is trivial as the secondary grade equals to 1. 

 

Step 2.4: Add the paired defuzzified value with its 

secondary grade to the list of pairs constituting the type-

reduced centroid. 

 

Step 3: Defuzzify the type-reduced centroid. 

 

The method was experimentally tested, showing a fast 

convergence towards the expected defuzzification value [17]. 

The convergence speed was dependent on the cardinality of 

the sampled set. Extension to the sampling defuzzification 

method via using the importance sampling technique was 

proposed in [28]. It was demonstrated that this modification 

resulted in reduced statistical variance of the computed 

defuzzified value. 

III. CENTROID DENSITY OF IT2 FUZZY SETS 

The exhaustive defuzzification method defuzzifies all 

embedded fuzzy sets and then constructs the interval centroid 



as a composition of the calculated domain values. However, in 

Step 5 of the exhaustive defuzzification method as described 

in Section II.B the set of defuzzified embedded fuzzy sets is 

considerably reduced. This is achieved via application of 

Zadeh’s extension principle, which maps the IT2 FS back to 

its interval centroid. Here, only a single centroid of the 

embedded fuzzy sets per each unique domain value remains in 

the solution and have an impact on the geometrical properties 

of the final interval centroid. Hence, from the perspective of 

the type-reduction algorithm, all embedded fuzzy sets, which 

are defuzzified to an identical domain value form an 

equivalence class. The members of each such class are here 

termed redundant embedded fuzzy sets. 

 

Definition 1: Two embedded fuzzy sets A1 and A2 are 

redundant if they both defuzzify into an identical domain 

value as )()( 21 ACAC  . 

 

As an example, consider a group of embedded fuzzy sets 

that are vertically shifted in the domain of the secondary 

variable u. In Step 5 of the exhaustive defuzzification method, 

those embedded fuzzy sets are treated as redundant and only a 

single representative one remains after the type-reduction 

process.  

This redundancy pruning significantly simplifies the 

complex inner structure of the centroid. This inner structure is 

similar to the stratified structure of the type-reduced set 

presented in [19]. This paper further demonstrates that the 

distribution of redundant embedded fuzzy sets provides an 

insight into the discrepancies in the convergent behavior of the 

KMIP algorithm and the sampling defuzzification method [1].  

Next, assume that apart from applying the extension 

principle, also the number of redundant embedded fuzzy sets 

for each unique domain value is being recorded during the 

exhaustive defuzzification process. The distribution function 

)(~ x
A


 
of this quantity is denoted here as the centroid density 

function of the IT2 FS A
~

. 

 

Definition 2: The centroid density )(~ x
A

  for domain value x 

denotes the normalized number of redundant embedded fuzzy 

sets that are defuzzified to the identical domain value x: 
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Here, N is the number of all embedded fuzzy sets, Ai is the 

embedded fuzzy set and   is the normalization factor, which 

denotes the maximum number of redundant embedded fuzzy 

sets for any value of the domain variable x, scaling it into the 

interval between 0 and 1. 

 

Property 1: The value of the centroid density is zero outside 

the boundaries of the interval centroid: 
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Proof: By the definition of the KMIP method, bound yL 

constitutes the left most location of any centroid of the 

available embedded fuzzy sets. Similarly, bound yR is the right 

most location of any centroid of all available embedded fuzzy 

sets. Hence, the centroids of all embedded fuzzy sets are 

 
 (a) (b) 

Fig. 1 Interval Type-2 Gaussian fuzzy set with uncertain mean (a) and its corresponding discrete centroid density (b).  

 
 (a) (b) 

Fig. 2 IT2 Gaussian fuzzy sets with uncertain standard deviation (a) and its corresponding discrete centroid density distribution (b).  



located in this interval and the centroid density is thus zero 

outside this interval.  

From the computational perspective, the discrete centroid 

density )(~ x
A

  is more practical, since the primary domain 

must be discretized for practical implementations. 

 

Definition 3: Assume that the primary domain is discretized 

into N samples x1, x2, …, xN with an  distance between two 

consecutive samples Then the discrete centroid density )(~ iA
x  

for value xi denotes the normalized number of redundant 

embedded fuzzy sets that are defuzzified into the discretized 

interval around xi: 

 

















 


]
2

[)(1

]
2

[)(0

)(,)()(
1

~







ii

ii

i

N

i

iiA

xAC

xAC

AfAfx  (19) 

 

Again, the normalization factor  is the maximum number 

of redundant embedded fuzzy set for any discrete interval in 

the primary domain, scaling it to the interval between 0 and 1. 

Finally, consider the center of gravity of function )(~ x
A

 , 

which can be denoted as )( ~
A

C   and computed as follows: 
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An example of centroid density for two different IT2 FSs is 

presented in Fig. 1 and Fig. 2. The figures show symmetric 

Gaussian interval type-2 fuzzy set with uncertain mean and 

uncertain standard deviation, respectively. In both cases, 

variable x was discretized into 13 samples and each secondary 

membership function was sampled using 3 samples, leading to 

a total of 1,594,323 embedded fuzzy sets. 

The centroid density function provides valuable insight into 

the inner structure of the interval centroid. The only available 

method for computing the centroid density function is the 

exhaustive defuzzification method that accounts for all 

available embedded fuzzy sets. However, the applicability of 

this approach is hindered by the vast amount of embedded 

fuzzy sets, which makes this method computationally 

intractable even for modest discretization levels.  

The KMIP method offers an opposite approach. This 

algorithm only considers two special embedded fuzzy sets and 

only computes the two boundary points yL and yR of the 

interval centroid. In the final step of the KMIP defuzzification 

approach, the center of gravity of this interval centroid is 

computed as the mid-point between the boundary values yL 

and yR. One of the greatest advantages of the KMIP approach 

is its computational speed.  

The sampling defuzzifier can be seen as a middle way 

between the KMIP method and the exhaustive defuzzification 

approach. This method approximates the final result by 

considering only a subset of the available embedded fuzzy 

sets. 

IV. EXPERIMENTAL RESULTS 

In this section the convergent behavior of the sampling 

defuzzifier is experimentaly compared to the deterministic 

result produced with the KMIP. It is shown that unlike the 

KMIP approach, the sampling algorithm converges towards 

the center of gravity of the respective centroid density 

distrubution function. Two types of IT2 FS are considered in 

the study, symmetric and non-symmetric. 

A. Symmetric IT2 fuzzy sets 

Consider a symmetric IT2 fuzzy set A
~

 the FOU of which is 

symmetrical about its mean m: 
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(a) 

 
(b) 

Fig. 3 Symmetric IT2 Gaussian fuzzy set with uncertain mean (a), its centroid 
density and the defuzzified values (b), y – center of gravity of the centroid 

density distribution, y’ – sampling defuzzifier. 



 

A symmetrical Gaussian IT2 FS 1

~
A  with uncertain mean is 

denoted in Fig. 3(a). The domain of FS 1

~
A  was again 

discretized into 13 samples in the x domain and 3 samples for 

each secondary membership function yielding a total of 

1,594,323 available embedded fuzzy sets. This FS was first 

defuzzified using the KMIP algorithm. Next, the centroid 

density function was computed using the exhaustive 

defuzzification method evaluating all 1,594,323 embedded 

fuzzy sets. Finally, the IT2 FS 1

~
A  was also defuzzified using 

the sampling defuzzifier randomly selecting only 10,000 

embedded fuzzy sets. The comparison of the defuzzified 

values and a graphical view of the discrete centroid density 

function )(
1

~ x
A


 
are presented in Table I and Fig. 3(b). 

It can be observed, that the centroid density distribution 

)(
1

~ x
A

  follows approximately a symmetric Gaussian normal 

distribution. As demonstrated in Table I, the defuzzified 

values produced by the KMIP algorithm and the center of 

gravity of the centroid density function are in agreement. The 

defuzzified value produced by the sampling defuzzifier is 

shown to be converging towards the correct value. In order to 

obtain an accurate picture, the average of 20 defuzzification 

cycles is reported in Table I for the sampling defuzzifier, 

together with the standard deviation of the result. 

B. Non-Symmetric IT2 Fuzzy Sets 

Next, a non-symmetric IT2 FS 3

~
A with uncertain standard 

deviation was considered with its FOU as depicted in Fig. 

4(a). All defuzzification methods have been applied with the 

same parameters as in the previous experiment.  

The defuzzified values and the discrete centroid density 

function )(
3

~ x
A


 
are reported in Table I and in Fig. 4(b). It 

could be observed that despite the centroid density function 

 
(a) 

 
(b) 

Fig. 5 The convergence of the mean (a) and the standard deviation (b) of the 

output value produced by the sampling defuzzifier with increasing number of 

samples. 

 
(a) 

 
(b) 

Fig. 4 Non-symmetric Interval Type-2 Gaussian fuzzy set (a), its centroid 

density distribution and the defuzzified values (b) ), y – center of gravity of the 

centroid density distribution, y’ – sampling defuzzifier. 

TABLE I 
COMPARISON OF THE DEFUZZIFIED OUTPUT VALUES 

 

Fuzzy Set 

Centroid 

Density 
KMIP Method 

Sampling 

Method 

)( ~
A

C   y yL yR y’ 

Symmetric 0.5 0.5 0.3940 0.3001 
0.5004 

 0.0005 

Non-

Symmetric 
0.4624 0.4311 0.6060 0.5621 

0.4625 

 0.0003 

 

 



)(
3

~ x
A

 having the nature of a Gaussian distribution, it is far 

from being symmetric. This observation can be attributed to 

the non-symmetric distribution of the width of the FOU of the 

original IT2 FS. This non-symmetric nature is also reflected in 

the centroid density function produced by the sampling 

defuzzification method. Both functions are shifted away from 

the mid-point of the centroid interval computed by the KMIP 

algorithm. The actual defuzzified values can be compared in 

Table I. 

As it can be seen from the shown examples, given a non-

symmetric IT2 FS, which is a typical case for the output fuzzy 

sets of IT2 FLSs, a significant difference between the 

defuzzified values produced by the KMIP algorithm and the 

sampling defuzzifier can be expected. The interpretation of 

these discrepancies is an open issue. 

Recently, novel representations for general T2 fuzzy sets 

using  -planes [7] and zSlices [5] have been introduced. In 

[24] the results of defuzzification of -plane based general T2 

FS using the KMIP algorithm, sampling defuzzification and 

exhaustive defuzzification have been reported. It was 

demonstrated that for increasing number of  -planes the 

KMIP and the sampling method did not converge to identical 

values. The authors believe that the introduced concept of 

centroid density can provide further insight and explanations 

into such discrepancies. 

C. Convergence of the Sampling Defuzzification 

An additional set of experiments have been carried out in 

order to verify the convergence of the sampling defuzzifier 

towards the center-of-gravity of the centroid density function, 

which was computed using the exhaustive defuzzification 

technique. The sampling defuzzifier was applied to the non-

symmetric IT2 FS 3

~
A  depicted in Fig. 4(a). The number of 

sampled embedded fuzzy sets ranged from 2
2
 to 2

18
. Each 

experiment was repeated 20 times. The mean and the standard 

deviation of the defuzzified values are reported in Fig. 5. In 

addition, Fig. 6(a)-(e) visually demonstrates the convergence 

of the sampled centroid density function. From the presented 

results it can be noted that the sampling defuzzification 

method provides a steady convergence towards the center of 

gravity of the centroid density function. 

Hence, it can be concluded that the sampling defuzzifier 

converges to the output value obtained by applying the 

weighted average to the centroid density function. On the 

other hand, the KMIP method computes the mid-point of the 

interval centroid calculated with accordance to the extension 

principle. The interval centroid does not maintain information 

about the centroid density function, since it was removed 

during the application of Zadeh’s extension principle. 

V. CONCLUSION 

This paper presented a comparative analysis of the 

performance of two fundamentally different defuzzification 

techniques for IT2 FSs. The stochastic sampling 

defuzzification method and the deterministic KMIP method 

were considered in this work. The concepts of redundant 

embedded fuzzy sets and the notion of centroid density 

function of an IT2 FS were introduced. These novel concepts 

provided explanation for some of the discrepancies between 

the results produced by the KMIP method and the sampling 

defuzzifier. 

It was shown that the sampling defuzzification approach 

converges towards the center of gravity of the centroid density 

function, which can be computed using the exhaustive 

defuzzification method. On the other hand, the KMIP 

algorithm calculates the results as the mid-point of the interval 

centroid computed with accordance to the extension principle. 

Since the application of the extension principle during the 

type-reduction removes the information about the centroid 

density, the KMIP and the sampling defuzzification techniques 

inevitable converge towards different results. This difference 

becomes especially significant for non-symmetric IT2 FS. 
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