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Abstract— Solving multi-modal optimization problems are of 
interest to researchers solving real world problems in areas such 
as control systems and power engineering tasks. Extensions of 
simple Genetic Algorithms, particularly types of crowding, have 
been developed to help solve these types of problems. This paper 
examines the performance of two distance measures, 
Mahalanobis and Euclidean, exercised in the processing of two 
different crowding type implementations against five 
minimization functions. Within the context of the experiments, 
empirical evidence shows that the statistical based Mahalanobis 
distance measure when used in Deterministic Crowding produces 
equivalent results to a Euclidean measure. In the case of 
Restricted Tournament selection, use of Mahalanobis found on 
average 40% more of the global optima, maintained a 35% 
higher peak count and produced an average final best fitness 
value that is 3 times better. 

Evolutionary computation, genetic algorithms, multimodal 
optimization, niching methods 

I.  INTRODUCTION 

Problems in which a number of points are potentially good 
solutions, while not necessarily optimal, are defined as multi-
modal problems. Genetic Algorithms (GA) including crowding 
approaches such as Deterministic Crowding (DC) and 
Restricted Tournament Selection (RTS) have been developed 
to maintain sub-populations that track these multi-modal 
solutions. For example, multi-modal GA’s have been used in 
the design of a nuclear reactor core [1]. In addition, two 
surveys highlight the multiple uses of GA’s in control systems 
and power engineering tasks [2],[3]. These tasks include 
optimization for controller design and model identification, 
fault diagnosis, reliable systems, robustness analysis and robot 
control.  

The basic idea of multi-modal GA’s is to encourage the 
evolution of subsets representing diverse solutions in a single 
population during the evolutionary process. In order to measure 
this diversity, distance measures are employed. Given better 
distance measures, improved results may be realized. Thus, we 
examine the effectiveness of Mahalanobis distance in 
comparison with Euclidean distance in two real value encoded 

Genetic Algorithm solutions.   

A Genetic Algorithm (GA) is a heuristic search technique 
inspired by concepts of evolutionary biology. They became 
popular with the published work of John Holland in the 1970’s. 
Generally, for an algorithm to be categorized as a GA it needs a 
population representation of possible solutions, variation 
operators, selection and replacement mechanisms. The actual 
details, such as population representation and distance measure, 
of a GA can vary greatly and represent one of the challenges of 
an actual implementation. 

In a GA an individual is a candidate solution out of a set of 
solutions called a population. This individual may be 
represented by a genotype where in turn each genotype maps to 
a phenotype [4]. For example, in a population of integers an 
integer value of 10 (phenotype) could be represented by a 
binary code of 1010 (genotype). Following this definition to a 
logical conclusion, it is critical to a robust solution that the 
genotype is capable of fully representing the optimal individual 
solution characteristics. An evaluation function is used to 
determine the ‘fitness’ of individuals in a population. This 
fitness is a measure indicating how well the individual is 
solving a given problem and used for decision making in the 
evolutionary process.  

When optimizing multi-modal functions a conventional 
GA’s population tends to converge to just one of the optimal, 
or near optimal points. This characteristic occurs because of 
Genetic Drift and is an artifact of the application of random 
selection processes to finite populations [5]. This convergence 
to only one solution is undesirable in multi-modal optimization 
of real problems. Because a GA utilizes a population of many 
(hundreds, thousands or more) possible solutions, 
modifications to the algorithm can enable maintaining several 
optima. 

One such modification, Fitness Sharing, lowers each 
individual’s fitness by an amount relative to the number of 
similar individuals in the population [6]. Similarity is 
determined by evaluating a distance measure between 
population elements.  

Another GA modification, Deterministic Crowding, is an 
improved version of De Jongs Crowding. After crossover and 
mutation, each resulting child individual replaces the most 
similar parent used to create it if it has a higher fitness value. 
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Similarity is typically computed using phenotypic distance [7]. 
Restricted Tournament Selection, similarly to DC, creates two 
new children [8]. These children then compete with a fixed 
number of randomly chosen individuals from the population; 
the number of competing individuals is defined by the 
Crowding Factor (CF). The nearest individual chosen for the 
competition is selected from the CF population using a distance 
measure.  

Distance measures as a means of determining similarity or 
closeness are a common algorithmic feature for many GA 
implementations such as those used in Crowding. The distance 
measure used is dependent on the population definition but 
typically solutions like Euclidean distance or Hamming 
distance are implemented. In addition, these distance measures 
can occur in different domains of the problems set i.e. 
Phenotypic, Genotypic and Fitness [9]. 

II. RELATED WORK 

This section reviews research efforts in multi-modal GA’s 
and the use of Mahalanobis distance metric. Independent 
support for the use of this distance metric in computer vision is 
summarized. Finally the appropriate use of real coded genetic 
algorithms in a lengthy paper is presented.  

Recent work has introduced the Mahalanobis distance 
metric in the framework of Covariance Matrix Adaptation 
Evolution Strategy (CMA-ES) [10]. This metric was a natural 
fit as the covariance matrix of the distribution, a necessary 
component of Mahalanobis, was already being utilized. 
Specifically, the authors explored using the distance metric in a 
self adapting niche radius and compared it to an 
implementation using the Euclidean distance. Several test 
functions including Ackely, Rastrigin, and Griewank were 
evaluated. (Some of these functions were also selected for use 
in this paper.) The niching routines based on the Mahalanobis 
achieved the goal of improving the niching process in terms of 
obtaining on average higher quality sub-optima. 

The Mahalanobis distance metric has been shown to be 
effective in other subject areas such as computer facial 
recognition. In [11] a statistically significant improvement was 
found when compared to City-block, Euclidean and Angle 
routines. McNemar’s test was used to test the statistical 
significance of the results. This paper extended a previous work 
done on Principle Component Analysis in facial recognition on 
the FERRET database. In addition to singular distance values, 
combinations of the values were compared with no 
improvements found. The result of this paper provides 
independent evidence of Mahalanobis as an effective distance 
measure. 

Herrera, et al. reviewed the features of real-coded genetic 
algorithms (RCGA) [12]. They found that the most important 
feature of RCGAs is their capacity to exploit local continuities. 
The experimental results indicated the most suitable genetic 
operators for building RCGAs are nonuniform mutation, BLX-
α, logical fuzzy connectives based and linear crossover. It is 
possible for these operators to generate values outside the range 
of the problem domain so this must be considered in an 
implementation. Another advantage of using real coding is that 
the solution representation is close to the natural formulation of 

many problems. In fact, there may be no difference between the 
genotype and the phenotype. Therefore, the coding and 
decoding processes that are needed in binary coded versions of 
GA’s are avoided, thus increasing speed. In addition, it was 
pointed out that the natural representation of genes for 
optimization problems of parameters with variables in the 
continuous domain is directly as real numbers. The use of real 
parameters also makes it possible to use large domains, which 
is difficult in binary implementations where increasing the 
domain could mean sacrificing precision. The importance of 
this information, in regards to the work in this paper, is the 
appropriate use of RCGAs in continuous function domains 
such as those used experimentally and the selection of genetic 
operators. 

III. EXPERIMENTAL APPROACH 
This section describes the implementation details of the 

Genetic Algorithm and the two population diversity algorithms. 
Equations for the two distance metrics and their computational 
complexity are discussed. The final section discusses the test 
functions used for evaluation. 

A. Genetic Algorithm Description 

For this project, solutions to minimize five benchmark 
functions with a range of different dimensions were evolved 
utilizing two forms of a crowding Genetic Algorithm (GA). A 
pseudo-code implementation of a GA is shown in Fig. 1 below 
and lines with numbers are described more fully later. 

One of the first tasks in building a GA is to decide upon a 
representation of the solution population (line 1 in Fig. 1) and 
create a number of individuals in that population. All of the 
functions defined for this project make use of real values as 
inputs. This made for a natural definition for the population 
representation and floating point numbers were used to 
represent each of the n positions in a given individual solution. 
Therefore an individual can be seen as a vector 

)x,,(x n0 iv


 of floating point values x. The total 

population is a set of vectors  TvvvP


,...,, 10 . For each 

test function the initial population size was set to 60. The initial 
generation of individuals is populated by randomly generating 
values uniformly in the domain range of the given function. 
The test function section provides the ranges of each function 
used in testing. 

After an initial population is created a series of variations 

1 Create an initial population 
For Each Selection Process 
2 LOOP while below execution count      

3 select individuals as parents 
4 create children from parent    

(crossover/mutation) 
5 select and replace individuals with children 
6 update fitness values 
END LOOP 

End For Each 

Figure 1. Genetic Algorithm 
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and selections must take place on the population individuals. 
This can continue until some acceptable solution or predefined 
resource limit is reached. For this project, each function has an 
associated max number of iterations value and is shown in 
Table 1 as iterations. When this number was reached, after 
incrementing by one each pass through the loop (line 2 in Fig. 
1) and initially starting at zero, processing terminated and the 
fittest individual in the population was isolated as the final best 
solution. The fitness in this case consisted of the value returned 
from exercising the test function with the real value parameters 
represented by the individual. The fittest individual produced 
the smallest function output. 

A steady state population model was implemented. This 
means that, for each iteration through the loop, only a small 
part of the original population is changed. This is in contrast to 
a generational model where the entire population is replaced by 
the offspring.  In this case, two individuals were selected as 
parents and two offspring were created from them. 
Subsequently, two more individuals were then selected for 
replacement by the new offspring creating a new generation.  

The two candidate parent individuals were randomly 
selected independent of any fitness or distance measure (line 3 
in Fig. 1). After crossover of the parents occurs, the two 
resulting offspring are evaluated to replace candidates in the 
population. This is a critical step for the maintenance of a muti-
modal solution set. The determination of how replacement 
individuals are selected is discussed later in the section on 
replacement strategy. 

Crossover between the two parents to create two new 
offspring utilized whole arithmetic recombination (line 4 in 
Fig. 1). Each position of the child is a new value created from 
the values at the same position of the parent vectors. This new 
value lies between that of the two parents and is created for 
each child using equations (1) and (2). Where x and y are the 
values at ith position in the parent vectors and α is a weight 
adjustment. The weight adjustment value α used for all 
functions is 0.6. 

 ii yxChild  )1(1   

 ii xyChild  )1(2   

After crossover, mutation occurs on both child individuals 
every iteration prior to replacement selection (line 4 in Fig. 1). 
This mutation is non-uniform with a fixed Gaussian 
distribution which means most of the changes made will be 
small. For each position in the selected individual, a value 
drawn randomly from a Gaussian distribution with mean zero 
and user defined standard deviation of 0.1 is added to it. If this 
operation results in a value outside of the acceptable function 
range, defined in the test function section, the value is set equal 
to the closest boundary value. 

Finally the fitness values for the mutated individuals are 
updated (line 6 in Fig. 1). This is the last step before the next 

iteration is performed following the steps already outlined with 
a population set that contains the new individuals. 

This entire process is repeated for both replacement 
selection algorithms on a copy of the same population. An 
exact copy of the initial population is carried over from one 
replacement strategy trial to the next ensuring the same starting 
data sets are used. In addition to the multiple iterations of both 
selection routines on the same data set, an outer loop is 
executed 100 times (i.e. 100 independent trials). Because of the 
stochastic nature of crossover and mutation this is done to 
obtain a higher confidence in the performance measures. 

B. Replacement Strategy 

In order to maintain a diverse solution set within the 
population two methods of choosing replacement candidates 
were considered: Restricted Tournament Selection and 
Deterministic Crowding. As mentioned in the introduction, 
both of these techniques are capable of maintaining a diverse 
population of solutions. The implementation of line 5 in Fig. 1 
makes use of only one of the replacement selection techniques 
at a time. For comparison purposes, both were implemented 
and exercised in independent trials. 

Uni-modal GA solutions using tournament selection 
randomly pick two individuals for replacement. These values 
are replaced if the new children have better fitness values. 
Restricted Tournament Selection (RTS) instead picks a 
candidate replacement individual that is closest to the new 
child from a subset of the population of window size w. The 
size of the population contained in w is defined by empirical 
testing (30 for this project in all cases) and each member is 
drawn from the original population using a uniformly random 
selection process. Closeness is determined by a distance 
function. After determination of the closest individual to the 
candidate child a competition is held based on fitness between 
the child and selected individual. The one with the best fitness 
is selected for inclusion into the solution population. 

Deterministic crowding introduces competition between the 
children and the individuals used to create them. After 
crossover and mutation each child replaces the nearest parent if 
it has a higher fitness. Given two parents (P1, P2) and two 
related children (C1, C2), two of the four possible tournaments 
are executed. Selection of the tournaments is determined by the 
smallest distance value between a parent and child. The pseudo 
algorithm for this procedure is shown in Fig. 2 where F is a 
fitness function and D is the distance function. It should be 
noted this is for optimizing a minimization problem where a 
smaller fitness value is better. 

TABLE I.  GA EXECUTION VARIABLES 

 Sphere 
Rastrigi

n 
Ackley Griewangk M6 

Iteration2 400 400 400 400 400 
Iteration3 500 500 500 500 - 
Iteration5 600 600 600 600 - 
Optima2 1 4 1 5 25 
Optima3 1 8 1 5 - 
Optima5 1 32 1 5 - 
niche 0.2 0.1 1 0.9 0.5 

Superscripts indicate the dimensionality of the solution population.  
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As just described, both RTS and DC require a distance 
measure. This distance measure occurs in the genotype domain 
in our experiments. The two distance measures (Euclidean and 
Mahalanobis) that were evaluated are presented in the 
following section. 

C. Distance Measures 

Gray coding, Hamming distances and similar algorithms 
can be used when binary encodings are utilized. However these 
type of distance measures are not directly applicable to real 
value encodings. In general a Euclidean or Hamming distance 
measured is used in genetic algorithms whenever a distance 
measure is needed [12],[13]. This paper focuses on two 
distance measures: Euclidean and Mahalanobis. 

The Euclidean distance is the familiar geometric distance 
based on the Pythagorean formula. This distance measure is 
relatively simple to calculate using the following formula 
where x and y are n dimensional vectors representing points: 

 



n

i
ii yxyxd

1

2)(),(  

This distance measure has a straightforward geometric 
interpretation, is computationally inexpensive and simple to 
code. However it does have two drawbacks expanded upon in 
the following paragraphs.  

First, in geometric problem domain variables are typically 
measured utilizing the same units of length. Data values from 
real world problems may have different scales. For example a 
regression problem making use of class information such as 
age, test scores and time are all on a different scale and 
therefore not directly comparable. The Euclidean distance is 
sensitive to the scales of the variables involved and may not 
perform optimally. This problem can be overcome by a 
standardized or weighted Euclidean distance which 
incorporates variances but not covariances. A Mahalanobis 
distance incorporates both variances and covariances. 

Second, the Euclidean distance does not compensate for 
correlated variables. Given a test data set containing multiple 
variables where one variable set is an exact duplicate of another 
set, these sets are highly correlated. The Euclidean distance 
calculation will weight the duplicate variables more heavily 
than the others. It has no method of accounting for the fact that 
the duplicate provides no new information. 

Mahalanobis distance was introduced by P.C. Mahalanobis 
in 1936. It is based on both the mean and variance of the 
variables in addition to the covariance matrix. The iso-surface 
formed around the mean is an ellipse in two dimensional space 
or an ellipsoid or hyper-ellipsoid when more variables are used. 
It is a multivariate quantitative method that can solve for 
multiple dimensions simultaneously. The covariance among the 
variables is taken into account when calculating the distance. 
Because of this, the problems of scale and correlation inherent 
in the Euclidean distance are not an issue. Given an individual 
as a vector )x,,(x n0 ix


of floating point values x, a  

vector representing the mean of a data set 

),...,( 0 n 


and a covariance matrix C of size n x n 

representing the covariance values between all dimensions n, 
the Mahalanobis distance is calculated with the given formula: 

 T
iii xCxxmd )()()( 1  
   

This function produces a distance value for the ix


vector. 

This vector is either a parent or child individual. The steady 
state population is used to compute the mean  . In effect the 
distance measure utilized is not the distance between two 
vectors but the distance of a vector from the GA population. 
Hence the population is used as a reference point for all 
distance measures. 

D. Algorithmic Complexity 

Computational complexity of the Mahalanobis Distance 
measure is O(n2) for n dimensional data vectors in the solution 
population domain [14]. Without any optimizations, the 
Euclidean distance computational complexity is O(n). In this 
paper, the Euclid distance was computed in the genotype 
domain. Given a minimization problem with 0.0 being the 
global optimal solution this computational complexity is 
reduced to a constant time in one dimension. 

E. Test Function Descriptions 

Five functions were used to evaluate performance. These 
functions have been used frequently in GA evaluations. For 
completeness these function are described next. The functions 
were evaluated with 2, 3 and 5 dimension value sets. 

Sphere (5) is a continuous, convex uni-modal, n-
dimensional function constrained to real values -5.12, 5.12. A 
global minimum occurs at 0. 

 



n

i
is xxF

1

2)(  

The generalized Rastrigin (6) function is n-dimensional 
function with a large number of local minima whose value 
increases with the distance to the global minimum. The 
function was constrained to real values in the range -1.5, 0.5 
where A=10 and w=2π. This limited the number of optima to 5 
including the global. 

IF (D(Pi,Ci) + D(Pj,Cj)) <= (D(Pj,Ci)+(D(Pi,Cj)) 
 If (F(Cj) < F(Pj) then replace Pj with Cj; 
 If (F(Ci) < F(Pi) then replace Pi with Ci; 
ELSE 
 If (F(Ci) < F(Pj) then replace Pj with Ci; 
 If (F(Cj) < F(Pi) then replace Pi with Cj; 

Figure 2. DC Tournament 
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Ackley (7) is a highly multi-modal n-dimensional function. 
A large number of local minima are spread evenly over the 
space. One global minimum occurs at 0. 
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Greiwangk (8) has a product term that introduces 
interdependence among the variables. It is a continuous multi-
modal function that has a global optimum at 0.0.  In addition it 
has four relatively large optima at [±π, ±π * 1.414, 0.0,…]. It is 
constrained to -600,600. 
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M6 (9) is called the Shekels Foxhole problem [5]. This is a 
2-dimensional problem with 25 optima. The two variables are 
restricted to the range -65.536, 65.535. The maxima are located 
at (16i, 16j) where i and j are integers in the range [-2,2]. They 
are all of differing heights with a global optimum at (-32,-32). 
M6 is defined below: 


 


 24

0
66

6

))(())((1
1

002.

1
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i

m

ibyiaxi

F 

where ]2)5mod[(16)(  iia  and   )25/(16)(  iib . 

IV. RESULTS 

The intent of this project is to gauge the performance of the 
distance measures when used in GA crowding multi-modal 
solutions. The performance of the test runs was measured by 
three metrics: 1. Peak count = Average number of peaks found. 
2. The number of times the global optimum was found in the 
100 repeated runs. 3. The average best fitness of the final 
solution for the 100 repeated runs. 

For a solution to be considered as an optima it was not 
necessary to match the exact value. It should be noted that the 
goal was minimization and most of the test functions had a 
global minimum at 0. If all the points of the data vector fell 
within a small offset from the correct value it was considered to 
have been a match. Table 1 labels this value as niche for each 
test function. 

In order to empirically show that the replacement selection 
method, using two distance measures, was choosing different 
individuals the specific individual selection results were 
tracked during a trial run of RTS. At each point in the 
algorithm where a distance measure was required, both 
distance measures were calculated for the two children. In a run 
with 200 iterations, the individuals selected were identical 10% 
of the time. 46% of the selections had one individual in 
common. In the remaining 44% the individuals chosen were 
unique. 

A similar process for evaluating replacement selection in 
DC was implemented. The test consisted of 400 iterations on 
the five test functions. Given that DC can select to replace at a 
maximum two parents the total number of possible replacement 
considerations the algorithm had to make was 4,000.  The 
Mahalanobis distance made a change 2,314 times and 
Euclidean 2,320. Of these changes all but 152 were identical 
replacements. This shows that while there were differences in 
the distance measures they were in agreement on 96% of the 
decisions.  

Fig. 3 contains graphs of the Peak Count for both 
replacement solutions with a higher value indicating more 
optimal solutions are found. The data is from the two 
dimensional test sets. It shows that Mahalanobis matches or 
outperforms Euclidean for RTS. Performance results for the 
DC implementation showed on average the performance for 
both distance measures was equivalent and consequently the 
results are not shown in the figure.  

The number of global optimum discovered in each of the 
100 independent runs is found in Table 2. The bold face 
numbers indicate the better score for each distance measure. If 
they performed equally well then both values for the distance 
measure are in bold unless both values are zero. Results for all 
five test functions in the three different dimensions are 
available. Out of the fifteen RTS test runs, Mahalanobis scored 
better eleven times and equivalent once with two instances of 
both finding no optimums. In the fifteen DC runs, five runs 
were equivalent, Euclid scored better five times, Mahalanobis 
scored better five times and there was one instance where no 
optima were found. This is the second result that shows little 
difference in performance between the two distance measures 
in regard to DC output. 

Finally Fig. 4 depicts the average final best fitness value of 

RTS Peak Count

0

0.5

1

1.5

2

Sphere Rastrigin Ackley Griewangk M6

Euclid Mahalanobis

Figure 3. RTS Peak Count 
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the 100 independent trials of the RTS selection function for 
five dimension solutions. The fitness value is the result of 
executing a test function with the values of an individual of the 
population. For this experiment the goal is to find a minimum 
value. Consequently smaller fitness values are better. 
Mahalanobis consistently produced better (smaller) results in 
the four test functions. The M6 test function is defined for only 
two dimensions and therefore is not shown. 

It was observed in the DC implementation that only small 
differences existed in all of the experiments with the two 
distance measures. The DC algorithm uses the distance 
measure (in addition to fitness) as part of a replacement 
strategy to choose between two parents and two children. The 
conjecture is that this small population choice accounts for the 
similar performance when utilizing the different distance 
functions. In RTS the crowding factor provides a larger 
population (30 individuals) for distance comparisons. As was 
shown in the previous section, the two distance measures used 
in RTS select at least one different individual 90% of the time. 
However for DC the difference in selection was only 4%. 

V. CONCLUSION 

Two crowding type Genetic Algorithm multi-modal 
solutions with real coded values were chosen for 
implementation: Restricted Tournament Selection and 
Deterministic Crowding. Both Mahalanobis and Euclidean 
distance measures were utilized by these routines in selection 
determination. Five frequently used test functions were 
implemented and used to evaluate the performance of the 
selection routines. 

Mahalanobis is computationally more expensive but, within 
the parameters of this project, appears to be superior to 
Euclidean distance in Restricted Tournament selection and 
equivalent in Deterministic Crowing. The use of Mahalanobis 
distance, in the case of Restricted Tournament Selection, found 
40% more of the global optimum, maintained a 35% higher 
average peak count and produced an average final fitness that 
was 3 times better (lower). As is often the case, this paper 
depicts a tradeoff of computational complexity versus 
performance when choosing a distance algorithm to implement. 
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TABLE II.  GLOABAL OPTIMUM COUNT 

 DC RTS  

Functions Euclid Mahal Euclid Mahal Dim. 

Sphere 100 100 97 100 2 

Rastrigin 98 98 91 89 2 

Ackley 100 100 70 95 2 

Griewangk 20 11 0 1 2 

M6 3 2 3 4 2 

Sphere 100 100 61 100 3 

Rastrigin 49 42 35 35 3 

Ackley 98 93 17 73 3 

Griewangk 0 1 0 0 3 

M6 2 3 2 3 3 

Sphere 100 100 5 97 5 

Rastrigin 0 1 1 3 5 

Ackley 35 36 0 33 5 

Griewangk 0 0 0 0 5 

M6 0 3 2 5 5 
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