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Abstract—When training a neural network it is tempting to
experiment with architectures until a low total error is achieved.
The danger in doing so is the creation of a network that loses
generality by over-learning the training data; lower total error
does not necessarily translate into a low total error in validation.
The resulting network may keenly detect the samples used to
train it, without being able to detect subtle variations in new
data. In this paper, a method is presented for choosing the
best neural network architecture for a given data set based on
observation of its accuracy, precision, and mean square error.
The method, based on [1], relies on k-fold cross validation
to evaluate each network architecture k times to improve the
reliability of the choice of the optimal architecture. The need
for four separate divisions of the data set is demonstrated
(testing, training, and validation, as normal, and an comparison
set). Instead of measuring simply the total error the resulting
discrete measures of accuracy, precision, false positive, and false
negative are used. This method is then applied to the problem
of locating cryptographic algorithms in compiled object code for
two different CPU architectures to demonstrate the suitability of
the method.

I. INTRODUCTION

The choice of neural network architecture to solve a par-
ticular problem drastically affects the effectiveness of the
resulting solution. In this paper a method of choosing the
appropriate architecture for a particular problem is described
by examination of the mean square error of trained networks.

The problem of neural network architecture selection is a
central problem in the application of neural network compu-
tation. A single neuron is capable of learning a simple line
in an n dimensional space which bifurcates the space. More
complex networks can circumscribe more complex shapes, but
the problem is deciding which network most accurately and
generally describes the shape of the problem. The goal is to
create a network complex enough to learn the data, but small
enough to avoid over-learning (in this paper, over-learning,
over-fitting and over-training are used interchangeably).

A network that is too simple will only capture the most
gross features of a data set. In fact, neural network learning
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models have been created that will tend to discover the
statistical principal components of a data set [2]. There are also
techniques that can automatically create networks that perform
arbitrarily well on data sets like cascade correlation [3], hybrid
evolutionary neural network construction, network pruning [4],
or function complexity analysis [5]. One classic implemen-
tation of network pruning is Optimal Brain Damage which
attempts to remove connections between neurons that have
low weight [6].

Each of the previous methods requires a good understanding
of the underlying tuning parameters. For instance, in cascade
correlation, the choice of the minimum error provides the
ability to create a network that performs extremely well on the
training data, but is not well generalized enough to recognize
subtleties in the data.

The process for neural network architecture selection de-
scribed in this paper is then applied to the problem of
locating cryptography algorithms within compiled machine
code. The application for such a tool is primarily in the
malware analysis community where many malware samples
are taking advantage of the availability of strong cryptography
primitives (e.g. Conficker [7], [8] and Rustock [9] worms).
Other applications include export compliance verification and
software component verification.

In previous work, a simplistic neural network has been pro-
posed for the the problem of locating cryptographic algorithms
in compiled object code [10]. This methodology has been
generalized with automatic feature selection to determine the
most relevant measurements to obtain, and this work builds
upon that by taking the reduced dimensions and using them
to train various neural networks [11]. The problem addressed
in this paper is that of determining which neural network
architecture best fits the problem.

Artificial neural networks have the ability to learn numeric
solutions to problems, but they have several pitfalls. In partic-
ular, a network that is too small, either in number of neurons
or number of hidden layers, will tend to learn the most gross
behavior of the training data and ignore subtleties. However, a
network that is too large will tend to over-specialize and learn
the training data too well, resulting in a network that has does
not solve the general problem.

Various techniques have been proposed for automatic neural
architecture determination. Some techniques are constructive:
neurons and/or connections are added until a stopping criteria
is met. One classic example is the cascade correlation archi-
tecture which dynamically “grows” a network by adding a
hidden layer and a single neuron in that layer until a stopping
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criterion is met [3] which results in a network with many
hidden layers with a single neuron each. Another constructive
method for building networks constructs a single hidden layer
and add neurons until a stopping criterion is met [1]. This
method relies on k-fold cross correlation where the input data
is divided into k complementary sets. Some number of these
sets, usually k − 1, are used for training the candidate neural
network, and the remaining set is used for validation. The role
of the validation set is to determine whether the network is
over-learning the input data set. It is a variation of this method
that is described in this paper. The primary difference is the use
of the discrete measures of accuracy, precision, false positive
and negative rates (defined below).

The mean square error (MSE) of a classifier is a measure
of correctness of the network to its input set. The formal
definition is in Equation 1 where n is the number of points
in the data set, di is the desired output for input i, oi is the
actual output for input i.

MSE =
1
n

n∑
i=1

(di − oi)2 (1)

Accuracy and precision are related concepts that measure
the performance of a classifier [12]. Accuracy is the number
of correctly classified items divided by the total number
of items, and precision is a measure of correctly classified
positive cases. Given a confusion matrix like the example in
Table I, accuracy (AC) and precision (P ) are calculated using
Equations 2 and 3, respectively. False positive (FP ) and false
negative (FN ) are measures of incorrectly classified cases
relative to the total for that type of case using Equations 4
and 5, respectively.

TABLE I
EXAMPLE CONFUSION MATRIX.

classified as:
non-crypto crypto

(a) (b) non-crypto
(c) (d) crypto

AC =
a+ d

a+ b+ c+ d
(2)

P =
d

b+ d
(3)

FP =
b

a+ b
(4)

FN =
c

c+ d
(5)

The rest of this paper is organized as follows: Section II de-
scribes the architecture selection analysis process, Section III
depicts the results of applying the architecture selection tech-
nique on the cryptography location problem, and Section IV
provides the conclusion and future directions for this work.

II. ARCHITECTURE SELECTION ANALYSIS PROCESS

The basic architecture selection process is described in
Figure 1. Each network architecture is trained k times (one
fold is used as a validation set during each iteration), and the
accuracy, precision, and mean square error for each architec-
ture is recorded. The mean of each fold’s MSE is defined as
in Equation 6 where k is the number of folds and MSEi

is the mean square error of fold i. For each architecture and
fold, MMSE is computed for the whole data set (MMSEa),
the training set (MMSEt), and the validation set (MMSEv).
The goal is to find a neural network architecture that reacts
consistently across MMSEa, MMSEv , and MMSEt.

NETWORK-SELECTION-PROCESS1: gather data
2: divide data into k stratified folds
3: for all candidate architectures do
4: for i = 1 to k do
5: train network with k − 1 folds
6: validate with the kth fold
7: MSEt ← MSE of training set
8: MSEv ← MSE of validation set
9: ACt ← accuracy of training set

10: ACv ← accuracy of validation set
11: Pt ← precision of training set
12: Pv ← precision of validation set
13: end for
14: calculate mean MSEt, MSEv

15: calculate mean ACt, ACv , and P
16: calculate mean Pt, Pv

17: end for
18: rule out networks with low mean ACt, ACv , Pt, or Pv

19: choose network with consistent mean MSEt, MSEv

Fig. 1. Architecture selection process.

Similarly, the mean accuracy and precision are computed for
each of the k = 10 folds (Equations 7 and 8, respectively).
Strong performance on a single measure is not necessarily
indicative of a good classifier, but an examination of all
of the measures give an indication of the suitability of a
candidate classifier to the problem. The selection of the “best”
architecture is based on observation of the resulting data. A
classifier with extremely low MSE square error may not be
the best choice as it could indicate over-learning of the input
data. For example, a classifier that gives low overall MSE, but
has a high MSE on the validation set, is unlikely to be a good
choice.

MMSE =
1
k

k∑
i=1

MSEi (6)

MAC =
1
k

k∑
i=1

ACi (7)

MP =
1
k

k∑
i=1

Pi (8)
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For this method, a multilayer perceptron network architec-
ture is used with a hyperbolic tangent activation function. A
random weight set is used initially and the network is trained
with the combination of the Levenberg-Marquardt (LM) and
Error Back Propagation (EBP) algorithms. This combination
combines the speed of LM with the convergence behavior of
EBP. Training is stopped when the gradient is less than 10−10

or the maximum number of training epochs (1000) is reached.
The number of neurons and their distribution among hidden
layers is varied.

The notation used to describe each architecture is a/b/c/d
where a is the number of neurons to which the inputs are
connected (first hidden layer), b is the number of neurons in
the second hidden layer, c is the number of neurons in the third
hidden layer, and d is the number of neurons in the output
layer. For example, Figure 2 shows an example 3/2/1 network
with 4 inputs. In this problem, there are always 8 inputs and
exactly one output neuron as there is only a single output (the
classification of the function as being cryptography or not).
The bias input to each neuron is not depicted.

Fig. 2. Example 3/2/1 neural network architecture with 4 inputs and 1 output.

III. TEST RESULTS

In this section, the method of selecting a neural network
architecture described in Section II is applied to the problem of
locating cryptography in object code. To determine the correct
architecture for the problem of locating cryptography in com-
piled object code, several neural networks were constructed
and once trained, the resulting mean square error, accuracy
and precision are examined to determine the best choice for
the architecture that captures the behavior of the data set.

Section III-A describes how the data set is gathered. Sec-
tion III-B shows the selection of a network for the Intel
X86 CPU architecture, and Section III-C demonstrates the
technique applied to the SPARC CPU architecture.

A. Gathering Data Set

The input data set for training the networks consists of the
count of the number of each distinct processor opcode in each
function in a library as well as the density of each opcode.
An opcode here refers to an assembly language instruction
mnemonic. The available opcodes differ for each instruc-
tion set architecture, e.g. X86 opcodes are largely distinct
from SPARC opcodes, but there are some commonalities. In
particular, simple mathematical operations such as addition,

subtraction, multiplication, AND, OR, and eXclusive-OR are
represented by familiar opcodes: add, sub, and, etc.

The number of occurrences of opcode i in function f
is given by Equation 9. Density is defined as the number
occurrences of a particular opcode in a function divided by
the total number of opcodes in that function, Equation 10.

σi,f = # of opcode i in function f (9)

ρi,f =
σi,f

total opcodes in function f
(10)

The library consists of the C library from the OpenBSD op-
erating system, which contains a number of cryptographic al-
gorithms (SKIPJACK, BLOWFISH, DES, 3DES, MD5, MD4,
SHA1, SHA2, etc.) and a collection of other cryptographic
algorithms: GOST, TEA, LUCIFER, RC4, RC5, and IDEA.
This results in 53 cryptographic functions and 1723 non-
cryptographic functions. The library is compiled with four
different optimization levels making for a total more than 7104
data points (functions) with 8 dimensions (opcode counts and
densities) measured for each. In addition to the total number
and the density of each opcode in each function, an expertly
determined cryptography indicator, y ∈ {−1, 1}, is added for
each function.

The data set was then divided into k = 10 folds. The
folds were stratified, meaning that ratio of cryptography to
non-cryptography functions in each fold was kept constant.
The reason for stratifying the folds was the small num-
ber of positive cases (cryptography) to negative cases (non-
cryptography). Less than 4% of cases are cryptographic al-
gorithms. Varying k to, for instance k = 5, might make the
differences in architectures. This has the effect of making the
testing and validation sets larger and should make them more
consistent. Additional consistency in the testing and validation
sets should, in turn, make the differences in architecture choice
more apparent.

B. Neural Network Architecture Selection (x86)

For initial testing, the representative library is compiled for
the X86 architecture which is also known as the Intel IA32
architecture [13]. This is an important architecture because it
is found on almost every desktop computer and is the common
target for malware.

The set of 7104 data points are divided into 10 stratified
subsets. For each each tested architecture, nine of the sets
are used for training and the remaining set is used as the
validation set. Each architecture is trained 10 times leaving
using a different validation set each time. Table II lists inputs
used for each tested neural network architecture; ρx denotes
the density of opcode x in each function, and σx denotes the
total number of x in the function.

TABLE II
X86 OPCODES USED AS NETWORK INPUTS

ρje ρshr ρxor ρmovz
σrol σxor σshl ρor
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Figure 3 shows the mean accuracy (MAC) of each tested
architecture. Along the horizontal access are various architec-
tures using the notation described in Section II. With a single
hidden layer, accuracy improves as neurons are added until
the number reaches 4; past this point, the accuracy declines.
The overall peak of this graph corresponds to 4 neurons in a
single hidden layer. No significant increase in accuracy occurs
as second hidden layer neurons are added to the network.
The 6/3/1 network is almost identical in accuracy to the 4/1
network. The standard deviation of the accuracy across folds
is also included in the graph to demonstrate the consistency
between tests. For both networks (4/1 and 6/3/1), the standard
deviation is low meaning that across folds, the architectures
produced similar accuracies.

Fig. 3. Mean accuracy vs. network architecture.

In Figure 4, mean precision is plotted. There are peaks at
4 neurons (one hidden layer) and 6/3/1 (6 neurons in the
first hidden layer, 3 in the second hidden layer). These two
points correspond with peaks in accuracy as well and show
low deviation across cross validation folds.

Fig. 4. Mean precision vs. network architecture.

Finally, in Figure 5, the MMSE of each network is plot-
ted. The three lines represent the testing and training sets
independently. Additionally, the MSE of the data set as a

whole is plotted. Both of the architectures identified earlier
(4/1 and 6/3/1) show a low training and overall error, but
there is a significant divergence with testing error in the
6/3/1 architecture. Since four neurons in a single hidden layer
captures high accuracy, high precision, consistent behavior
for testing and training sets, and low standard deviation for
MMSE, AC, and P , it is used as the architecture for
differentiating cryptography and non-cryptography functions
for the given dimensions.

Fig. 5. Mean MSE vs. network architecture.

With the architecture chosen, the final network was chosen
from the best fold of the best architecture: 8 inputs, 4 neurons
in a hidden layer, and a single output neuron. The confusion
matrix for this network is shown in Table III.

TABLE III
X86 NEURAL NETWORK PERFORMANCE (SINGLE).

classified as:
non-crypto crypto

6829 7 non-crypto
30 182 crypto

Classification rate
0.10% false positive
14.5% false negative
99.5% accuracy
96.3% precision

To summarize, the neural network selection process was
run with 25 different neural networks. Each network was
trained with 10 different data sets. One of the k = 10 folds
was held out for validation. The MMSE, MAC, and MP
was computed for each candidate architecture. By examining
the MAC (Figure 3), all but two of the architectures were
eliminated, 4/1 and 6/3/1. Examination of MP (Figure 4),
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shows highest precision corresponding to the two remaining
candidates. Finally, 4/1 is chosen as the final architecture
because MMSE on the training and validation sets shows the
lowest difference (Figure 5).

C. Neural Network Architecture Selection (SPARC)

The Scalable Processor Architecture (SPARC) is found on
many server machines [14]. Unlike the Intel X86, the SPARC
processor is a reduced instruction set computer (RISC). The
distribution of instructions is likely to be different for these
processors, and the reason for using it here is to demonstrate
the applicability of the technique to alternate data sets. Ta-
ble IV shows the opcodes used as inputs to the tested neural
networks. ρx denotes the density of opcode x in each function,
and σx denotes the total number of x in the function.

TABLE IV
SPARC OPCODES USED AS NETWORK INPUTS

ρand ρbpos ρbrz ρldu ρret
ρsll ρsra ρst ρxor σsrl

Figure 6 shows the MMSE for the same candidate networks
trained against data gathered for the SPARC architecture. Here,
the highest accuracy occurs with a 7/3/1 network and also with
a 7/2/1 network. For precision (Figure 7), a similar relationship
exists, but 2/2/1 and 5/2/1 networks also have high precision.
Simply based on the accuracy and precision, the 7/3/1 network
is the best candidate (high precision combined with high
accuracy). The 2/2/1 network is ruled out because while it
has high accuracy and precision, it also has a high standard
deviation of accuracy and precision.

Fig. 6. Mean accuracy vs. network architecture (SPARC).

When MMSE is considered (Figure 8), the 2/2/1 and
5/2/1 networks which had high precision are ruled out again
because of their high MMSE. The 7/3/1 network has a good
combination of low MMSE, high accuracy, high precision, and
low standard deviation on all measures.

The resulting confusion matrix for a single 7/3/1 neural
network is shown in Table V. Comparing the results to the
X86 neural network (Table III, the network used on SPARC

Fig. 7. Mean precision vs. network architecture (SPARC).

Fig. 8. Mean MSE vs. network architecture (SPARC).

performs similarly (within 0.1% on AC, FP , and FN and 5%
on P ). The two networks differ, however, in architecture (7/3/1
for SPARC, and 4/1 on X86); this underscores the difference
in the instruction sets for the two processors (X86 is CISC
and SPARC is RISC). The same neural network architecture
cannot capture the behavior of the opcode counts and densities
between CPU instruction set architectures.

In summary, the same neural network selection process
was applied to the SPARC data set as was described in
Section III-B. The MMSE, MAC, and MP was computed
for each candidate architecture. By examining the MAC (Fig-
ure 6), all but two of the architectures were eliminated, 7/2/1
and 7/3/1. Highest precision occurs at 7/2/1, 7/3/1, 2/2/1,
and 5/2/1 (Figure 7). Two networks, 2/2/1 and 5/2/1 are not
considered because they do not correspond to high MAC.
The final network chosen is 7/3/1 is chosen because it shows
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TABLE V
SPARC NEURAL NETWORK PERFORMANCE (SINGLE).

classified as:
non-crypto crypto

6829 7 non-crypto
41 171 crypto

Classification rate
0.10% false positive
19.3% false negative
99.3% accuracy
96.1% precision

consistently low MMSE on both the test and validation sets
(Figure 8).

IV. CONCLUSION

In this paper, a process was described that can be used to
select the best neural network architecture for a given problem.
The method relies on k-fold cross validation and training
multiple networks for each candidate architecture. From there,
the mean of the mean square error, accuracy, and precision
are compared to determine the optimal architecture. In future
work, this process will be refined and even more formalized.

The approach used in this work is known to have several
requirements. Primarily, searching the entire space of possible
networks exhaustively is computationally expensive. Secondly,
the dataset should be divided into four, not three, parts. The
first three divisions correspond to normal network training
sets: training, testing, and validation sets. The fourth is then
reserved for comparing different architectures.

The method was applied to the problem of locating cryp-
tography algorithms in compiled object code for both the Intel
X86 and SPARC instruction sets. The resulting networks show
high accuracy, precision, and low mean square error. For this
problem, the data must be stratefied because the number of
positive (cryptographic) samples is much smaller than the
number of negative samples. Future work on this problem will
concentrate on locating additional measurement dimensions to

increase the accuracy of cryptography detection and applying
the described method to additional datasets.
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